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Abstract
BACKGROUND 
Wireless capsule endoscopy (WCE) has become an important noninvasive and 
portable tool for diagnosing digestive tract diseases and has been propelled by 
advancements in medical imaging technology. However, the complexity of the 
digestive tract structure, and the diversity of lesion types, results in different sites 
and types of lesions distinctly appearing in the images, posing a challenge for the 
accurate identification of digestive tract diseases.

AIM 
To propose a deep learning-based lesion detection model to automatically identify 
and accurately label digestive tract lesions, thereby improving the diagnostic 
efficiency of doctors, and creating significant clinical application value.

METHODS 
In this paper, we propose a neural network model, WCE_Detection, for the 
accurate detection and classification of 23 classes of digestive tract lesion images. 
First, since multicategory lesion images exhibit various shapes and scales, a 
multidetection head strategy is adopted in the object detection network to 
increase the model's robustness for multiscale lesion detection. Moreover, a 
bidirectional feature pyramid network (BiFPN) is introduced, which effectively 
fuses shallow semantic features by adding skip connections, significantly 
reducing the detection error rate. On the basis of the above, we utilize the Swin 
Transformer with its unique self-attention mechanism and hierarchical structure 
in conjunction with the BiFPN feature fusion technique to enhance the feature 
representation of multicategory lesion images.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v30.i48.5111
mailto:3220215169@bit.edu.cn
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RESULTS 
The model constructed in this study achieved an mAP50 of 91.5% for detecting 23 lesions. More than eleven single-
category lesions achieved an mAP50 of over 99.4%, and more than twenty lesions had an mAP50 value of over 
80%. These results indicate that the model outperforms other state-of-the-art models in the end-to-end integrated 
detection of human digestive tract lesion images.

CONCLUSION 
The deep learning-based object detection network detects multiple digestive tract lesions in WCE images with high 
accuracy, improving the diagnostic efficiency of doctors, and demonstrating significant clinical application value.

Key Words: Human digestive tract; Artificial intelligence; Deep learning; Wireless capsule endoscopy; Object detection

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In clinical practice, wireless capsule endoscopy is commonly used to detect lesions in the digestive tract and search 
for their causes. Here, we propose a multilesion classification and detection model to automatically identify 23 types of 
lesions in the digestive tract, and accurately mark the lesions. The model can improve the diagnostic efficiency of doctors 
and their ability to identify the categories of digestive tract lesions.

Citation: Xiao ZG, Chen XQ, Zhang D, Li XY, Dai WX, Liang WH. Image detection method for multi-category lesions in wireless 
capsule endoscopy based on deep learning models. World J Gastroenterol 2024; 30(48): 5111-5129
URL: https://www.wjgnet.com/1007-9327/full/v30/i48/5111.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i48.5111

INTRODUCTION
Diseases of the human digestive tract involve the esophagus, stomach, small intestine, and large intestine, encompassing 
a wide variety of types and symptoms, with common diseases including esophagitis, gastritis, hemorrhage, and duodenal 
ulcers. In 2019, 7.32 billion cases of digestive diseases were reported, with 2.86 billion prevalent cases, resulting in 8 
million deaths[1]. The global burden of digestive tract diseases is enormous, especially in less developed regions, where 
inadequate early screening and diagnosis result in high mortality rates. Early diagnosis can significantly improve 
treatment outcomes, improve patient prognosis, and reduce treatment costs. Therefore, improving the early diagnosis 
rate of digestive tract diseases has become an important challenge in the medical field[2].

Wireless capsule endoscopy (WCE) technology is an important medical technology for the examination of the digestive 
tract and other organs[3]. This has led to the widespread use of WCE technology in clinical examinations of the digestive 
tract since its introduction in 2001. WCE enables noninvasive examination of the entire digestive tract through a 
microcapsule that is swallowed by the patient, covering areas of the small intestine that are difficult to reach with conven-
tional endoscopes. This technological advantage makes WCE important in the early screening of digestive diseases. WCE 
is simple, noninvasive, requires no anesthesia for the patient, and the examination is easy to perform in daily life, which 
significantly improves patient acceptance. However, WCE has several significant shortcomings. First, WCE takes 
continuous pictures inside the patient's body for 6 to 8 hours, generating approximately 50000 to 80000 images[4-6]. The 
processing and analysis of these images requires many human resources. Even for experienced endoscopists, meticulous 
analysis of images takes at least 2 to 3 hours. This high-intensity manual processing is not only time-consuming but also 
prone to fatigue, increasing the risk of a missed diagnosis and misdiagnosis. Second, owing to the complex anatomy of 
the human digestive tract, lesions may present different morphologies and characteristics in different parts of the body, 
which further increases the difficulty of image analysis. In particular, certain lesions that are small, irregular in shape, or 
obstructed by digestive tract contents may not be accurately identified in the image, increasing the possibility of misdia-
gnosis.

