Thrice Monthly Volume 9 Number 13 May 6, 2021

REVIEW

2951 Patients with cirrhosis during the COVID-19 pandemic: Current evidence and future perspectives
Su HY, Hsu YC

MINIREVIEWS

2969 Immunotherapy for pancreatic cancer
Yoon JH, Jung YJ, Moon SH

ORIGINAL ARTICLE

Retrospective Study

2983 Scrotal septal flap and two-stage operation for complex hypospadias: A retrospective study
Chen S, Yang Z, Ma N, Wang WX, Xu LS, Liu QY, Li YQ

2994 Clinical diagnosis of severe COVID-19: A derivation and validation of a prediction rule
Tang M, Yu XX, Huang J, Gao JL, Cen FL, Xiao Q, Fu SZ, Yang Y, Xiong B, Pan YJ, Liu YX, Feng YW, Li JX, Liu Y

3008 Prognostic value of hemodynamic indices in patients with sepsis after fluid resuscitation
Xu HP, Zhuo XA, Yao JJ, Wu DY, Wang X, He P, Ouyang YH

Observational Study

3014 Updated Kimura-Takemoto classification of atrophic gastritis
Kotelevets SM, Chekh SA, Chukov SZ

SYSTEMATIC REVIEWS

3024 Systematic review and meta-analysis of the impact of deviations from a clinical pathway on outcomes following pancreatoduodenectomy
Karunakaran M, Jonnada PK, Barreto SG

META-ANALYSIS

3038 Early vs late cholecystectomy in mild gall stone pancreatitis: An updated meta-analysis and review of literature
Walayat S, Baig M, Puli SR

CASE REPORT

3048 Effects of intravascular laser phototherapy on delayed neurological sequelae after carbon monoxide intoxication as evaluated by brain perfusion imaging: A case report and review of the literature
Liu CC, Hsu CS, He HC, Cheng YY, Chang ST
Contents

3056 Crumbs homolog 2 mutation in two siblings with steroid-resistant nephrotic syndrome: Two case reports
 Lu J, Guo YN, Dong LQ

3063 Intracortical chondroma of the metacarpal bone: A case report

3070 Vancomycin-related convulsion in a pediatric patient with neuroblastoma: A case report and review of the literature
 Ye QF, Wang GF, Wang YX, Lu GP, Li ZP

3079 Pulmonary arterial hyper-tension in a patient with hereditary hemorrhagic telangiectasia and family gene analysis: A case report

3090 Misdiagnosed dystrophic epidermolysis bullosa pruriginosa: A case report
 Wang Z, Lin Y, Duan XW, Hang HY, Zhang X, Li LL

3095 Spontaneous coronary dissection should not be ignored in patients with chest pain in autosomal dominant polycystic kidney disease: A case report
 Qian J, Lai Y, Kuang LJ, Chen F, Liu XB

3102 Sarcomatoid carcinoma of the pancreas — multimodality imaging findings with serial imaging follow-up: A case report and review of literature
 Lim HJ, Kang HS, Lee JE, Min JH, Shin KS, You SK, Kim KH

3114 Acute pancreatitis and small bowel obstruction caused by a migratory gastric bezoar after dissolution therapy: A case report
 Wang TT, He JJ, Liu J, Chen WW, Chen CW

3120 Intracardiac, pulmonary cement embolism in a 67-year-old female after cement-augmented pedicle screw instrumentation: A case report and review of literature
 Liang TZ, Zhu HP, Gao B, Peng Y, Gao WJ

3130 Acute urinary retention in the first and second-trimester of pregnancy: Three case reports
 Zhuang L, Wang XY, Sang Y, Xu J, He XL

3140 Sarcoïdosis mimicking metastases in an echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase positive non-small-lung cancer patient: A case report
 Chen X, Wang J, Han WL, Zhao K, Chen Z, Zhou JY, Shen YH

3147 Three-dimensional printed talar prosthesis with biological function for giant cell tumor of the talus: A case report and review of the literature
 Yang QD, Mu MD, Tao X, Tang KL

3157 Successful upgrade to cardiac resynchronization therapy for cardiac implantation-associated left subclavian vein occlusion: A case report
 Zhong JY, Zheng XW, Li HD, Jiang LF
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3170</td>
<td>Perioperative massive cerebral stroke in thoracic patients: Report of three cases</td>
<td>Jian MY, Liang F, Liu HY, Han RQ</td>
</tr>
<tr>
<td>3185</td>
<td>Clinical characteristics of intrahepatic biliary papilloma: A case report</td>
<td>Yi D, Zhao LJ, Ding XB, Wang TW, Liu SY</td>
</tr>
<tr>
<td>3194</td>
<td>Association between scrub typhus encephalitis and diffusion tensor tractography detection of Papez circuit injury: A case report</td>
<td>Kwon HG, Yang JH, Kwon JH, Yang D</td>
</tr>
<tr>
<td>3212</td>
<td>Laparoscopic uncontained power morcellation-induced dissemination of ovarian endodermal sinus tumors: A case report</td>
<td>Oh HK, Park SN, Kim BR</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Rama R Vunnam, MBBS, MD, Assistant Professor, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, United States. rvunnam@pennstatehealth.psu.edu

