<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5835</td>
<td>Understanding the immunopathogenesis of COVID-19: Its implication for therapeutic strategy</td>
<td>Shimizu Y</td>
</tr>
<tr>
<td>5844</td>
<td>What is the gut feeling telling us about physical activity in colorectal carcinogenesis?</td>
<td>Cigrovski Berkovic M, Cigrovski V, Bilic-Curcic I, Mrzljak A</td>
</tr>
<tr>
<td>5852</td>
<td>Latest developments in chronic intestinal pseudo-obstruction</td>
<td>Zhu CZ, Zhao HW, Lin HW, Wang F, Li YX</td>
</tr>
<tr>
<td>5866</td>
<td>Correlation between ductus venosus spectrum and right ventricular diastolic function in isolated single-umbilical-artery foetus and normal foetus in third trimester</td>
<td>Li TG, Nie F, Xu XY</td>
</tr>
<tr>
<td>5887</td>
<td>Treatment of Kümmell’s disease with sequential infusion of bone cement: A retrospective study</td>
<td>Zhang X, Li YC, Liu HP, Zhou B, Yang HL</td>
</tr>
<tr>
<td>5894</td>
<td>Application value analysis of magnetic resonance imaging and computed tomography in the diagnosis of intracranial infection after craniocerebral surgery</td>
<td>Gu L, Yang XL, Yin HK, Lu ZH, Geng CJ</td>
</tr>
<tr>
<td>5902</td>
<td>Focal intrahepatic strictures: A proposal classification based on diagnosis-treatment experience and systemic review</td>
<td>Zhou D, Zhang B, Zhang XY, Guan WB, Wang JD, Ma F</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>5926</td>
<td>Scoring system for poor limb perfusion after limb fracture in children</td>
<td>Zhu T, Shi Y, Yu Q, Zhao YJ, Dai W, Chen Y, Zhang SS</td>
</tr>
<tr>
<td>5935</td>
<td>Overexpression of CD155 is associated with PD-1 and PD-L1 expression on immune cells, rather than tumor cells in the breast cancer microenvironment</td>
<td>Wang RB, Li YC, Zhou Q, Lv SZ, Yuan KY, Wu JP, Zhao YJ, Song QK, Zhu B</td>
</tr>
<tr>
<td>5944</td>
<td>Application of computer tomography-based 3D reconstruction technique in hernia repair surgery</td>
<td>Wang F, Yang XF</td>
</tr>
<tr>
<td>5962</td>
<td>Genetic diagnosis history and osteoarticular phenotype of a non-transfusion secondary hemochromatosis</td>
<td>Ruan DD, Gan YM, Lu T, Yang X, Zha YB, Yu QH, Liao LS, Lin N, Qian X, Lao JW, Tang FQ</td>
</tr>
<tr>
<td>5976</td>
<td>Abdominal ventral rectopexy with colectomy for obstructed defecation syndrome: An alternative option for selected patients</td>
<td>Wang L, Li CX, Tian Y, Ye JW, Li F, Tong WD</td>
</tr>
<tr>
<td>5999</td>
<td>Efficacy and economic benefits of a modified Valsalva maneuver in patients with paroxysmal supraventricular tachycardia</td>
<td>Wang W, Jiang TF, Han WZ, Jin L, Zhao XJ, Guo Y</td>
</tr>
<tr>
<td>6009</td>
<td>Duodenal giant stromal tumor combined with ectopic varicose hemorrhage: A case report</td>
<td>Li DH, Liu XY, Xu LB</td>
</tr>
<tr>
<td>6026</td>
<td>Pleomorphic adenoma of the trachea: A case report and review of the literature</td>
<td>Liao QN, Fang ZK, Chen SB, Fan HZ, Chen LC, Wu XP, He X, Yu HP</td>
</tr>
<tr>
<td>6036</td>
<td>Neoadjuvant targeted therapy for apocrine carcinoma of the breast: A case report</td>
<td>Yang P, Peng SJ, Dong YM, Yang L, Yang ZY, Hu XE, Bao GQ</td>
</tr>
<tr>
<td>6043</td>
<td>Huge encrusted ureteral stent forgotten for over 25 years: A case report</td>
<td>Kim DS, Lee SH</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>6048</td>
<td>Roxadustat for treatment of erythropoietin-hyporesponsive anemia in a hemodialysis patient: A case report</td>
<td>Yu WH, Li XJ, Yuan F</td>
</tr>
<tr>
<td>6056</td>
<td>Suspected SARS-CoV-2 infection with fever and coronary heart disease: A case report</td>
<td>Gong JR, Yang JS, He YW, Yu KH, Liu J, Sun RL</td>
</tr>
<tr>
<td>6080</td>
<td>Fourty-nine years old woman co-infected with SARS-CoV-2 and Mycoplasma: A case report</td>
<td>Gao ZA, Gao LB, Chen XJ, Xu Y</td>
</tr>
<tr>
<td>6095</td>
<td>Small-cell neuroendocrine carcinoma of the rectum — a rare tumor type with poor prognosis: A case report and review of literature</td>
<td>Chen ZZ, Huang W, Wei ZQ</td>
</tr>
<tr>
<td>6103</td>
<td>Laparoscopic left lateral sectionectomy in pediatric living donor liver transplantation by single-port approach: A case report</td>
<td>Li H, Wei L, Zeng Z, Qu W, Zhu ZJ</td>
</tr>
<tr>
<td>6110</td>
<td>Malignant meningioma with jugular vein invasion and carotid artery extension: A case report and review of the literature</td>
<td>Chen HY, Zhao F, Qin JY, Lin HM, Su JP</td>
</tr>
<tr>
<td>6130</td>
<td>Hemophagocytic lymphohistiocytosis caused by STAT1 gain-of-function mutation is not driven by interferon-γ: A case report</td>
<td>Liu N, Zhao FY, Xu XJ</td>
</tr>
<tr>
<td>6136</td>
<td>Single door laminoplasty plus posterior fusion for posterior atlantoaxial dislocation with congenital malformation: A case report and review of literature</td>
<td>Zhu Y, Wu XX, Jiang AQ, Li XF, Yang HL, Jiang WM</td>
</tr>
<tr>
<td>6144</td>
<td>Occipital nodular fasciitis easily misdiagnosed as neoplastic lesions: A rare case report</td>
<td>Wang T, Tung GC, Yang H, Fan JK</td>
</tr>
</tbody>
</table>
Contents