Deep learning methods enable automatic feature learning, reducing the dependence on manually crafted features. 
Moreover, technologies in computer vision offer tools and methods for medical image processing, empowering doctors to 
analyze and comprehend images for easier diagnosis. These include object detection, image segmentation, feature 
extraction, and shape analysis, among others. Among them, object detection is the most critical, and choosing a good 
object detection method can efficiently and accurately detect the pathology of WCE images. Moreover, the emergence of 
outstanding classification networks such as AlexNet[7], VGGNet[8], and ResNet[9], which are based on deep learning 
methods, along with the R-CNN[10-12] series, YOLO[13-22], SSD[23], and other classical object detection models, has 
contributed to the detection of WCE lesion images. Therefore, rapid advancements have been made in lesion detection 
techniques based on WCE images.

Unfortunately, the detection of digestive tract lesions is a challenging task because of poor image quality. First, WCE 
images frequently suffer from noise and low visual quality owing to the complex environment and poor lighting 
conditions in the digestive tract. Second, numerous contents in the digestive tract, such as food, stool, bile, and air 

https://www.wjgnet.com/1007-9327/full/v30/i48/5111.htm
https://dx.doi.org/10.3748/wjg.v30.i48.5111
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bubbles, can affect lesion detection. Moreover, the uncontrolled peristaltic motion of the WCE as it traverses the digestive 
tract leads to highly variable image quality. Moreover, different parts of the digestive tract, such as the esophagus, 
stomach, and small intestine, present a variety of colors and textures. Finally, different types of disease lesions (e.g., 
polyps, tumors, ulcers, etc.) vary significantly in morphology, size, and color, making it difficult for traditional image 
analysis algorithms to detect all types of lesions accurately in complex and diverse lesion images. These challenges 
greatly complicate the detection of digestive tract lesions in WCE images.

In response to the aforementioned challenges associated with multicategory WCE lesion images of the digestive tract, 
drawing inspiration from the YOLOv8 model structure, we propose the design of the WCE_Detection model based on the 
YOLOv8 backbone network to address the challenging task of multicategory lesion image detection. The main contri-
butions of this paper are as follows: (1) To the best of our knowledge, this paper presents the first deep learning 
framework designed specifically for the detection of 23 classes of digestive tract lesions in WCE images; (2) The neck part 
is redesigned by introducing BiFPN, which significantly enhances feature extraction and detail information capture. 
Moreover, the Swin Transformer module is incorporated to improve the network's ability to localize regions of interest 
accurately in large-area images through its self-attention mechanism, thereby enhancing the network capacity to handle 
complex scenes and object diversity, leading to improved detection accuracy and efficiency; (3) A new detection head is 
added to the original three detection heads in the head part. This allows the network to extract feature information more 
profoundly, facilitating better capture and learning of the multilevel features of the object, thereby improving detection 
accuracy; and (4) Our proposed WCE_Detection detector achieves the detection of 23 types of digestive tract lesions 
through an end-to-end approach. The detection results of the model on the WCE lesion image dataset outperform those of 
advanced detection frameworks, indicating that the model is clinically valuable.

MATERIALS AND METHODS
Dataset construction
This study utilized a self-constructed WCE lesion image dataset, as shown in Figure 1, derived from PillCamSB series 
capsule images. The dataset comprises 1374 WCE images saved in JPG format, encompassing 23 lesion categories, 
including gastric ulcers, colon polyps, and others. To ensure the uniformity of the dataset, we preprocessed the collected 
images of different sizes and uniformly resized them to 640 × 640 × 3 pixels in RGB channel format. This resolution choice 
was made to consider the efficient use of computational resources while ensuring image detail. Each image was manually 
annotated by a professional physician via LabelImg open source data annotation software (version v1.8.5) developed by 
HeartEx Labs, which strictly adhered to the following rules. First, optimal labeling involves expanding the original 
lesion's length and width by approximately 1.33 times. Second, if the lesion site appeared slender and irregular, the 
expansion area of the label was appropriately reduced or not expanded. Third, the labeling cannot exceed the effective 
area of the image region[24]. Once labeling was completed, the coordinates and categories of the lesion positions were 
saved as .txt files. The number of labeled lesions corresponded to the number of labeled bounding boxes in each image. 
To safeguard patient privacy, we anonymized the data by removing any personal information that could identify the 
patient. We adhered to relevant regulations and ethical norms, especially medical information privacy regulations, 
during dataset construction to ensure adequate protection of patients' personal privacy.

