EDITORIAL
1203 Transition of an acronym from nonalcoholic fatty liver disease to metabolic dysfunction-associated fatty liver disease
Alam S, Fahim SM

OPINION REVIEW
1208 Non-invasive real-time assessment of hepatic macrovesicular steatosis in liver donors: Hypothesis, design and proof-of-concept study
Rajamani AS, Rammohan A, Sai VR, Rela M

REVIEW
1215 Impact of COVID-19 pandemic on liver, liver diseases, and liver transplantation programs in intensive care units
Omar AS, Kaddoura R, Orabi B, Hanoura S

1234 In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet?
Echeverria N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J

1269 Pediatric non-cirrhotic portal hypertension: Endoscopic outcome and perspectives from developing nations
Sarma MS, Seetharaman J

MINIREVIEWS
1289 Acute-on-chronic liver failure in children
Islek A, Tumgor G

1299 Coronavirus disease 2019 in liver transplant patients: Clinical and therapeutic aspects
Loinaz-Segurola C, Marcacuzco-Quinto A, Fernández-Ruiz M

1316 Pediatric vascular tumors of the liver: Review from the pathologist’s point of view
Cordova F, Hoorens A, Van Dorpe J, Creytens D

1328 Autoimmune hepatitis in genetic syndromes: A literature review
Capra AP, Chiara E, Brioglia S

1341 Assessing the prognosis of cirrhotic patients in the intensive care unit: What we know and what we need to know better
da Silveira F, Soares PHR, Marchesan LQ, da Fonseca RSA, Nedel WL

1351 Liver transplantation for pediatric inherited metabolic liver diseases
Vimalasvaran S, Dhawan A
Contents

World Journal of Hepatology
Monthly Volume 13 Number 10 October 27, 2021

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1367</td>
<td>Liver and COVID-19: From care of patients with liver diseases to liver injury</td>
<td>Gaspar R, Castelo Branco C, Macedo G</td>
</tr>
<tr>
<td>1378</td>
<td>ORIGINAL ARTICLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Study</td>
<td></td>
</tr>
<tr>
<td>1378</td>
<td>Direct modulation of hepatocyte hepcidin signaling by iron</td>
<td>Yu LN, Wang SJ, Chen C, Rausch V, Elshaarawy O, Mueller S</td>
</tr>
<tr>
<td>1405</td>
<td>Retrospective Cohort Study</td>
<td></td>
</tr>
<tr>
<td>1417</td>
<td>Retrospective Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database</td>
<td>Atsawarungruangkit A, Laoveeravat P, Promrat K</td>
</tr>
<tr>
<td>1439</td>
<td>Observational Study</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focal nodular hyperplasia associated with a giant hepatocellular adenoma: A case report and review of literature</td>
<td>Gaspar-Figueiredo S, Kefleyesus A, Sempoux C, Uldry E, Halkic N</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Hepatology, Julio Coelho, MD, PhD, Professor, Department of Surgery, Federal University of Parana, Curitiba 80240-110, Parana, Brazil. coelhojcu@yahoo.com.br

AIMS AND SCOPE
The primary aim of World Journal of Hepatology (WJH, World J Hepatol) is to provide scholars and readers from various fields of hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING
The WJH is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Scopus, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database. The 2021 edition of Journal Citation Reports® cites the 2020 Journal Citation Indicator (JCI) for WJH as 0.61. The WJH’s CiteScore for 2020 is 5.6 and Scopus CiteScore rank 2020: Hepatology is 24/62.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Xiang Li.

NAME OF JOURNAL
World Journal of Hepatology

ISSN
ISSN 1948-5182 (online)

LAUNCH DATE
October 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Nikolaos Pyrropoulos, Ke-Qin Hu, Koo Jeong Kang

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
October 27, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Retrospective Cohort Study

Impact of biliary complications on quality of life in live-donor liver transplant recipients

Reginia Nabil Guirguis, Ehab Hasan Nashaat, Azza Emam Yassin, Wesam Ahmed Ibrahim, Shereen A Saleh, Mohamed Bahaa, Mahmoud El-Meteini, Mohamed Fathy, Hany Mansour Dabbous, Iman Fawzy Montasser, Manar Salah, Ghada Abdelrahman Mohamed