6150  Postoperative secondary aggravation of obstructive sleep apnea-hypopnea syndrome and hypoxemia with bilateral carotid body tumor: A case report
   Yang X, He XG, Jiang DH, Feng C, Nie R

6158  Uncontrolled central hyperthermia by standard dose of bromocriptine: A case report
   Ge X, Luan X

6164  Acute celiac artery occlusion secondary to blunt trauma: Two case reports
   Li H, Zhao Y, Xu YA, Li T, Yang J, Hu P, Ai T

6172  Multiple ectopic goiter in the retroperitoneum, abdominal wall, liver, and diaphragm: A case report and review of literature
   Qin LH, He FY, Liao JY

6181  Symptomatic and optimal supportive care of critical COVID-19: A case report and literature review
   Pang QL, He WC, Li JX, Huang L

6190  Primary breast cancer patient with poliomyelitis: A case report
   Wang XM, Cong YZ, Qiao GD, Zhang S, Wang LJ

6197  Discontinuous polyostotic fibrous dysplasia with multiple systemic disorders and unique genetic mutations: A case report
   Lin T, Li XY, Zou CY, Liu WW, Lin JF, Zhang XX, Zhao SQ, Xie XB, Huang G, Yin JQ, Shen JN

6206  Novel triple therapy for hemorrhagic ascites caused by endometriosis: A case report
   Han X, Zhang ST
ABOUT COVER

Peer-reviewer of World Journal of Clinical Cases, Dr. Mohamad Adam Bujang is a Research Officer at the Institute for Clinical Research, Ministry of Health, Malaysia. After receiving his Bachelor’s degree in Statistics from MARA University of Technology in 2004, Dr. Adam undertook his postgraduate study at the same university, receiving his Master’s degree (MBA) in 2008 and his PhD in Information Technology and Quantitative Sciences in 2017. Currently, he works as a biostatistician and researcher in the Clinical Research Centre, Sarawak General Hospital. His ongoing research interests involve such research methodologies as sampling techniques, sample size planning, and statistical analyses. Since 2016, he has served as an active member of the Malaysia Institute of Statistics and the Association of Clinical Registries Malaysia. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yan-Xiaoji Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Semimonthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
December 6, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Retrospective Study

Effect of methylprednisolone in severe and critical COVID-19: Analysis of 102 cases

Hong-Ming Zhu, Yan Li, Bang-Yi Li, Shuang Yang, Ding Peng, Xiaojiao Yang, Xue-Lian Sun, Mei Zhang

ORCID number: Hong-Ming Zhu 0000-0002-8596-177X; Yan Li 0000-0002-2340-1937; Bang-Yi Li 0000-0002-2340-1937; Shuang Yang 0000-0002-0652-9266; Ding Peng 0000-0003-3614-5538; Xiaojiao Yang 0000-0003-3667-1239; Xue-Lian Sun 0000-0003-3372-0410; Mei Zhang 0000-0002-8596-1868.