Dataset splitting and augmentation
To evaluate the effectiveness of our detection model, we partitioned the dataset into a training set, a validation set, and a 
testing set, with percentages of 70%, 20%, and 10%, respectively. To optimize the detection model, we combined the 
training and validation sets to construct the training dataset. During training, we observed that without employing data 
augmentation, the effectiveness of training was compromised because of the limited total number of WCE lesion images 
and the variability in image quality. Therefore, the model faced challenges in capturing WCE image patterns. We 
employed an online data augmentation strategy to enhance the training data in real time, aiming to improve the model's 
ability to handle complex scenes. We used image enhancement techniques such as mosaic, mixup, and HSV in the 
training process. Mosaic was used to stitch four different images to expand the field of view and improve the detection of 
multiple categories of lesions. Mixup was used to enrich the distribution of the training samples by linearly combining 
the two images and enhancing the robustness to different lesion features. HSV was used to simulate different lighting 
conditions and improve the adaptability to image quality by adjusting the hue, saturation, and luminance. By adjusting 
hue, saturation, and brightness to simulate different lighting conditions, the adaptability to image quality can be 
enhanced. These data enhancement strategies significantly increased the diversity of the training data and alleviate the 
challenges associated with the limited number of images and large quality variations. With the increase of the 
enhancement data, the performance of the model on the validation and test sets significantly improved, and the 
occurrence rates of leakage and misdetection significantly decreased.

Experimental setup
We implemented the WCE_Detection model via PyTorch 2.1.0. All our models were trained and tested via a Tesla V100-
SXM2-16GB GPU from the Alibaba Cloud. During the training phase, we utilized a pretrained weight file from 
YOLOv8m, significantly reducing the training time. We trained for 300 epochs on the training set via the AdamW 
optimizer with an initial learning rate of 0.01. The batch size was set to 16, and the weight_decay was set to 0.0005. The 
specific parameter settings are shown in Table 1.
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Table 1 Experimental parameter settings

Parameter name Parameter value

Initial learning rate 0.01

Learning rate float 0.01

Epochs 300

Batch size 16

Optimizer AdamW

Weight_decay 0.0005

Momentum 0.937

YOLOv8 model comparison and limitations
YOLOv8 (you only look once version 8) is a prominent algorithm in the field of object detection, and consists of five 
models: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x[20]. When training the model with our own images 
of 23 types of WCE lesions, we discovered that the results of YOLOv8m significantly outperformed those of YOLOv8n, 
YOLOv8s, YOLOv8l, and YOLOv8x, with a difference of > 3% between the mAP50 and mAP50: 90 values. Moreover, the 
computational cost of the YOLOv8m model is not the highest among the five models, and its inference speed is also 
greater than that of YOLOv8l and YOLOv8x. In general, among the training results of YOLOv8m, the mAP50 and 
mAP50: 90 values are both the highest, and the inference speed and computing cost have certain advantages among the 
five models. The details are shown in Table 2. However, upon further analysis of the YOLOv8m training results, we 
discovered that the model is less effective for extreme-sized objects, fuzzy objects, and complex background detections. 
This paper discusses the deficiencies in detection and proposes solutions.

We propose the WCE_Detection network model for processing multicategory WCE lesion images of the digestive tract, 
as shown in Figure 2. On the basis of the YOLOv8 backbone network, we redesigned the model and introduced the 
BiFPN network structure[25] in the neck part. This structure not only optimizes the original network architecture but also 
helps reduce the loss of feature information, and enhances the feature extraction capability. In terms of head design, we 
added one new detection head to the original three, ensuring comprehensive coverage of objects at different scales, and 
accurate detection of objects of various sizes. Moreover, to explore the potential of the self-attention mechanism in 
prediction, we replaced the original c2f module in the neck with the Swin Transformer module, further improving the 
prediction performance of the model, and enhancing the network's ability to handle complex scenes and object diversity.