ORCID number: Reginia Nabil Guirguis 0000-0003-3442-3629; Ehab Hasan Nashaat 0000-0002-7686-6463; Azza Emam Yassin 0000-0002-5764-6078; Wesam Ahmed Ibrahim 0000-0003-1813-5248; Shereen A Saleh 0000-0002-0984-1727; Mohamed Bahaa 0000-0002-8605-4597; Mahmoud El-Meteini 0000-0002-1839-3549; Mohamed Fathy 0000-0001-8000-5722; Hany Mansour Dabbous 0000-0001-5648-7733; Iman Fawzy Montasser 0000-0002-1351-978X; Manar Salah 0000-0001-9909-4016; Ghada Abdelrahman Mohamed 0000-0003-0320-1011.

Author contributions: Guirguis RN, Nashaat EH, Yassin AE, Ibrahim WA, Saleh SA, Bahaa MM designed the study; Bahaa MM, El-Meteini M, Fathy M performed the surgical operation; Guirguis RN, Dabbous HM, Montasser IF, Salah M performed the perioperative management; Guirguis RN participated in the acquisition of data; Guirguis RN, Nashaat EH, Yassin AE, Ibrahim WA, Saleh SA, Mohamed GA participated in the analysis and interpretation of the data; Guirguis RN, Saleh SA, Bahaa MM, Mohamed GA revised the article critically for important intellectual content; Mohamed GA wrote the manuscript.

Reginia Nabil Guirguis, Ehab Hasan Nashaat, Azza Emam Yassin, Wesam Ahmed Ibrahim, Shereen A Saleh, Ghada Abdelrahman Mohamed, Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt

Mohamed Bahaa, Mahmoud El-Meteini, Mohamed Fathy, Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt

Hany Mansour Dabbous, Iman Fawzy Montasser, Manar Salah, Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt

Corresponding author: Ghada Abdelrahman Mohamed, MD, Lecturer, Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, El Khalifa El-Maamon St., Abbassia, Cairo 11591, Egypt. ghadaabdelrahman@med.asu.edu.eg

Abstract

BACKGROUND

Despite significant advancements in liver transplantation (LT) surgical procedures and perioperative care, post-LT biliary complications (BCs) remain a significant source of morbidity, mortality, and graft failure. In addition, data are conflicting regarding the health-related quality of life (HRQoL) of LT recipients. Thus, the success of LT should be considered in terms of both the survival and recovery of HRQoL.

AIM

To assess the impact of BCs on the HRQoL of live-donor LT recipients (LDLT-Rs).

METHODS

We retrospectively analysed data for 25 LDLT-Rs who developed BCs post-LT between January 2011 and December 2016 at our institution. The Short Form 12 version 2 (SF 12v2) health survey was used to assess their HRQoL. We also included 25 LDLT-Rs without any post-LT complications as a control group.

RESULTS

The scores for HRQoL of LDLT-Rs who developed BCs were significantly higher than the norm-based scores in the domains of physical functioning ($P = 0.003$), role-physical ($P < 0.001$), bodily pain ($P = 0.003$), general health ($P = 0.004$), social
The study was reviewed and approved by the institutional review board of Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Informed consent statement: Was waived due to the retrospective nature of the study.

Conflict-of-interest statement: All authors have nothing to disclose.

Data sharing statement: The statistical code and dataset are available from the corresponding author at ghadaabdelrahman@med.asu.edu.eg. The participants gave informed consent for the data sharing.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Egypt

Peer-review report's scientific quality classification

Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Received: April 11, 2021
Peer-review started: April 11, 2021
First decision: June 15, 2021
Revised: June 23, 2021
Accepted: September 23, 2021
Article in press: September 23, 2021

Health-related quality of life (HRQoL) is a multidimensional model reflecting the domains of social, mental, emotional, and physical health[1,2]. More than 50 different HRQoL tools have been used in liver transplant (LT) research[3], and no golden standard instrument has existed until now[4]. These tools can be classified into generic and disease-specific tools[3,5]. Generic HRQoL tools, of which the validated Short Form 36 (SF-36) health survey is the most frequently used for evaluating LT recipients, allow assessments across various medical conditions and health states[6,7].