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Xia Xing; Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.
CASE REPORT

Sodium-glucose co-transporter-2 inhibitor-associated euglycemic diabetic ketoacidosis that prompted the diagnosis of fulminant type-1 diabetes: A case report

Taro Yasuma, Yuko Okano, Soichiro Tanaka, Kota Nishihama, Kazuhiro Eguchi, Chisa Inoue, Kanako Maki, Akihiro Uchida, Mei Uemura, Toshinari Suzuki, Corina N D’Alessandro-Gabazza, Esteban C Gabazza, Yutaka Yano

ORCID number: Taro Yasuma 0000-0002-9117-5679; Yuko Okano 0000-0002-8441-423X; Soichiro Tanaka 0000-0002-8240-6180; Kota Nishihama 0000-0002-4968-0217; Chisa Inoue 0000-0002-7022-9156; Kanako Maki 0000-0001-7061-0291; Akihiro Uchida 0000-0002-5758-0601; Mei Uemura 0000-0002-9140-0311; Toshinari Suzuki 0000-0003-0980-1763; Corina N D’Alessandro-Gabazza 0000-0003-2164-5775; Esteban C Gabazza 0000-0003-2536-898X; Yutaka Yano 0000-0003-0234-1207.

Author contributions: Yasuma T, Tanaka S, and Nishihama K were responsible for clinical treatment and clinical follow-up; Yasuma T prepared the first draft of the manuscript; Eguchi KC, Inoue CC, Maki KC, Okano Y, and Uchida A contributed with resources and acquisition of data; Suzuki T, D’Alessandro-Gabazza CN, Yano Y, and Gabazza EC contributed to the interpretation of the data and made an intellectual contribution to the manuscript’s preparation.

Informed consent statement: Written informed consent was obtained from the patient to publish clinical details and images.

Abstract

BACKGROUND

Fulminant type 1 diabetes mellitus (FT1DM) is a subtype of type 1 diabetes mellitus characterized by an abrupt onset and a rapid and complete functional loss of islet β cells. It is a very rare disease generally associated with ketoacidosis and the absence of circulating pancreatic islet-related autoantibodies. Diabetic ketoacidosis with normal blood glucose levels has been reported during sodium-glucose co-transporter 2 (SGLT2) inhibitor therapy.

CASE SUMMARY

The patient was a 43-year-old woman that consulted a medical practitioner for malaise, thirst, and vomiting. Blood analysis showed high blood glucose levels (428 mg/dL), a mild increase of hemoglobin A1c (6.6%), and increased ketone bodies in urine. The patient was diagnosed with type 2 diabetes mellitus. The patient was initially treated with insulin, which was subsequently changed to an
INTRODUCTION

Fulminant type 1 diabetes mellitus (FT1DM) is a rare subtype of type 1 diabetes mellitus. Abrupt onset of the disease with a rapid and complete loss of islet β cell function is a characteristic finding of FT1DM. Although this metabolic disorder’s clinical manifestations are nonspecific, it can lead to diabetic ketoacidosis and increase death risk if not promptly diagnosed and treated with insulin. Unlike patients with acute-onset type 1 diabetes mellitus, patients with FT1DM are negative for circulating autoantibodies. Therapy with sodium-glucose co-transporter-2 (SGLT2) inhibitor may trigger diabetic ketoacidosis with normal blood glucose levels. Here, we report a case of diabetic ketoacidosis with almost normal blood glucose levels following therapy with SGLT2 inhibitor that prompted the diagnosis of FT1DM.
CASE PRESENTATION

Chief complaints
The patient was a 43-year-old woman that consulted the Mie University Hospital because of fatigue and vomiting.

History of present illness
The patient first consulted a medical practitioner because of sudden malaise, thirst, and vomiting in April 2019. A laboratory analysis disclosed increased blood glucose levels (428 mg/dL), a mild increase of hemoglobin A1c (6.6%), and increased ketone bodies in urine. She received insulin therapy for four days. Because the serum anti-glutamic acid decarboxylase antibody was negative, she was diagnosed with type 2 diabetes mellitus. The treatment was then switched from insulin therapy to oral medication with metformin 500 mg/d, empagliflozin 10 mg/d, and vildagliptin 100 mg/d. The patient's general condition improved, and she was discharged two days after switching to oral treatment when her one-point blood glucose level decreased to 203 mg/dL.