WCE_Detection model
Adding a lesion detection predictor header: After an in-depth study of the WCE dataset, we observed significant shape 
and scale differences among the lesions. To address this challenge, we drew inspiration from the literature[26], where the 
performance was significantly improved, particularly in detecting objects at different scales, demonstrating the effect-
iveness of the module. Therefore, we added a lesion detection prediction head in particular. Combined with the other 
three prediction heads, they collectively form a four-detection-head structure for the model, as shown in Figure 3. In 
contrast to the original YOLOv8, which only upsamples twice in the neck structure, the improved network in this paper 
upsamples three times. The third upsampling layer is fused with the second layer of the backbone network, followed by 
the downsampling operation. This results in four detection layers: 160 × 160, 80 × 80, 40 × 40, and 20 × 20. The input 
images are enriched with features from the second layer of the backbone network, thereby deepening the network's 
depth, and enabling the extraction of feature information into a deeper network. This enhances the multiscale learning 
capability, improving the model's detection performance in complex scenes.

With this design, we have successfully alleviated the detrimental effects of the drastic variance in the object scale, 
thereby improving the stability and accuracy of the model. As a result, WCE_Detection now features four detection 
heads, each dedicated to recognizing micro, small, medium, and large lesion images. While the addition of detection 
heads incurs a certain level of computation and memory consumption, it is undoubtedly beneficial for enhancing the 
performance of multiscale lesion object detection. With this enhancement, WCE_Detection can better adapt to lesions of 
different scales and achieve more precise and comprehensive object detection.

Introduction of the Swin transformer module: WCE lesion images affect image quality due to the lack of light in the 
digestive tract and the poor angle of shooting the lesions, and it is difficult to extract features effectively if only a CNN is 
used for feature extraction. Moreover, the same lesions have certain contextual information in the shooting process. As 
shown in Figure 4, CNNs face difficulty in obtaining contextual information when extracting features. The Transformer
[27] employs a self-attention mechanism, which can highlight the features of the detected object and suppress the 
background features. Initially, the Transformer model achieved significant success in natural language processing. The 
Vision Transformer (ViT) network[28] applies the Transformer to the field of computer vision. However, a fundamental 
disparity exists between natural language and images, and the application of the Transformer in the image domain 
encounters two challenges. First, when applied to natural language, it divides the input into fixed-size tokens. Similarly, 
computer vision divides an image into fixed-size tokens. However, the features within the image can vary significantly, 
and the performance of the ViT may not be satisfactory in different scenarios, as shown in Figure 5. Second, when 
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Table 2 Training results of the YOLOv8 versions using our dataset

Model Parameter (M) mAP50 mAP50:95 GFLOPS FPS

YOLOv8n 2.87 86.0 66.2 8.2 400.00

YOLOv8s 10.62 86.1 67.6 28.7 283.03

YOLOv8m 24.67 88.6 68.3 79.1 189.47

YOLOv8 L 41.62 85.3 67.1 165.5 149.25

YOLOv8x 65.01 83.2 64.1 258.2 114.94

applying the Transformer in natural language processing, the computational complexity is related to the square of the 
token. Similarly, in computer vision, if the input feature map is 56 × 56, it involves over 3000 matrix operations of length 
and width, which is a substantial computational load, especially for large images, rendering it unacceptable. This is the 
reason why ViT is difficult to use widely.

The Swin Transformer[29] model combines the self-attention mechanism of the Transformer and the local perception 
property of the CNN at the same time, and the shifted window idea is proposed to establish information communication 
between different windows. This makes the computational complexity linearly related to the size of the input image, 
which overcomes the limitations of the ViT model in processing large-scale images and the ability to extract features at 
different scales. This makes the model widely used in all computer vision fields.

In contrast to VIT, which generates a feature map as an indivisible whole, the Swin Transformer adopts a hierarchical 
Transformer architecture. This architecture reduces the spatial size of the feature map layer-by-layer to extract high-level 
features, capturing different scales of information at different levels. The Swin Transformer introduces the window self-
attention mechanism, which divides the image into multiple windows, and computes the self-attention independently in 
each window. This significantly reduces the computational cost and preserves the relevance of the local information. 
However, this segmentation of the image reduces the integration of the global information. Therefore, employing the 
concept of shifted windows, the model adjusts the window positions in two consecutive Transformer layers. This 
enhances the model's capability for global information interaction, allowing the Swin Transformer to capture richer global 
contextual information while maintaining efficient computation, leading to higher performances and lower computa-
tional costs.