Similar to the SF-36v2, it evaluates the same eight dimensions of HRQoL covering the previous 4 wk: General health, bodily pain, physical functioning, role physical, vitality, role emotional, mental health, and social functioning. Physical Component Summary (PCS) and Mental Component Summary (MCS) scores were created from patient responses[10]. The sum of scores ranges from 0 to 100, where 0 indicates the worst state of health and 100 indicates the best state of health[10,11].

The data are conflicting regarding the HRQoL of LT recipients. The heterogeneity between studies regarding the type of graft, diversity of included patients, and health survey precludes definitive conclusions[4,12]. In addition, an overlap exists between the primary liver disease and LT process with diverse events during peri- and postoperative management.

The global assessment of HRQoL after LT usually confirms improvement compared with pretransplant status[13]; however, it may remain suboptimal compared to the general population due to post-LT complications, recurrence of primary liver disease, or adverse effects of immunosuppressants[14-17]. In addition, cirrhosis leads to loss of muscle mass, sarcopenia, malnutrition, and physical impairment that manifest as

CONCLUSION

The development of BCs in LDLT-Rs causes a lower range of improvement in HRQoL.

Key Words: Live-donor liver transplantation; Quality of life; The Short Form 12 version 2; Cirrhosis; Biliary complications; Mental health

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1405

INTRODUCTION

Health-related quality of life (HRQoL) is a multidimensional model reflecting the domains of social, mental, emotional, and physical health[1,2]. More than 50 different HRQoL tools have been used in liver transplant (LT) research[3], and no golden standard instrument has existed until now[4]. These tools can be classified into generic and disease-specific tools[3,5]. Generic HRQoL tools, of which the validated Short Form 36 (SF-36) health survey is the most frequently used for evaluating LT recipients, allow assessments across various medical conditions and health states[6,7].

Similar to the SF-36v2, it evaluates the same eight dimensions of HRQoL covering the previous 4 wk: General health, bodily pain, physical functioning, role physical, vitality, role emotional, mental health, and social functioning. Physical Component Summary (PCS) and Mental Component Summary (MCS) scores were created from patient responses[10]. The sum of scores ranges from 0 to 100, where 0 indicates the worst state of health and 100 indicates the best state of health[10,11].

The data are conflicting regarding the HRQoL of LT recipients. The heterogeneity between studies regarding the type of graft, diversity of included patients, and health survey precludes definitive conclusions[4,12]. In addition, an overlap exists between the primary liver disease and LT process with diverse events during peri- and postoperative management.

The global assessment of HRQoL after LT usually confirms improvement compared with pretransplant status[13]; however, it may remain suboptimal compared to the general population due to post-LT complications, recurrence of primary liver disease, or adverse effects of immunosuppressants[14-17]. In addition, cirrhosis leads to loss of muscle mass, sarcopenia, malnutrition, and physical impairment that manifest as
physical frailty, increasing the risk of pretransplant mortality\cite{18-20} and delayed improvement of physical functioning post-LT\cite{21-23}.

Fatigue affects up to 50\% of patients with chronic liver disease; moreover, it demonstrates a significant association with poor HRQoL\cite{24,25}. It also affects up to 60\% of LT recipients\cite{26}. It is a complex symptom that may be influenced by physical and mental states, including poor sleep quality, anxiety, and depression\cite{27}.

The LT candidates often have impaired HRQoL with a high prevalence of anxiety and depressive symptoms\cite{28,29}. Moreover, LT was considered as post-traumatic stress disorder and was also found to be associated with anxiety and depression, which may further impair the HRQoL of LT recipients\cite{30-33}.

In the light of the above, HRQoL should be considered in terms of the outcome after LT\cite{34,35}. Hence, we aimed to assess the impact of biliary complications (BCs) on the HRQoL of live-donor LT recipients (LDLT-Rs).