Author contributions: Zhu HM wrote the paper; Zhang M designed the research; Li Y and Yang S performed the research; Peng D and Yang X performed data and statistical analyses; Peng D and Li BY analyzed the data; Sun XL collected the data.

Institutional review board statement: This survey was a retrospective study collecting only the clinical data of patients. Since it did not bring risks to patients’ physiology and did not interfere with patients’ treatment plan, and researchers protected patients’ information from disclosure, Xuanwu Hospital of Capital Medical University agreed to exempt this study from ethical review.

Informed consent statement: The need for individual consent was waived by the committee.

Conflict-of-interest statement: The authors declare no conflict of interest.

Abstract

BACKGROUND
The coronavirus disease 2019 (COVID-19) outbreak has brought great challenges to public health. Aggravation of COVID-19 is closely related to the secondary systemic inflammatory response. Glucocorticoids are used to control severe diseases caused by the cytokine storm, owing to their anti-inflammatory effects. However, glucocorticoids are a double-edged sword, as the use of large doses has the potential risk of secondary infection and long-term serious complications, and may prolong virus clearance time. Nonetheless, the risks and benefits of glucocorticoid adjuvant therapy for COVID-19 are inconclusive.

AIM
To determine the effect of methylprednisolone in severe and critically ill patients with COVID-19.

METHODS
This single-center retrospective study included 102 adult COVID-19 patients admitted to a ward of a designated hospital in Wuhan, Hubei Province from January to March 2020. All patients received general symptomatic treatment and organ function support, and were given different respiratory support measures according to their conditions. In case of deterioration, considering the hyperinflammatory state of the patients, methylprednisolone was intravenously
INTRODUCTION
The coronavirus disease 2019 (COVID-19) outbreak has brought great challenges to public health and governance in various countries. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses angiotensin converting enzyme 2 (ACE2) as a receptor to invade cells and cause lung injury. Aggravation of COVID-19 is closely related to the systemic inflammatory response[3]. A previous study found that compared with non-intensive care unit (ICU) patients, COVID-19 patients admitted to the ICU have higher plasma levels of inflammatory factors such as IL-2, IL-7, IL-10, GSCF, IP-10, MCP1, MIP1A, and TNF-α. This indicates obvious inflammatory reactions in severe and critical patients[3]. Severe and critically ill COVID-19 patients reportedly account for more than 20% of all COVID-19 patients[3]. Some patients get worse in 7-10 d due to the rapid progression of the disease. It gradually develops into acute respiratory distress syndrome (ARDS), administered at 0.75-1.5 mg/kg/d, usually for less than 14 d. Patient vital signs and oxygenation were closely monitored, in combination with imaging and routine blood tests such as C-reactive protein, biochemical indicators (liver and kidney function, myocardial enzymes, electrolytes, etc.), and coagulation function. Patient clinical outcomes were discharge or death.

RESULTS
A total of 102 severe and critically ill COVID-19 patients were included in this study. They were divided into treatment (69, 67.6%) and control groups (33, 32.4%) according to methylprednisolone use. Comparison of baseline data between the two groups showed that the treatment group patients had higher aspartic acid aminotransferase, globulin, hydroxybutyrate dehydrogenase, and lactate dehydrogenase. There was no significant difference in other baseline data between the two groups. With regard to prognosis, 29 (78.4%) patients in the treatment group died as opposed to 40 (61.5%) in the control group. The mortality was higher in the treatment group than in the control group; however, according to the log-rank test and the Kaplan–Meier survival curve, the difference in mortality between both groups was insignificant (P = 0.655). The COX regression equation was used to correct the variables with differences, and the results showed that methylprednisolone treatment did not improve prognosis.

CONCLUSION
Methylprednisolone treatment does not improve prognosis in severe and critical COVID-19 patients.

Key Words: COVID-19; Glucocorticoids; Methylprednisolone; Cytokine storm; Coronavirus infections; Cytokines

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Glucocorticoids were used in the treatment of severe acute respiratory syndrome, influenza A, and coronavirus disease 2019 (COVID-19) in the past. Many studies believe that glucocorticoids can effectively reduce inflammation caused by viruses. In this study, 102 patients with severe and critical COVID-19 were studied and divided into either a treatment group or a control group according to methylprednisolone use. We found that the difference in mortality between both groups was insignificant (P = 0.655), and the results showed that methylprednisolone treatment did not improve prognosis.