The Swin Transformer structure comprises four stages for obtaining feature mappings, as shown in Figure 6. Each 
stage consists of two parts, except for the first stage, which includes linear embedding and a Swin Transformer block, the. 
The remaining three stages consist of patch merging and a Swin Transformer block. Patch merging, among these 
components, operates similarly to a pooling operation but without causing information loss. Following each stage of 
processing, the resolution is halved from the original resolution, while the number of channels doubles compared with 
that in the previous stage. The Swin Transformer block, which serves as the algorithm's core, comprises window 
multihead self-attention (W-MSA) and shifted-W-MSA (SW-MSA), as shown in Figure 7. Thus, the number of layers in 
the Swin Transformer should be an integer multiple of 2, one for W-MSA and one for SW-MSA. This module is succeeded 
by a 2-layer multilayer perceptron (MLP) with a rectified linear unit (ReLU) interspersed. Both before and after each MSA 
module and MLP layer, a LayerNorm layer and residual connections are applied. The window-based W-MSA module 
and the shift-window-based SW-MSA module are sequentially applied to two consecutive Swin Transformer blocks, and 
the process of computing the feature maps in consecutive Swin Transformer blocks is shown below:

Where represents the output from the encoder of W-MSA. Equation (1) performs multihead calculations and captures 
the relationships between different parts of the sequence. zl represents the output after processing by the MLP module. 
The main function of this layer is to transform the input data into a more discriminative feature representation, thus 
improving the performance of subsequent tasks.

BiFPN-based feature fusion: Features in WCE lesion images have different shapes and sizes, and the same lesion may 
have different shapes and sizes during the shooting process. If traditional feature fusion is used, important features may 
be ignored and lost. The feature pyramid network (FPN)[30] and path aggregation network (PAN)[31] structures are 
mainly used in YOLOv8 for the fusion of features of different scales. The structures are shown in Figure 8A and B. FPN 
feature fusion usually combines the semantic information of high-resolution feature maps with the detailed information 
of low-resolution feature maps through top-down paths and lateral connections. However, the FPN suffers from two 
problems in feature fusion. First, the FPN fuses features only through upsampling and lateral connectivity, which does 
not fully utilize the complementary nature of the features at each level, and may lead to important information being 
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Figure 1 Dataset example.

overlooked. Second, in the top-down path, the spatial information transfer path of the feature map is lengthy, which may 
lead to the loss of information from the poor fusion of the higher level with the lower level. The PAN is an improvement 
of the FPN, which optimizes the feature transfer path by introducing lateral connections from the lower to the upper 
level. It improves the network accuracy, but a larger network size leads to an increase in the number of parameters, 
making the computational efficiency relatively low. With increasing network layers, the feature information gradually 
transitions from low-dimensional to high-dimensional, and each layer of the network may produce a certain degree of 
feature information loss in this process.

BiFPN adopts a bidirectional feature fusion approach, which makes better use of the contextual information of 
different layers of the features, as shown in Figure 8C. The BiFPN module consists of two phases: Top-down feature 
fusion and bottom-up feature fusion. First, in the top-down feature fusion stage, the high-level feature maps are refined 
by upsampling, and are fused with the low-level feature maps so that the high-level feature maps can obtain richer 
contextual information. Second, in the bottom-up feature fusion stage, the low-level feature map is coarsened by 
downsampling and fused with the high-level feature map. In this way, the low-level feature maps can obtain more 
detailed information. Each layer in the BiFPN structure is connected to the upper and lower neighboring layers, and this 
bidirectional connection design can effectively fuse and interact the feature information of different layers, improve the 
feature expression ability, and reduce the loss of the feature information. The BiFPN structure performs feature fusion at 
different scales through the upper and lower branches. Higher-level semantic information can be introduced while 
maintaining high-resolution features to improve the detection model's ability to perceive objects at different scales. The 
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Figure 2 Wireless capsule endoscopy_Detection model structure. Conv: Convolution; SPPF: Spatial pyramid pooling fast; SwinT: Swin transformer; 
SiLU: Sigmoid linear unit.

feature fusion process of the BiFPN structure adopts a dynamic weight allocation method, which adaptively adjusts the 
weight of each feature channel according to the quality and importance of the features, ensuring the effective use of the 
important features. As shown in Equation (5):

Where ω represents the weights learned by the features, Ii represents the input feature mapping, the stable value 
coefficient ε = 0.0001, the weight range is reduced to 0-1, and the training speed is fast and efficient. Moreover, the BiFPN 
structure can be stacked as many times as needed, and each repetition improves the depth scalability of the network 
through further feature fusion and optimization, which can be adapted to object detection tasks with different complexity 
and accuracy requirements.

The BiFPN uses separable convolutional fusion features and adds batch normalization and activation after each 
convolution. Let us take layer 5 as an example, as shown in Figure 8C. P5td is the intermediate feature of layer 5, P5out is 
the output feature of layer 3, and P5out is obtained via weighted fusion of the inputs P5td and P5in from layer 5 and P4out 
from layer 4. The expressions for P5td and P5out are shown in Equation (6) and (7), respectively.