\section*{MATERIALS AND METHODS}

\subsection*{Study design}

We retrospectively analysed all LDLT-Rs at Ain Shams Centre for Organ Transplantation, Ain Shams Specialised Hospital, Cairo, Egypt, between January 2011 and December 2016. During this period, 215 adult patients underwent right-lobe LDLT at our centre. We included LDLT-Rs who developed BCs post-LT. We excluded LDLT-Rs with any of the following situations: cholestatic liver diseases (primary biliary cirrhosis or primary sclerosing cholangitis), vascular complications, acute or chronic rejection, recurrent hepatitis C virus (HCV) infection, graft failure, failure to follow up for at least one year post-LT, or patients who refused to participate in the research. As a result, 25 LDLT-Rs with BCs were included in the final analysis. We enrolled 25 LDLT-Rs who did not develop any post-LT complications as a control group. LT recipients were assessed at least 12 months post-LT, with median follow-up duration of 5.5 years (range: 12 mo - 8 years).

This study was performed per the ethical principles of the declaration of Helsinki and was approved by the ethical committee of the Faculty of Medicine, Ain Shams University (No: FMASU MD 187/2016), which waived the requirement of informed consent due to the retrospective nature of the research.

\subsection*{Quality-of-life assessment}

Eligible LDLT-Rs were invited to fulfil the SF-12v2 questionnaire during follow-up visits after obtaining verbal consent. We used anonymous questionnaires to ensure strict confidentiality. The SF-12v2 includes 12 questions: one question on general health perceptions, two questions concerning physical functioning, two questions on role limitations because of physical health problems, one question on bodily pain, one question on vitality, two questions on role limitations, one question on social functioning, and two questions on general mental health.

\subsection*{Statistical analysis}

The data were analysed using IBM SPSS Statistics (v. 23; IBM Corp., Armonk, New York). Nonparametric numerical variables are presented as the median and interquartile range. Nominal variables are presented as the number and percentage. Ordinal data were analysed using the chi-squared test for trends. Two-sided \textit{P} values < 0.05 were considered statistically significant.

\section*{RESULTS}

This study included 25 adult right-lobe LDLT-Rs who experienced BCs. At the time of LT, the mean age of the recipients was 52 ± 7 years, and 19 (76\%) recipients were male. Cirrhosis due to HCV was the most common indication for LT in 21 patients (84\%; Tables 1 and 2).

\subsection*{Development and management of biliary complications}

Among the 25 LDLT-Rs included in this study, minor biliary leakage occurred in 15 recipients (83.3\%) and stopped spontaneously without further management. In only three (16.6\%) recipients, pigtail insertion and further interventional management were needed. Moreover, 25 recipients developed a biliary infection, mainly occurring early
Table 1 Descriptive categorical data for live-donor liver transplant recipients with biliary complications

<table>
<thead>
<tr>
<th>Variable</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication of liver transplantation</td>
<td>HCV 21 (84)</td>
</tr>
<tr>
<td></td>
<td>HBV 1 (4)</td>
</tr>
<tr>
<td></td>
<td>Combined HCV and HBV 1 (4)</td>
</tr>
<tr>
<td></td>
<td>Hepatocellular carcinoma 2 (8)</td>
</tr>
<tr>
<td>Donors’ gender</td>
<td>Male 17 (68)</td>
</tr>
<tr>
<td></td>
<td>Female 8 (32)</td>
</tr>
<tr>
<td>Recipients’ gender</td>
<td>Male 19 (76)</td>
</tr>
<tr>
<td></td>
<td>Female 6 (24)</td>
</tr>
<tr>
<td>Immunosuppressant</td>
<td>Tacrolimus 22 (88)</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine 3 (12)</td>
</tr>
<tr>
<td>Biliary leakage</td>
<td>- 7 (28)</td>
</tr>
<tr>
<td></td>
<td>+ 18 (72)</td>
</tr>
<tr>
<td>Need of pigtail catheter for biloma (total = 18)</td>
<td>- 15 (83.3)</td>
</tr>
<tr>
<td></td>
<td>+ 3 (16.6)</td>
</tr>
<tr>
<td>Biliary infection</td>
<td>- 0 (0)</td>
</tr>
<tr>
<td></td>
<td>+ 25 (100)</td>
</tr>
<tr>
<td>Frequency of biliary infection (total = 25)</td>
<td>1-2 Episodes 16 (64)</td>
</tr>
<tr>
<td></td>
<td>≥ 3 Episodes 9 (36)</td>
</tr>
<tr>
<td>Biliary stricture</td>
<td>- 5 (20)</td>
</tr>
<tr>
<td></td>
<td>+ 20 (80)</td>
</tr>
<tr>
<td>Frequency of biliary stricture (total = 20)</td>
<td>1-2 Episodes 13 (65)</td>
</tr>
<tr>
<td></td>
<td>≥ 3 Episodes 7 (28)</td>
</tr>
<tr>
<td>Need for ERCP</td>
<td>- 5 (20)</td>
</tr>
<tr>
<td></td>
<td>+ 20 (80)</td>
</tr>
<tr>
<td>Frequency of ERCP</td>
<td>1-2 ERCP 13 (65)</td>
</tr>
<tr>
<td></td>
<td>≥ 3 ERCP 7 (28)</td>
</tr>
<tr>
<td>Need for PTC</td>
<td>- 22 (88)</td>
</tr>
<tr>
<td></td>
<td>+ 3 (12)</td>
</tr>
<tr>
<td>Frequency of PTC</td>
<td>1 PTC 2 (66.6)</td>
</tr>
<tr>
<td></td>
<td>2 PTC 1 (33.3)</td>
</tr>
<tr>
<td>Surgical intervention for stricture</td>
<td>- 19 (95)</td>
</tr>
<tr>
<td></td>
<td>+ 1 (5)</td>
</tr>
<tr>
<td>Admission related to biliary complications</td>
<td>- 0 (0)</td>
</tr>
<tr>
<td></td>
<td>+ 25 (100)</td>
</tr>
<tr>
<td>Early biliary infection (total = 25)</td>
<td>- 2 (8)</td>
</tr>
<tr>
<td></td>
<td>+ 23 (92)</td>
</tr>
<tr>
<td>Early biliary stricture (total = 20)</td>
<td>- 17 (68)</td>
</tr>
<tr>
<td></td>
<td>+ 8 (32)</td>
</tr>
</tbody>
</table>