URL: https://www.wjgnet.com/2307-8960/full/v8/i23/5952.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i23.5952

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License/s/by-nc/4.0/

 Manuscript source: Invited manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: China

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Received: August 28, 2020
Peer-review started: August 28, 2020
First decision: September 29, 2020
Revised: October 3, 2020
Accepted: October 20, 2020
Article in press: October 20, 2020
Published online: December 6, 2020

P-Reviewer: El-Arabey AA
S-Editor: Huang P
L-Editor: Wang TQ
P-Editor: Zhang YL
septic shock, and even death via multi-organ failure\(^5\). At present, there is no effective SARS-CoV-2-specific antiviral therapy, resulting in great difficulty in clinical treatment.

Glucocorticoids are used to control severe diseases caused by the cytokine storm, owing to their rapid, powerful, and nonspecific anti-inflammatory effects. They are often used as an adjunct treatment for viral pneumonia\(^6,7\). Domestic guidelines, literature, and the first-line treatment guidelines for critical COVID-19 patients all recommend short courses, medium courses, and small doses of glucocorticoids for inhibiting excessive immune injury, which are the applied measures for critical COVID-19 patients\(^8\). It was previously thought that proper and reasonable corticosteroid use could reduce the excessive inflammatory reaction of severe pneumonia and help severe patients survive respiratory failure and inflammatory exudation. However, glucocorticoids are a double-edged sword, as the use of large doses has the potential risk of secondary infection and long-term serious complications, and may prolong virus clearance time. Nonetheless, the risks and benefits of glucocorticoid adjuvant therapy for COVID-19 are inconclusive. The WHO’s 2019-nCoV-related severe infection clinical guidelines\(^9\) and a review article in Lancet\(^10\) do not recommend the use of glucocorticoids in the treatment of patients with COVID-19, but Chinese experts and scholars believe that the early application of hormones is really helpful for alleviating the condition of patients\(^11\).

This study summarized the clinical treatment strategies for critical COVID-19 patients during the epidemic. The clinical data and treatment options of 102 severe and critical patients in a designated hospital in Wuhan, Hubei Province from January to March 2020 were analyzed. The clinical effect and prognosis of critical COVID-19 patients treated with low doses and short courses of glucocorticoids, were also analyzed, to provide a basis for clinical glucocorticoid use.

**MATERIALS AND METHODS**

**Study design and patient population**

This single-center retrospective study included adult COVID-19 patients admitted to a ward of a designated hospital in Wuhan, Hubei Province from January to March 2020.

The inclusion criteria were: (1) Age ≥ 18 years; and (2) The diagnosis criteria\(^12\) were in accordance with the COVID-19 diagnosis and treatment protocol (trial version 7) formulated by the National Health Commission of China, and included epidemiological history, clinical COVID-19 expression, and the presence of one of the etiological or serological evidence (positivity for novel coronavirus nucleic acid or serum-specific antibody). The study patients were all severe or critically ill. Severely ill patients presented with: (1) Shortness of breath, RR ≥ 30 times/min; (2) Resting oxygen saturation ≤ 93%; or (3) \(\text{PaO}_2/\text{FiO}_2\) ≤ 300 mmHg, and critically patients presented with: (1) Respiratory failure and mechanical ventilation need; (2) Shock; or (3) Organ failure requiring ICU monitoring.

The exclusion criteria were: (1) Combined with basic lung diseases (such as COPD and pulmonary fibrosis); (2) Complicated with a malignant tumor; and (3) There were contraindications to the use of methylprednisolone.

**Treatment**

According to the treatment principles formulated by the above diagnosis and treatment plan, all patients received general symptomatic treatment and organ function support, and were given different respiratory support measures according to their conditions, including nasal catheter oxygen inhalation, mask oxygen inhalation, high-flow nasal catheter oxygen inhalation, noninvasive mechanical ventilation, and invasive mechanical ventilation. Treatment involved conventional antiviral treatment in combination with secondary infection and complication prevention and treatment, and basic disease treatment. During treatment, patient oxygenation was closely monitored. In case of deterioration, considering the hyperinflammatory state of the patients, methylprednisolone was intravenously administered at 0.75-1.5 mg/kg/d, usually for less than 14 d\(^13\).

**Data collection**

All subjects enrolled in our study had a case report form, and data were collected within 12 h after hospital admission, including C-reactive protein, biochemical indicators (liver and kidney function, myocardial enzymes, electrolytes, etc.), and coagulation function. Patient vital signs and oxygenation were closely monitored.
Patient clinical outcomes were discharge or death.