Where Conv is a depth-separable convolution operation, Resize is an upsampling or down sampling operation, ω1, ω2, 
ω’1, ω’2 and ω’3 are weight parameters, and ε is a parameter used to avoid instability of values due to too small weight 
parameters.

RESULTS
Model performance evaluation metrics
To comprehensively evaluate the performance of the WCE_Detection model, we utilize the mean average precision 
(mAP), precision, and recall as the primary indicators for performance evaluation, paying special attention to the mAP50 
and mAP50: 95 metrics. These two metrics are positively correlated with model performance, with higher values 
indicating a better performance. Moreover, we employ the precision-recall (P-R) curve and confusion matrix to provide a 
more intuitive evaluation of the model's performance. True positive (TP) indicates samples correctly identified as 
positive, false positive (FP) represents negative samples incorrectly classified as positive, and false negative (FN) indicates 
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Figure 3 Wireless capsule endoscopy_Detection network structure diagram. C1, C2, C3, C4, C5: Layers 1, 2, 3, 4, and 5 of the backbone network; 
F2, F3, F4, F5: Layers 2, 3, 4, and 5 of the neck network; P2, P3, P4, P5: 2nd, 3rd, 4th, 5th detection head.

Figure 4 Context information of the reflux esophagitis lesion. A: Captured at 00:00:18, representing the earliest result; B: Captured at 00:00:19, 
representing an earlier frame at this time point; C: Captured at 00:00:19, representing a continued frame subsequent frame, showing further details of the lesion; D: 
Captured at 00:00:19, representing a later frame at this time point, where the lesion area might reveal new angles or further details due to the capsule’s movement.

positive samples incorrectly classified as negative.
Precision indicates the proportion of the number of samples predicted as positive to the number of all samples 

predicted as positive. The higher the precision is, the better the performance of the classifier. The specific expression is 
shown below:

Recall is the ratio of the number of instances correctly identified as positive categories to the number of instances of all 
the true categories, as shown in the expression below:

The average precision represents the average detection precision of the single-category model, which is a coordinate 
system established with the recall rate as the horizontal coordinate, and the precision rate as the vertical coordinate, 
where P denotes precision and r denotes recall. r is the horizontal axis, P is the vertical axis, and the area enclosed under 
the P-R curve is formed on the basis of a certain threshold value. The expression is shown below:

The average accuracy mean value represents the average accuracy of all categories N. A larger value indicates a higher 
accuracy of the object detection model. The specific expression is shown below:

The AP value is the area enclosed under the P-R curve, reflecting the model's accuracy performance under different 
recall rates. ap is the sum of the AP values for all the categories, whereas N (class) denotes the total number of categories. 
mAP50 is obtained by calculating and averaging the AP values for each category with the intersection and intersection 
over union (IoU) of the predicted bounding box to the ground truth bounding box set to 0.5. In contrast, mAP50:95 was 
obtained by calculating and averaging the AP values for each category separately when the IoU was increased from 0.5 to 
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Figure 5 Vision transformer. MLP: Multilayer perceptron; L: Layer.

Figure 6 Swin transformer model structure. H: Height; W: Width; C: Channels.

Figure 7 Two consecutive Swin transformer blocks. LN: Layer normalization; W-MSA: Window multihead self-attention; MLP: Multilayer perceptron; SW-
MSA: Shifted window multihead self-attention.

0.95 by 0.05 each time. Notably, both precision and recall are considered at an IoU threshold of 0.5 for both the mAP50 
and mAP50:95 calculations. These metrics provide us with a comprehensive and detailed view of model performance 
evaluation.

Experimental results and analysis of the WCE_Detection model
We compare the performance of the proposed method with that of state-of-the-art (SOTA) image detection methods on 
WCE lesion images. This includes one-stage, two-stage algorithms as well as anchor-based, anchor-free algorithms, and to 
guarantee the fairness of the experiments, and the reliability of the results, the training process was conducted via a Tesla 
V100-SXM2-16GB GPU on AliCloud, employing the standard AdamW optimizer. The initial learning rate was initialized 
at 0.01 and dynamically adjusted throughout the training process. Additionally, the batch size was set to 16, and training 
was performed for 300 epochs. For data preprocessing, we uniformly adjusted the 640 × 640 pixel size for all the input 
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Figure 8 Different feature fusion structures. A: Feature pyramid network (FPN); B: Path aggregation network; C: Bidirectional FPN. P2: Represents layer 2 
feature maps; P3: Represents layer 3 feature maps; P4: Represents layer 4 feature maps; P5: Represents layer 5 feature maps; P6: Represents layer 6 feature 
maps. FPN: Feature pyramid network; PANet: Path aggregation network; BiFPN: Bidirectional feature pyramid network.

