REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2782</td>
<td>Inflammation, microbiome and colorectal cancer disparity in African-Americans: Are there bugs in the genetics?</td>
<td>Ahmad S, Askotorab H, Brim H, Housseau F</td>
</tr>
<tr>
<td>2823</td>
<td>Long noncoding RNAs in hepatitis B virus replication and oncogenesis</td>
<td>Li HC, Yang CH, Lo SY</td>
</tr>
</tbody>
</table>

MINIREVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2843</td>
<td>Characteristics of inflammatory bowel diseases in patients with concurrent immune-mediated inflammatory diseases</td>
<td>Akiyama S, Fukuda S, Steinberg JM, Suzuki H, Tsuchiya K</td>
</tr>
<tr>
<td>2867</td>
<td>Micelles as potential drug delivery systems for colorectal cancer treatment</td>
<td>Fatfat Z, Fatfat M, Gali-Muhtasib H</td>
</tr>
<tr>
<td>2890</td>
<td>Non-alcoholic fatty liver disease and the impact of genetic, epigenetic and environmental factors in the offspring</td>
<td>Wajsbrot NB, Leite NC, Salles GF, Villela-Nogueira CA</td>
</tr>
<tr>
<td>2900</td>
<td>Role of transcribed ultraconserved regions in gastric cancer and therapeutic perspectives</td>
<td>Gao SS, Zhang ZK, Wang XB, Ma Y, Yin GQ, Guo XB</td>
</tr>
<tr>
<td>2910</td>
<td>Multiple roles for cholinergic signaling in pancreatic diseases</td>
<td>Yang JM, Yang XY, Wan JH</td>
</tr>
</tbody>
</table>

ORIGINAL ARTICLE

Basic Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments

Upregulated adenosine 2A receptor accelerates post-infectious irritable bowel syndrome by promoting CD4+ T cells’ T helper 17 polarization

Dong LW, Ma ZC, Fu J, Huang BL, Liu FJ, Sun D, Lan C

Retrospective Study

Four-year experience with more than 1000 cases of total laparoscopic liver resection in a single center

Mapping the global research landscape on nutrition and the gut microbiota: Visualization and bibliometric analysis

Early gastric cancer presenting as a typical submucosal tumor cured by endoscopic submucosal dissection: A case report

Cho JH, Lee SH

Acupuncture and moxibustion for treatment of Crohn’s disease: A brief review

Xie J, Huang Y, Wu HG, Li J

Correction to “Aberrant methylation of secreted protein acidic and rich in cysteine gene and its significance in gastric cancer”

Shao S, Zhou NM, Dai DQ

Correction to “Gut microbiota dysbiosis in Chinese children with type 1 diabetes mellitus: An observational study”

Liu X, Cheng YW, Shao L, Sun SH, Wu J, Song QH, Zou HS, Ling ZX
ABOUT COVER
Editorial Board Member of World Journal of Gastroenterology, Hideyuki Chiba, MD, PhD, Director, Department of Gastroenterology, Omori Red Cross Hospital, 4-30-1, Chuo, Ota-Ku, Tokyo 143-8527, Japan. h.chiba04@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.
Acupuncture and moxibustion for treatment of Crohn's disease: A brief review

Jing Xie, Yan Huang, Huan-Gan Wu, Jing Li

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Sitkin S, Russia; Tao M, China
A-Editor: Chen KM, Taiwan

Received: September 5, 2021
Peer-review started: September 5, 2021
First decision: November 8, 2021
Revised: November 18, 2021
Accepted: May 26, 2022
Article in press: May 26, 2022
Published online: July 7, 2022

Abstract

Crohn’s disease (CD) is a kind of intestinal inflammatory disease that can affect any part of the gastrointestinal tract and the incidence rate of CD is gradually increasing worldwide. Acupuncture and moxibustion have unique curative effects on gastrointestinal diseases and can be new options for the treatment of CD.

Key Words: Crohn’s disease; Acupuncture; Moxibustion; Treatment; Review

Core Tip: Crohn’s disease (CD) can affect any part of the gastrointestinal tract, especially the terminal ileum and the ascending colon, and is collectively known as inflammatory bowel disease with ulcerative colitis. The incidence rate of CD is gradually increasing worldwide. This letter mainly introduces that acupuncture has a unique curative effect on CD and can provide a new research direction for the treatment of CD.