Data presented in number (n) and percentage (%). ERCP: Endoscopic retrograde cholangiopancreatography; HBV: Hepatitis B virus; HCV: Hepatitis C virus; PTC: Percutaneous transhepatic cholangiography.

(23; 92%) and in one to two episodes in 16 (64%) recipients (Table 1). Furth-
Table 2 Descriptive numerical data for live-donor liver transplant recipients with biliary complications

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELD score</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>Child score</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>Donors' age (yr)</td>
<td>30 ± 4</td>
</tr>
<tr>
<td>Donors' BMI (kg/m²)</td>
<td>25 ± 4</td>
</tr>
<tr>
<td>Recipient's age (yr)</td>
<td>52 ± 7</td>
</tr>
<tr>
<td>Recipient's BMI (kg/m²)</td>
<td>27 ± 6</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>2.9 (2.3-3.9)</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dL)</td>
<td>1.6 (0.9-2.3)</td>
</tr>
<tr>
<td>Alkaline phosphatase (IU/L)</td>
<td>190 ± 49</td>
</tr>
<tr>
<td>Gamma-glutamyl transferase (IU/L)</td>
<td>100 (50-130)</td>
</tr>
<tr>
<td>Platelets (10^9/L)</td>
<td>75 ± 31</td>
</tr>
<tr>
<td>Cold ischemia time (min)</td>
<td>48 ± 25</td>
</tr>
<tr>
<td>Warm ischemia time (min)</td>
<td>47 ± 23</td>
</tr>
<tr>
<td>Graft arterialization time (min)</td>
<td>145 ± 53</td>
</tr>
<tr>
<td>Time to biliary infection (d)</td>
<td>13 (11-36)</td>
</tr>
<tr>
<td>Time to biliary stricture (d)</td>
<td>130 (120-190)</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD or median and range. BMI: Body mass index; MELD: Model for end stage liver disease.

er, 20 (80%) recipients developed biliary stricture, most of which presented in one to two episodes (13; 65%). The development of BCs caused a prolonged hospital stay (median = 46 days; range: 15 - 67 days), with nine (36%) patients needing ≥ three episodes of admission. Concerning the management of BCs, endoscopic retrograde cholangiopancreatography (ERCP) with stenting ± dilatation was done for 20 (80%) recipients, with seven (28%) recipients needing ≥ three ERCP sessions. Percutaneous transhepatic cholangiography was needed for only three (12%) recipients, with one recipient requiring another session. These methods only failed in one recipient who needed surgical reconstruction of the biliary stricture (Table 1).