Institutional review board statement
This survey was a retrospective study collecting only the clinical data of patients. Since it did not bring risks to patients’ physiology and did not interfere with patients’ treatment plan, and researchers protected patients’ information from disclosure, Xuanwu Hospital of Capital Medical University agreed to exempt this study from ethical review.

Statistical analysis
All data were analyzed using SPSS version 22.0 for Windows. Continuous data with a normal distribution are presented as the mean ± SD. Non-normally distributed variables are presented as the median with interquartile ranges (IQRs) and were analyzed using a non-parametric test. Categorical data were analyzed using the Chi-square test. Survival rates were estimated using the Kaplan–Meier method. The log-rank test was used to compare the unadjusted survival curves. Cox regression models were used to estimate the hazard ratios associated with patient mortality risk, incorporating baseline differences. All tests were two-sided, and a P value of < 0.05 was considered statistically significant.

RESULTS
Baseline information
A total of 102 severe and critically ill COVID-19 patients were enrolled in this study, including 18 critically ill and 84 severe patients. They were divided into treatment (69, 67.6%) and control groups (33, 32.4%) according to methylprednisolone use. Comparison of baseline data between the two groups showed that the treatment group patients had the following characteristics: Higher aspartic acid aminotransferase (P < 0.05), globulin (P < 0.05), hydroxybutyrate dehydrogenase (P < 0.05), and lactate dehydrogenase (P < 0.05) (Table 1). There was no significant difference in other baseline data between the two groups.

Methylprednisolone efficacy
With regard to prognosis, 29 (78.4%) patients in the treatment group died as opposed to 40 (61.5%) in the control group. The mortality was higher in the treatment group than in the control group; however, according to the log-rank test and the Kaplan–Meier survival curve, the difference in mortality between the two groups was insignificant (log-rank 0.199, P = 0.655; Figure 1). Considering the effect of baseline difference on patient prognosis in the two groups, the COX regression equation was used to correct the variables with differences, and the results showed that methylprednisolone treatment did not improve prognosis (Table 2).