Crohn’s disease (CD) can affect any part of the gastrointestinal tract, especially the terminal ileum and the ascending colon, and is collectively known as inflammatory bowel disease (IBD) with ulcerative colitis. The main symptoms include abdominal pain, diarrhea, fistula, intestinal obstruction, fever, emaciation, and nutritional disorders. In the past three decades, the incidence rate of CD has gradually increased worldwide at an annual growth rate between 4%-15%, which warrants our attention[1].

Currently, biological therapy is the preferred treatment for CD, and the commonly used biological agents such as infliximab and adalimumab have brought significant benefits to the patients. With multiple biological agents at their disposal, clinicians can, according to different symptoms, choose drugs with different anti-inflammatory mechanisms. However, despite the undisputed efficacy of these agents, a significant proportion of patients fail to receive effective treatments. For example, many patients do not respond to induction therapy or lose the response after initial improvements. As traditional Chinese medicine therapies, acupuncture and moxibustion have a long history in treating gastrointestinal diseases and significant advantages against symptoms such as abdominal pain, diarrhea, fatigue, and anorexia. Therefore, we summarize articles about clinical acupuncture and moxibustion treatment for CD to explore their unique advantages.

Using keywords such as acupuncture, CD, and clinical trials, we searched PubMed for clinical trials of acupuncture and moxibustion in the treatment of CD up to February 28, 2020, and found four articles that met the criteria. The four articles that we found and retrieved showed that acupuncture and moxibustion had curative effects on CD. Joos et al.’s randomized controlled trial confirmed that after 4 wk of treatment, the CD activity index (CDAI) of the acupuncture group showed a significantly larger (P = 0.003) decrease (from 250 ± 51 to 163 ± 56) than that of the groups without acupuncture (from 220 ± 42 to 181 ± 46)[2]. Bao et al.’s 12-wk trial with the treatment group undergoing herb-partitioned moxibustion combined with acupuncture (HMA) and the control group receiving wheat bran partitioned moxibustion combined with superficial acupuncture showed a significantly higher (P = 0.000) total treatment efficacy of the treatment group at 83.72% compared to 40.48% of the control group and a significantly lower (P = 0.000) CDAI in the treatment group than that of the control group[3]. Both clinical trials demonstrated that acupuncture combined with moxibustion significantly reduced the CDAI in the patients and significantly improved their quality of life. Shang et al.[4] conducted a clinical trial with one group receiving HMA and the other group treated with mesalamine (MESA). After 12 wk of treatment, the expression of ZO-1 mRNA in the HMA group was significantly improved compared with the MESA group (2378.17 ± 308.77 vs 2200.56 ± 281.88; P = 0.023), confirming that HMA can repair the intestinal epithelial barrier by up-regulating the expression of tight junction protein and its mRNA, thus reducing the intestinal inflammatory response in CD patients. Horta et al.[5] investigated whether electroacupuncture (EAc) therapy could relieve fatigue in patients with IBD by allocating 52 patients into the EAc, sham EAc (ShEAc), and waitlist (WL) groups. Evaluation with the IBD-validated Functional Assessment of Chronic Illness Therapy-Fatigue Scale showed reduced fatigue scores in patients of the EAc and ShEAc groups after 8 wk of treatment and significantly better curative effects in the two groups than that in the WL group.

According to these four clinical trials, acupuncture treatment tends to attenuate symptoms such as abdominal pain, diarrhea, and fatigue in patients with CD. Therefore, acupuncture and moxibustion therapy may potentially improve the physical and mental health of CD patients. Unfortunately, clinical trials of acupuncture for CD with relatively long-term observation and a large sample are still lacking. Except those conducted by Chinese researchers, there are few studies on treating CD with acupuncture, and more evidence is required to support the application of acupuncture and moxibustion therapies in treating CD and verify their potential benefits.

FOOTNOTES

Author contributions: Xie J wrote the manuscript; Yan H, Wu HG, and Li J edited the manuscript.

Supported by the National Nature Science Foundation of China, No. 81774405 and No. 81873372.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Jing Xie 0000-0001-8982-5452; Yan Huang 0000-0002-5588-0274; Huan-Gan Wu 0000-0003-0563-1560;
REFERENCES