Health-related quality of life

The scores of HRQoL of LDLT-Rs with BCs were significantly higher than the norm-based scores in the domains of physical functioning (P = 0.003), role-physical (P < 0.001), bodily pain (P = 0.003), general health (P = 0.004), social functioning (P = 0.005), role-emotional (P < 0.001), and mental health (P < 0.001). In contrast, no significant difference was found between the two groups regarding vitality (P = 1.000; Table 3 and Figure 1). The LDLT-Rs with BCs had significantly lower scores than LDLT-Rs without BCs in all HRQoL domains (P < 0.001) and in the mental (P < 0.001) and physical (P = 0.0002) component summary scores (Tables 4 and 5; Figures 1 and 2).

DISCUSSION

Despite the considerable advances in LT surgical techniques and perioperative care, post-LT BCs remain a significant source of morbidity, mortality, and graft failure[36]. To our knowledge, no previous study has specifically assessed the impact of BCs on the HRQoL of LDLT-Rs. In our study, LDLT-Rs with BCs had significantly higher HRQoL domain scores except for the vitality domain than norm-based scores; however, those patients gained a significantly lower range of improvement in HRQoL domains with lower MCS and PCS scores than those without BCs. This result can be attributed to more prolonged and frequent hospital admission and expectation reduction with anxiety, stress, and depression[37]. In agreement with the current results, the published literature has observed the positive effects of LT on the
Table 3 Comparison of the quality-of-life scores for live-donor liver transplant recipients with biliary complications and their corresponding norm-based scores

<table>
<thead>
<tr>
<th>HRQoL score</th>
<th>LDLT-R with BC</th>
<th>NBS score</th>
<th>P value<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical functioning</td>
<td>50 (50-75)</td>
<td>41.3 (41.3-49.2)</td>
<td>0.003</td>
</tr>
<tr>
<td>Role physical</td>
<td>50 (31.3-75)</td>
<td>40.5 (34.2-49)</td>
<td>0.001</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>50 (50-75)</td>
<td>39.7 (39.7-48.7)</td>
<td>0.003</td>
</tr>
<tr>
<td>General health</td>
<td>60 (60-85)</td>
<td>47.8 (47.8-57.7)</td>
<td>0.004</td>
</tr>
<tr>
<td>Vitality</td>
<td>50 (25-50)</td>
<td>49.1 (39.2-49.1)</td>
<td>1.000</td>
</tr>
<tr>
<td>Social functioning</td>
<td>50 (50-50)</td>
<td>39.1 (39.1-39.1)</td>
<td>0.005</td>
</tr>
<tr>
<td>Role emotion</td>
<td>50 (37.5-75)</td>
<td>35.5 (30.3-45.9)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Mental health</td>
<td>50 (50-62.5)</td>
<td>41.3 (41.3-47)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

¹Wilcoxon signed ranks test.

Data are shown as median and interquartile range. BC: Biliary complications; HRQoL: Health related quality of life; LDLT-R: Live donor liver transplant recipients; NBS: Norm based score.

Table 4 Comparison of health-related quality-of-life scores between patients and controls

<table>
<thead>
<tr>
<th>HRQoL domain</th>
<th>Patients (<i>n</i> = 25)</th>
<th>Controls (<i>n</i> = 25)</th>
<th>P value<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical functioning</td>
<td>50 (50-75)</td>
<td>100 (100-100)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Role physical</td>
<td>50 (31.3-75)</td>
<td>100 (87.5-100)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>50 (50-75)</td>
<td>100 (100-100)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>General health</td>
<td>60 (60-85)</td>
<td>85 (85-85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Vitality</td>
<td>50 (25-50)</td>
<td>75 (75-87.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Social functioning</td>
<td>50 (50-50)</td>
<td>75 (75-100)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Role emotion</td>
<td>50.0 (37.5-75)</td>
<td>87.5 (75-100)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Mental health</td>
<td>50 (50-62.5)</td>
<td>87.5 (75-87.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PCS</td>
<td>44.8 (41.7-52.9)</td>
<td>57.8 (55.2-59)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>MCS</td>
<td>42 (35.6-45.2)</td>
<td>52.9 (50.2-57.9)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

¹Wilcoxon signed ranks test.