DISCUSSION
COVID-19 is caused by SARS-CoV-2, which currently has no vaccine nor specific antiviral drug. Therefore, the treatment of severe and critical COVID-19 patients remains difficult, with a high mortality rate. Similar to severe pneumonia caused by SARS, Middle East respiratory syndrome coronavirus (MERS-CoV), and other viruses, severe COVID-19 disease develops rapidly. The main reason for this is the hyperactivation of the immune system (cytokine storm) by the disease, causing serious damage to the lungs and other organs. The cytokine storm theory was first proposed by Ferrara et al[13] in 1993. It refers to the rapid and large-scale production of many cytokines, including TNF-α, IL-1, IL-6, IL-12, IFN-α, IFN-β, IFN-γ, MCP-1, and IL-8, after an infection, resulting in multi-organ failure and possibly death. It is a primary cause of ARDS and multiple organ failure[14]. In the defense against pathogens, immune cells secrete a large number of cytokines, which in turn stimulate immune cells. Usually, this positive feedback response is regulated to some extent. However, in some cases, the regulatory mechanism fails, leading to large-scale immune cell activation, and thus further cytokine secretion, referred to as the cytokine storm[15]. SARS, MERS, the influenza A (H1N1) virus, and the avian influenza virus can cause a cytokine storm. The serum levels of cytokines, including IL-17, IP-10, IL-6, KC, G-CSF, GM-CSF, MCP-1, and MIG, in patients with severe infection are reportedly
Table 1 Baseline clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Treatment group</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>19 (57.6%)</td>
<td>34 (49.3%)</td>
<td>0.120</td>
</tr>
<tr>
<td>Critically ill</td>
<td>3 (9.1%)</td>
<td>15 (21.7%)</td>
<td>0.117</td>
</tr>
<tr>
<td>Hypertension</td>
<td>15 (45.5%)</td>
<td>31 (44.9%)</td>
<td>0.170</td>
</tr>
<tr>
<td>Diabetes</td>
<td>16 (48.5%)</td>
<td>12 (17.4%)</td>
<td>0.145</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>5 (15.2%)</td>
<td>7 (10.1%)</td>
<td>0.387</td>
</tr>
<tr>
<td>CHD</td>
<td>2 (6.1%)</td>
<td>10 (14.5%)</td>
<td>0.091</td>
</tr>
<tr>
<td>Aspartic acid aminotransferase (U/L)</td>
<td>27 (20, 40)</td>
<td>35 (26, 54)</td>
<td>0.043</td>
</tr>
<tr>
<td>Alanine aminotransferase (U/L)</td>
<td>26 (19, 44)</td>
<td>36 (20, 57)</td>
<td>0.164</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td>47 (40, 66)</td>
<td>55 (43, 74)</td>
<td>0.157</td>
</tr>
<tr>
<td>Lactate dehydrogenase (U/L)</td>
<td>233 (183, 379)</td>
<td>295 (213, 334)</td>
<td>0.025</td>
</tr>
<tr>
<td>Glutamyl transpeptidase (U/L)</td>
<td>25 (18, 32)</td>
<td>33 (21, 56)</td>
<td>0.072</td>
</tr>
<tr>
<td>Total bilirubin (μmol/L)</td>
<td>9.6 (6.7, 13.2)</td>
<td>11.1 (7.7, 16.3)</td>
<td>0.110</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>32.2 (29.7, 35.2)</td>
<td>29.8 (27.9, 33.8)</td>
<td>0.146</td>
</tr>
<tr>
<td>Globulin (g/L)</td>
<td>28.9 (26, 32.1)</td>
<td>31.4 (28.2, 35.9)</td>
<td>0.010</td>
</tr>
<tr>
<td>Prealbumin (mg/L)</td>
<td>142.6 (113.7, 175.8)</td>
<td>136.6 (85.5, 209.8)</td>
<td>0.709</td>
</tr>
<tr>
<td>Total bile acid (μmol/L)</td>
<td>2.2 (1.7, 3.8)</td>
<td>2.4 (1.6, 4.4)</td>
<td>0.722</td>
</tr>
<tr>
<td>Urea nitrogen (mmol/L)</td>
<td>4.25 (3.3, 6.35)</td>
<td>4.84 (3.72, 7.75)</td>
<td>0.244</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>73.5 (62.2, 90.9)</td>
<td>69.55 (58.2, 89.55)</td>
<td>0.419</td>
</tr>
<tr>
<td>Uric acid (μmol/L)</td>
<td>226 (175.1, 287.6)</td>
<td>233.2 (177.3, 329.2)</td>
<td>0.622</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>1.95 (1.87, 2)</td>
<td>1.91 (1.81, 2)</td>
<td>0.122</td>
</tr>
<tr>
<td>Creatine kinase (U/L)</td>
<td>104.5 (45.5, 196)</td>
<td>85.5 (54, 197)</td>
<td>0.747</td>
</tr>
<tr>
<td>CKMB (U/L)</td>
<td>13 (9.5, 18.5)</td>
<td>13 (10.19)</td>
<td>0.699</td>
</tr>
<tr>
<td>Alpha hydroxybutyrate dehydrogenase (U/L)</td>
<td>205 (149, 310.5)</td>
<td>248 (180, 449)</td>
<td>0.020</td>
</tr>
<tr>
<td>Total carbon dioxide (mmol/L)</td>
<td>22.6 (20.9, 27.9)</td>
<td>24 (21.4, 26.7)</td>
<td>0.589</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>20.98 (4, 40.95)</td>
<td>34.08 (8.47, 81.4)</td>
<td>0.140</td>
</tr>
<tr>
<td>Cystatin (mg/L)</td>
<td>0.78 (0.66, 0.92)</td>
<td>0.88 (0.75, 1.03)</td>
<td>0.098</td>
</tr>
<tr>
<td>Red blood cells (T/L)</td>
<td>4.05 (3.57, 4.59)</td>
<td>4.1 (3.79, 4.55)</td>
<td>0.335</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>122 (105, 138)</td>
<td>129.5 (120, 140)</td>
<td>0.242</td>
</tr>
<tr>
<td>Platelets (g/L)</td>
<td>198 (143, 291)</td>
<td>197 (139, 258)</td>
<td>0.667</td>
</tr>
<tr>
<td>Lymphocytes (g/L)</td>
<td>0.92 (0.75, 1.3)</td>
<td>0.87 (0.61, 1.3)</td>
<td>0.658</td>
</tr>
<tr>
<td>Monocytes (g/L)</td>
<td>0.38 (0.33, 0.48)</td>
<td>0.36 (0.25, 0.5)</td>
<td>0.562</td>
</tr>
<tr>
<td>Erythrocyte distribution width</td>
<td>12.5 (11.9, 12.9)</td>
<td>12.5 (12.1, 13.1)</td>
<td>0.660</td>
</tr>
</tbody>
</table>

Treatment group: Methylprednisolone use at 0.75-1.5 mg/kg/d, for less than 14 d. Control group: Without using methylprednisolone. CHD: Coronary heart disease; CKMB: Creatine kinase isoenzyme.