Two days after discharge from the medical practitioner's clinic, she consulted Mie University Hospital's outpatient department complaining of fatigue and vomiting. The clinical findings on examination were as follows: Height 159.3 cm; body weight 58.6 kg, body mass index 23.0 kg/m², blood pressure 128/83 mmHg, heart rate 107 beats/min, body temperature 37.4 °C, and peripheral oxygen saturation (SpO2; normal level > 95%) at room air 98 %.

History of past illness
She had no medical history of any disease.

Physical examination
The patient's physical examination showed notable dryness of the oral cavity.

Laboratory examinations
Table 1 showed the results of the laboratory analysis performed at Mie University Hospital. Arterial blood gases demonstrated metabolic acidosis (pH, 7.18; pCO₂, 18 mmHg; HCO₃, 6.6 mEq/L; base excess, -19.3 mmol/L; A-gap, 27.6 mmol/L), with normal level of lactic acid (1.0 mmol/L). Fasting blood glucose (184 mg/dL) was mildly elevated with increased glycated hemoglobin/hemoglobin A1c (HbA1c) (7.3%). Urinalysis showed high levels of glucose (2000 mg/dL) and ketone bodies (3+). The plasma levels of 3-hydroxybutyric acid (6585 μmol/L) were markedly high. The renal function markers (blood urea nitrogen 9.1 mg/dL; serum creatinine 0.40 mg/dL) were within the normal range. These findings were compatible with the diagnosis of diabetic ketoacidosis with mild hyperglycemia.

Further diagnostic work-up
Additional laboratory analysis showed reduced urinary C-peptide level (8.6 μg/d) and decreased fasting serum C-peptide level (0.3 ng/mL). However, islet-related autoantibodies, including anti-glutamic acid decarboxylase antibody, insulin autoantibody, islet cell antibody, insulinoma-associated protein-2 antibody, and zinc transporter-8 autoantibody, were undetectable. An abdominal computed tomography showed a normal pancreas, and the blood level of pancreas exocrine enzymes, including amylase and lipase, were within the normal range.

FINAL DIAGNOSIS
We made the diagnosis of FT1DM based on the laboratory findings at Mie University Hospital and the severe hyperglycemia (≥ 16.0 mmol/L), and a mild increase in HbA1c (< 8.7%) observed at the medical practitioner's clinic.

TREATMENT
On the first day of hospitalization at Mie University Hospital, besides suspending oral antidiabetic agents, the patient received intravenous fluid infusion (1500 mL),
including 20 g of dextrose and 2 units of regular insulin. After this treatment, her metabolic acidosis substantially (pH, 7.32; pCO₂, 25.9 mmHg; HCO₃⁻, 12.9 mmol/L) improved. Because the patient had reduced blood potassium levels (2.8 mEq/L), 10 mEq/d potassium was administered together with 2000 mL/d of intravenous fluid infusion, including 60 g dextrose and 6 units of regular insulin. Blood glucose level fluctuated between 156 mg/dL and 195 mg/dL during the first two days after hospitalization. On the third day of hospitalization, oral food intake and multiple daily injections of insulin were initiated together with a gradual reduction in fluid administration. Urinary ketone bodies became negative on day 7.

OUTCOME AND FOLLOW-UP

The patient was discharged on day 14 with the therapeutic indication of subcutaneous injection of insulin glargine (18 U) before sleep and subcutaneous injection of insulin aspart (12U-6U-10U) before each meal.