Data are shown as median and interquartile range; Patients: Live donor liver transplant recipients with biliary complications; Controls: Live donor liver transplant recipients without biliary complications; HRQoL: Health-related quality-of-life; MCS: Mental component summary score; PCS: Physical component summary score.

In partial agreement with the current study, a review of 32 studies and 5402 patients found that the overall HRQoL scores of LT recipients remain improved and equivalent to the general population in the long term. However, physical functioning continues to be inferior to the general population despite a noticeable improvement from preoperative physical functioning. Similarly, a review article of 31 publications reported improved overall HRQoL and physical functioning in deceased donor LT (DDLT) adult recipients during the first 2 years, which remains stable in the long term but does not reach the level of the general population. Additionally, Sullivan et al. assessed the HRQoL two decades after DDLT using the SF-12 survey. In adult survivors, the MCS score (54.6) was equivalent to that of the general population; however, the PCS score (39.3) remained below average. This outcome can be explained by the presence of comorbidities, primary liver disease severity, postoperative
Table 5 Physical and mental component summary scores in patients and controls compared with norm-based scores

Variable	NBS	Patients (n = 25), %	Control (n = 25), %	P value
Physical component summary score				
At or above	11 (44)	25 (100)		0.0002
Below	8 (32)	0 (0)		
Far below	6 (24)	0 (0)		
Mental component summary score				
At or above	7 (28)	24 (96)		<0.0001
Below	7 (28)	1 (4)		
Far below	11 (44)	0 (0)		

*Chi-squared test for trend.

Data are shown as number and percentage. Patients: Live donor liver transplant recipients with biliary complications; Controls: Live donor liver transplant recipients without biliary complications; NBS: Norm based score.

Figure 1 Short Form 12 (v. 2) domains in patients and controls compared to the norm-based score. BP: Bodily pain; GH: General health; MH: Mental health; NBS: Norm based score; PF: Physical functioning; RE: Role emotion; RP: Role physical; SF: Social functioning; V: Vitality.

In a study by Casanovas et al [47], the SF-36 scores of 156 LT candidates were assessed pre- and post-LT. They observed significantly lower patient baseline scores in all HRQoL domains than general population scores, especially in physical health. As early as 3 months till 1-year post-LT, they detected improvement in all SF-36 domains except vitality and social functioning, revealing no significant improvement. Moreover, sleeping problems were observed at the baseline and persisted post-LT. The poor sleep quality frequently noted in cirrhotic patients is known to cause fatigue and impair cognitive and physical functions [48].

In contrast to our results, Domingos et al [37] retrospectively assessed the HRQoL of 93 DDLT recipients who survived 10 years post-LT using the SF-36 survey and observed that LT recipients had lower mental health scores than the general morbidity, and graft type [20,33]. Additionally, Dunn et al [45] reported that group exercise activities were correlated with improved physical function, mental health, and HRQoL, independent of comorbidities, for up to 5 years after LT. Therefore, physical activity should be encouraged after LT [46].

In a study by Casanovas et al [47], the SF-36 scores of 156 LT candidates were assessed pre- and post-LT. They observed significantly lower patient baseline scores in all HRQoL domains than general population scores, especially in physical health. As early as 3 months till 1-year post-LT, they detected improvement in all SF-36 domains except vitality and social functioning, revealing no significant improvement. Moreover, sleeping problems were observed at the baseline and persisted post-LT. The poor sleep quality frequently noted in cirrhotic patients is known to cause fatigue and impair cognitive and physical functions [48].

In contrast to our results, Domingos et al [37] retrospectively assessed the HRQoL of 93 DDLT recipients who survived 10 years post-LT using the SF-36 survey and observed that LT recipients had lower mental health scores than the general
population. In all other domains, LT recipients had similar (emotional limitations, pain, and general health status) or superior (physical limitations, social aspects, functional capacity, and vitality) scores than the general population. In addition, Dąbrowska-Bender et al.[15] assessed the SF-36 health survey in 121 DDLT recipients and observed no change in mental health score, whereas significant physical impairment was reported by 18.18% of the recipients.