significantly increased[16,17]. Huang et al[18] found that the concentrations of IL-1 β, IL-1ra, IL-7, IL-8, IL-9, IL-10, FGF, GCSF, IFN-γ, IP10, MCP1, MIP1a, MIP1b, PDGF, TNF-α, and VEGF in the initial plasma of COVID-19 patients were higher than those in the control group. They also found that the inflammatory factors in the plasma of ICU patients were higher than those of non-ICU patients, and that the cytokine storm was more obvious. The lung is the key target of the cytokine storm caused by SARS-CoV-2. Hypercytokinemia is the basis of a hyperinflammatory symptomatic state that leads to injury of alveolar epithelial cells and vascular endothelial cells as well as lung infiltration supported by neutrophils and macrophages[19].
Table 2 COX regression analysis after adjustment

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>P value</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic acid aminotransferase</td>
<td>0.010</td>
<td>0.007</td>
<td>1.930</td>
<td>0.165</td>
<td>0.996, 1.024</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>0.006</td>
<td>0.005</td>
<td>1.291</td>
<td>0.256</td>
<td>0.996, 1.015</td>
</tr>
<tr>
<td>Globulin</td>
<td>-0.007</td>
<td>0.031</td>
<td>0.050</td>
<td>0.823</td>
<td>0.935, 1.055</td>
</tr>
<tr>
<td>Alpha hydroxybutyrate dehydrogenase</td>
<td>-0.001</td>
<td>0.006</td>
<td>0.024</td>
<td>0.877</td>
<td>0.988, 1.010</td>
</tr>
<tr>
<td>Methylprednisolone use</td>
<td>-0.579</td>
<td>0.437</td>
<td>1.754</td>
<td>0.185</td>
<td>0.238, 1.320</td>
</tr>
</tbody>
</table>

Figure 1 Effect of glucocorticoids on mortality. The Kaplan–Meier survival curve for use of glucocorticoids in severe and critically ill coronavirus disease 2019 patients.

Glucocorticoids can play an effective anti-inflammatory role by rapidly inducing the synthesis of anti-inflammatory factors and are used for the treatment of inflammatory diseases of various etiologies. In a retrospective study of 401 SARS patients, it was found that the correct use of glucocorticoids can reduce severe SARS patient mortality and shorten the length of hospitalization, without secondary infection and other complications\[^6\]. A study of 2141 patients with pneumonia caused by the H1N1 pdm09 virus, from 407 hospitals in mainland China, found that low to moderate corticosteroid doses (25-150 mg/d of methylprednisolone or equivalent dose) could reduce the mortality in PaO\(_2\)/FiO\(_2\) < 300 mmHg H1N1 influenza virus pneumonia\[^19\]. Many similar studies have shown that the rational use of glucocorticoids in the treatment of SARS can reduce mortality, improve symptoms, and slow disease progression\[^6,20-22\]. However, a 2004 randomized controlled trial study found that early treatment with glucocorticoids (within 7 d of onset) was related to a subsequent high plasma viral load, which delays the SARS-CoV clearance. On the contrary, it aggravates the disease, possibly related to its simultaneous inhibition of positive cytokines such as IFN-α and IL-6\[^23\]. Xu et al\[^24\] reported that glucocorticoid-treated COVID-19 patients were more likely to have complications such as ARDS, shock, acute kidney injury, and secondary infection, compared to control group patients. Previous studies on the treatment of pneumonia caused by SARS, MERS, and the H1N1 virus with glucocorticoids remain controversial, with some studies reporting that it does not provide survival benefits and may cause adverse effects such as diabetes\[^25\], femoral head necrosis\[^26\], osteoporosis, secondary infection, mental symptoms, gastrointestinal bleeding, increased viral clearance time, and other serious long-term complications\[^23,25-30\].

Some previous SARS consensus and guidelines have suggested the use of glucocorticoid therapy according to the condition, but the specific course and usage are not clear, and there is no recommended level\[^31,32\]. The COVID-19 treatment plan issued by China proposed that patients with progressively deteriorating oxygenation indexes and rapid disease progression can use small and medium doses of...
glucocorticoids such as methylprednisolone, as appropriate and for a short time\textsuperscript{12}. The 2019 novel coronavirus guidelines of the WHO suggested that unless special reasons are denied, regular systemic glucocorticoid therapy should not be administered\textsuperscript{9}. This suggests the lack of a consensus or definitive guidelines on the effects of glucocorticoid treatment, thereby indicating that caution should be exercised while determining the dosage and treatment course.