Table 1 Laboratory data

<table>
<thead>
<tr>
<th>Blood cell count</th>
<th>Normal range</th>
<th>Units</th>
<th>Biochemical examination</th>
<th>Normal range</th>
<th>Units</th>
<th>Arterial blood gas analysis (room air)</th>
<th>Normal range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood cell</td>
<td>3300-8600</td>
<td>/μL</td>
<td>Total protein</td>
<td>6.6-8.1</td>
<td>g/dL</td>
<td>pH</td>
<td>7.35-7.45</td>
<td>mmHg</td>
</tr>
<tr>
<td>Red blood cell</td>
<td>4.5</td>
<td>4.5</td>
<td>Albumin</td>
<td>8.0-20.0</td>
<td>mg/dL</td>
<td>pCO₂</td>
<td>115.2</td>
<td>> 80 mmol/L</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>35.1-44.1</td>
<td>%</td>
<td>Creatinine</td>
<td>0.4-0.79</td>
<td>mg/dL</td>
<td>HCO₃⁻</td>
<td>6.6</td>
<td>22.0-26.0 mmol/L</td>
</tr>
<tr>
<td>Platelet</td>
<td>15.8-34.8</td>
<td>× 10⁴</td>
<td>Uric acid</td>
<td>5</td>
<td>mg/dL</td>
<td>Base excess</td>
<td>-19.3</td>
<td>-2.0-+2.0 mmol/L</td>
</tr>
<tr>
<td>Urinalysis</td>
<td>1.015</td>
<td></td>
<td>Na</td>
<td>131</td>
<td>mg/l</td>
<td>Lactic acid</td>
<td>1.0</td>
<td>0.9-1.7 mmol/L</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.005-1.030</td>
<td></td>
<td>Cl</td>
<td>102</td>
<td>mg/l</td>
<td>Blood ketone bodies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>5.5</td>
<td>4.5-7.5</td>
<td>Ca</td>
<td>8.7</td>
<td>mg/dL</td>
<td>Blood ketone bodies</td>
<td>8.8-10.1</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Glucose</td>
<td>2000</td>
<td>mg/dL</td>
<td>P</td>
<td>2.6</td>
<td>mg/dL</td>
<td>Acetoacetate</td>
<td>1784</td>
<td>< 55 μmol/L</td>
</tr>
<tr>
<td>Protein</td>
<td>100</td>
<td>mg/dL</td>
<td>AST</td>
<td>20</td>
<td>U/L</td>
<td>3-Hydroxybutyrate</td>
<td>6585</td>
<td>< 85 μmol/L</td>
</tr>
<tr>
<td>Ketone body</td>
<td>5 (±)</td>
<td>U/L</td>
<td>ALT</td>
<td>6</td>
<td>U/L</td>
<td>Blood ketone bodies</td>
<td>43</td>
<td>U/L</td>
</tr>
<tr>
<td>Blood</td>
<td>6 (±)</td>
<td>U/L</td>
<td>LDH</td>
<td>124-222</td>
<td>U/L</td>
<td>GAD autoantibody</td>
<td>3</td>
<td>U/mL</td>
</tr>
<tr>
<td>Diabetic parameters</td>
<td>ALP</td>
<td>178</td>
<td>γ-GTP</td>
<td>9-32</td>
<td>U/L</td>
<td>IA-2 autoantibody</td>
<td>4</td>
<td>U/mL</td>
</tr>
<tr>
<td>HbA1c</td>
<td>7.3</td>
<td>%</td>
<td>T-Bil</td>
<td>0.5</td>
<td>mg/dL</td>
<td>Insulin autoantibody</td>
<td>0.4</td>
<td>< 0.4 U/mL</td>
</tr>
<tr>
<td>Glycoalbumin</td>
<td>23.2</td>
<td>%</td>
<td>CRP</td>
<td>0.12</td>
<td>mg/dL</td>
<td>Islet cell antibody</td>
<td>< 0.14</td>
<td>U/mL</td>
</tr>
<tr>
<td>Blood glucose</td>
<td>184</td>
<td>mg/dL</td>
<td>Total-cholesterol</td>
<td>242</td>
<td>mg/dL</td>
<td>ZnT8 autoantibody</td>
<td>< 10.0</td>
<td>< 15.0 U/mL</td>
</tr>
<tr>
<td>Serum C-peptide</td>
<td>0.3</td>
<td>ng/mL</td>
<td>Triglyceride</td>
<td>230</td>
<td>mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine C-peptide</td>
<td>8.6</td>
<td>pg/d</td>
<td>Amylase</td>
<td>35</td>
<td>U/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase; T-Bil: Total bilirubin; CRP: C-reactive protein; GAD: Glutamic acid decarboxylase; IA-2: Insulinoma-associated protein-2; BUN: Blood urea nitrogen; LDH: Lactate dehydrogenase; HbA1c: Glycated hemoglobin/hemoglobin A1c.
Here, we report a case of F1DM with diabetic ketoacidosis. This case report underscores the importance of considering the diagnosis of F1DM in all patients with
severe hyperglycemia even in the absence of circulating autoantibodies and the possibility of euglycemic diabetic ketoacidosis in patients treated with SGLT2 inhibitors. SGLT2 inhibitors are frequently used as antidiabetic drugs for their cardiovascular[20][21] and renal benefits[22][23]. Recently, Japan approved the use of dapagliflozin and ipragliflozin in combination with insulin for type 1 diabetes, and in May 2020, the United States Food and Drug Administration approved the indication of dapagliflozin for heart failure. The major availability of SGLT2 inhibitors predicts an increase in the number of medical indications of SGLT2 inhibitors in the coming future. Therefore, major awareness of the potential adverse events of SGLT2 inhibitors is fundamental to avoid misdiagnosis in daily clinical practice.

REFERENCES