WCE lesion images. Data enhancement techniques such as mosaic, mixup, and HSV were introduced, and their 
performance in complex scenes was improved. The results of the comparison experiments are shown in Table 3[32,33].

Table 3 shows the comparative performance of the proposed WCE_Detection model against several mainstream image 
detection methods on WCE lesion images. The results indicate that WCE_Detection significantly outperforms the other 
models in terms of both the mAP50 and mAP50:90 metrics, especially in the multicategory lesion detection task. 
Specifically, one-stage algorithms such as the YOLOv5, YOLOv6, and SSD algorithms perform differently in terms of FPS, 
with SSD being slightly worse. The performance is close in terms of the mAP metric, with an mAP50 of approximately 
80%. The detection effect for most lesions is good, but the model's ability to capture global information is limited, which 
makes the detection effect for some lesions, such as duodenal bulbar ulcers and gastritis, poor. YOLOv7 performs poorly 
for some esophageal protruding lesion tumor masses and colocystosis hemorrhoids, which may be related to its inability 
to capture small-scale lesions effectively in the feature extraction stage. In contrast, YOLOv9 and RT-DETR perform well, 
with mAP50 values exceeding 80%, and the model has better detection results for foci such as colocystosis hemorrhoids, 
gastritis, etc., indicating that the model is able to better cope with complex digestive tract images. However, the FPS 
performance does not surpass that of the other algorithms. For the two-stage algorithm, Faster R-CNN fails to perform as 
expected on the WCE dataset, despite its theoretically finer candidate region generation and classification capabilities. 
This is likely because they generate excessive candidate regions in complex backgrounds, leading to an increased false 
detection rate, which significantly affects lesions such as gastritis and colonic mucosal melanosis. Moreover, the long 
computational process limits its efficiency in practical applications. Our proposed WCE_Detection model performs 
excellently, with a certain advantage in FPS over other algorithms, while the mAP50 reaches 91.5%, and there is also a 
significant improvement in the mAP50:90 metric. This performance improvement is due mainly to the innovative aspects 
of our model design. First, the multidetection head strategy substantially enhances the model’s capacity to detect 
multiscale lesions, ensuring effective recognition regardless of lesion size. Second, BiFPN provides richer fusion of 
semantic information during feature extraction, especially when dealing with complex backgrounds and multicategory 
lesions, and BiFPN can significantly reduce the false detection rate. In addition, the introduction of the Swin Transformer 
module further improves the model's ability to capture global information, and enhances the feature representation of 
lesions, resulting in a more stable performance in complex WCE image environments. Although the WCE_Detection 
model performs well on most categories, there is still room for improvement in the model's detection performance for 
some rare or morphologically complex lesion types. This is largely attributed to the small number of these lesions in the 
training dataset, and the model's limitations in learning features for these categories. Future work will aim to expand the 
diversity of the dataset, and will explore more effective feature enhancement and data generation techniques to further 
improve the model's detection performance on all categories.

We first plotted the P-R curve for each category, as shown in Figure 9. The P-R plot illustrates the relationship between 
the precision and recall of the model. Precision measures the accuracy of the positive predictions, and recall describes the 
ability of the model to capture all the positive samples. Ideally, curves near the top right corner indicate higher precision 
and recall, which means better model performance. As shown in Figure 9, with the threshold of the IoU set to 0.5, sixteen 
lesions have AP values above 90%, and more than twenty lesions have AP values above 80%, of which only three lesions, 
stomach, luminal stenosis, and esophageal protruding lesion tumor masses, have AP values below 80%. This is because 
the training data for these three categories are significantly lower than those of the other categories, and the data are not 
rich enough. However, it can also be seen from the experimental results, that more than eleven single-category lesions 
were detected with an accuracy of more than 99.4%, which has good clinical application value.