Considering the advantages and disadvantages of the above-mentioned glucocorticoid treatment, and referring to the relevant consensus and guidelines, the present study adopted low-dose hormone treatment for severe and critical COVID-19 patients with rapid disease progression. The results of this retrospective study showed that there was no significant difference in the effect of low-dose methylprednisolone on the mortality of severe and critical COVID-19 patients. At present, glucocorticoid therapy for COVID-19 is still controversial, and high-quality clinical evidence is lacking. Some clinical meta-analysis research and review articles report that glucocorticoid treatment of COVID-19 patients will not bring about survival benefits and may result in a longer virus clearance time, and should therefore be used cautiously\textsuperscript{33-35}. On the other hand, the administration of glucocorticoid therapy to severe COVID-19 patients can alleviate clinical symptoms, shorten mechanical ventilation time, and reduce mortality. However, its prolongation of the virus clearance time remains controversial\textsuperscript{36-39}. Some scholars have stated that the inconclusive clinical evidence should not be the reason for giving up glucocorticoid use in COVID-19 treatment. They rather recommend to advocate for rational glucocorticoid use, and careful formulation of a short-term and low-dose glucocorticoid treatment plan.

Some limitations pertaining to this study
This was a single-center retrospective study with a limited research method and sample size, failing to elucidate the impact of hormone therapy on survival. Obesity is one of the most critical risk factors which aggravates the mortality of COVID-19, and metformin has been reported to reduce COVID-19 mortality in elderly, obese, and diabetic patients through weight loss\textsuperscript{40}. Most of the patients in this study were severe and critically ill, and their body weight could not be measured at admission. The loss of body weight in baseline data may affect the clinical effect of methylprednisolone. Therefore, further high-quality research is required to explore the evidence, drug selection, dosage, course of treatment, complications, and withdrawal methods of glucocorticoid therapy.

CONCLUSION
The results of the present study do not elucidate the survival benefit of methylprednisolone treatment, suggesting caution in glucocorticoid treatment of COVID-19 patients. Each patient’s situation and the advantages and disadvantages of glucocorticoid treatment should be fully considered, and long-term and high-dose glucocorticoid use should be avoided.

ARTICLE HIGHLIGHTS

Research background
Coronavirus disease 2019 (COVID-19) has spread to many countries and regions all over the world and has become a worldwide public health event. COVID-19 is an acute infectious disease caused by a new coronavirus [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], which is clinically categorized into mild, moderate, severe, and critical illness. Severe and critically ill patients progress rapidly with dyspnea, hypoxemia, and even life-threatening complications such as multiple organ dysfunction syndrome, sepsis, and shock. At present, there is no significant and effective drug for severe and critical patients with COVID-19. Glucocorticoids have been used in the treatment of SARS, Middle East respiratory syndrome, influenza A, and other infectious respiratory diseases worldwide, but their efficacy is still controversial.
Research motivation
In clinical practice, some severe and critical patients with COVID-19 benefit from the application of glucocorticoids, but some patients have various adverse effects. Therefore, whether glucocorticoids should be used in patients with COVID-19 and how to use them are a problem worthy of discussion.

Research objectives
The main objective of this study was to determine the effect of methylprednisolone in severe and critical patients with COVID-19.

Research methods
One hundred and two severe and critically ill patients with COVID-19 were divided into treatment (69, 67.6%) and control groups (33, 32.4%). In the treatment group, methylprednisolone was intravenously administered at 0.75-1.5 mg/kg/d, usually for less than 14 d. We compared the general information, underlying diseases, laboratory examination indexes, and mortality of the two groups. The log-rank test and the Kaplan–Meier survival curve were used to explore the difference in mortality between the two groups, and the COX regression equation was used to correct the variables with differences.

Research results
The treatment group patients had higher aspartic acid aminotransferase ($P < 0.01$), globulin ($P < 0.01$), hydroxybutyrate dehydrogenase ($P < 0.01$), and lactate dehydrogenase ($P < 0.01$). Twenty-nine (78.4%) of patients in the treatment group died as opposed to 40 (61.5%) in the control group. The mortality was higher than that of the control group. And the results showed that methylprednisolone treatment did not improve prognosis.

Research conclusions
Methylprednisolone treatment does not improve prognosis in severe and critical COVID-19 patients.

Research perspectives
Methylprednisolone treatment in severe and critically ill patients with COVID-19 should be comprehensively evaluated and used with caution.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the useful suggestions given by Dr. Zhang M.

REFERENCES
Zhu HM et al. Effect of methylprednisolone in COVID-19 patients