In a study by Annema et al.[30], LT had a beneficial effect on the mental health of LT recipients by ameliorating anxiety and depression symptom severity. However, recipients with persistent symptoms of anxiety and depression experienced a negative effect on HRQoL and therapeutic adherence. They also observed that persistent anxiety and depression were correlated with the development of BCs and the duration of the hospital stay. Similarly, in another report[49], the HRQoL of 82 LT recipients was retrospectively assessed, finding 94% reported high mean scores on HRQoL, the McGill Quality of Life Questionnaire, and adherence to medications. Conversely, patients with a low HRQoL reported anxiety, depression, fatigue, slowing pace, and physical limitations, suggesting that LT recipients who fail to adapt to their post-LT state experienced a decreased ability to tolerate physical symptoms and post-LT complications[50]. Other causes for lower mental health scores post-LT are the worry regarding medication side effects, hepatic disease recurrence, and other potential complications[51].

Candidates for LT may have overly optimistic anticipations for post-LT improvement in their HRQoL. Unfulfillment of these expectations may negatively affect their HRQoL, highlighting the need to help patients expect and understand the outcomes of LT. Moreover, LT candidate education positively affects post-LT HRQoL[40]. Education is associated with better outcomes and higher patient adherence[52].

This study is limited by its retrospective nature and small sample size. More research is required to define the predictors of HRQoL and plan multidisciplinary strategies for HRQoL improvement in LT recipients. According to the current literature, HRQoL should be integrated into the clinical care of LT[53].
CONCLUSION

We conclude that the development of BCs in LDLT-Rs causes a lower range of improvement in HRQoL.

ARTICLE HIGHLIGHTS

Research background

Despite the considerable advances in liver transplantation (LT) surgical techniques and perioperative care, post-LT biliary complications (BCs) remain a significant source of morbidity, mortality, and graft failure. Due to the current high survival rates of LT, the focus has shifted to improving the quality of life of LT recipients.

Research motivation

The data are conflicting regarding the health-related quality of life (HRQoL) of LT recipients.

Research objectives

To assess the impact of BCs on the HRQoL of live-donor LT recipients (LDLT-Rs).

Research methods

We retrospectively analysed data for 25 LDLT-Rs with BCs and described their HRQoL through the Short Form 12 version 2 (SF-12v2) health survey compared to 25 LDLT-Rs without post-LT complications.

Research results

The scores of HRQoL of LDLT-Rs with BCs were significantly higher than the norm-based scores in all HRQoL domains except vitality. The LDLT-Rs with BCs had significantly lower scores than LDLT-Rs without BCs in all HRQoL domains ($P < 0.001$) and in the mental ($P < 0.001$) and physical ($P = 0.0002$) component summary scores.

Research conclusions

The development of BCs in LDLT-Rs causes a lower range of improvement in HRQoL.

Research perspectives

The assessment of HRQoL should be integrated into the clinical care of LT recipients. Identifying the determinants of HRQoL could improve the management plan of these patients through a multidisciplinary approach.

REFERENCES

6 RAND Corporation. 36-Item Short Form Survey (SF-36) Scoring Instructions. [cited 20 February 2021]. Available from: https://www.rand.org/health-care/surveys_tools/mos/36-item-short-
form/scoring.html

9 SF-12 and SF-12v2 Health Survey. [cited 20 February 2021]. Available from: https://www.qualitymetric.com/health-surveys/the-sf-12v2-health-survey/

31 Saracino RM, Jutagir DR, Cunningham A, Foran-Tuller KA, Driscol MA, Sledge WH, Enmr SH,
Fehon DC. Psychiatric Comorbidity, Health-Related Quality of Life, and Mental Health Service Utilization Among Patients Awaiting Liver Transplant. *J Pain Symptom Manage* 2018; **56**: 44-52 [PMID: 29526612 DOI: 10.1016/j.jpainsymman.2018.03.001]

52 **Pérez-San-Gregorio MA**, Martín-Rodríguez A, Sánchez-Martin M, Borda-Mas M, Avarques-Navarro ML, Gómez-Bravo MA, Conrad R. Spanish Adaptation and Validation of the Transplant Effects Questionnaire (TxEQ-Spanish) in Liver Transplant Recipients and Its Relationship to...
Guirguis RN et al. Impact of biliary complications on HRQoL post-LDLT