We simultaneously plotted a confusion matrix for each category, as shown in Figure 10. We need to consider the 
multiple categories of lesions used in this study, which may make the information presented in the images unclear. 
Therefore, we should analyze it from different perspectives. The confusion matrix is used to show the classification effect 
of the model on different categories. The rows and columns of the confusion matrix represent the true and predicted 
categories, respectively, and the values in the diagonal region represent the proportion of correctly predicted categories, 
whereas the values in the other regions represent the proportion of incorrectly predicted categories. For lesions with 
relatively low accuracy in the P-R plot, the same phenomenon of high detection error is present in the confusion matrix; 
the main reason for this is that, at the data level, such lesions have a small number of training samples and a single 
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Table 3 Training results of different detection models on the dataset

Model mAP50 mAP50:90 FPS

YOLOv5 78.3 58.9 176.25

YOLOv6 79.6 58.1 316.63

YOLOv7 75.8 56.4 206.37

YOLOv9[32] 82.0 64.7 94.30

SSD 78.6 57.9 84.62

Faster R-CNN 79.0 60.9 61.98

RT-DETR[33] 81.9 63.9 143.46

WCE_detection 91.5 68.6 129.70

WCE: Wireless capsule endoscopy.

Figure 9 Precision-recall curves of the wireless capsule endoscopy_detection model for the dataset.

source. Second, such lesions are interfered with by food or air bubbles, which increases the difficulty of lesion detection. 
However, in the confusion matrix, a relatively clear diagonal line can still be seen in the middle, which indicates that the 
proposed model makes relatively accurate predictions for all categories, demonstrating the effectiveness of the model. 
Figure 11 shows the detection results for images of different lesions in the digestive tract.

As seen from the images of digestive tract lesion detection presented in the figure, the internal environment of the 
digestive tract is complex, not only containing multiple types of lesions but also being interfered with by insufficient 
lighting conditions and other substances such as air bubbles in the digestive tract. These interfering factors, together with 
the variable morphology and color of the lesions themselves, as well as the multiscale features they present, undoubtedly 
pose a great challenge to the detection of digestive tract lesions. However, the WCE_Detection model shows an excellent 
coping ability in the face of these difficulties, successfully overcoming them and achieving excellent detection results. This 
performance fully demonstrates the accuracy and reliability of WCE_Detection in detecting digestive tract lesions in 
complex environments. However, the dataset for certain individual lesions is significantly smaller than those for other 
categories, resulting in limited accuracy during detection. As shown in Figure 12, images A and B illustrate instances of 
incorrect lesion detection. In image A, the esophageal protruding lesion is misclassified as a gastritis lesion, whereas in 
image B, the luminal stenosis lesion is misclassified as a gastric antrum lesion. Images C and D depict cases of reduced 
detection accuracy for individual lesions. This is primarily attributed to the limited number of samples for certain rare 
lesion types, which hinders the model's ability to fully learn these features. To address this issue, we propose generating 
additional scarce lesion images to expand the dataset by leveraging the generator and discriminator structure within 
generative adversarial networks (GANs)][34] to alleviate the data imbalance problem and improve the detection 
performance.
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Figure 10  Confusion matrix of the wireless capsule endoscopy_detection model.

DISCUSSION
In recent years, WCE image lesion detection via traditional machine learning methods and deep learning-based methods 
has greatly improved the efficiency and convenience of physicians. Recent research has provided a comprehensive survey 
and systematic summary of the trends in WCE image lesion detection techniques[35-37], with a special focus on the 
accurate identification of pathological abnormalities, such as polyps, hemorrhages, tumors, ulcers, and other lesions.

Conventional machine learning-based lesion detection is divided into two main steps. First, feature extraction, where 
various features, such as color, texture, and shape, are extracted from the WCE image by manually designing or selecting 
a series of feature descriptions to represent the image as vectors or feature sets that can be processed by machine learning 
algorithms. These feature collections are then used to train machine learning models, such as support vector machines 
(SVMs)[38,39], decision trees[40], or K-means clustering algorithms[41], during the model training phase for the classi-
fication of lesions. For example, the methods[38,41] both focus on the polyp detection task for WCE images, but they are 
unique in their feature extraction and methods. Specifically, Hwang and Celebi[41] used Gabor texture features for image 
analysis, whereas Yuan et al[38] used the scale invariant feature transform algorithm to extract texture features from the 
neighborhood points of the key points. Moreover, there are differences in classification methods. Hwang and Celebi[41] 
used the K-means clustering algorithm for image classification, whereas Yuan et al[38] chose SVM as the classification 
method. As another example, Pogorelov et al[39] proposed a fast bleed detection method for WCE videos, which takes the 
color and texture of the bleed region as features, and then uses an SVM for classification. Yeh et al[40] extracted color 
vector and grayscale covariance matrix features from WCE images, which was followed by a series of statistics such as 
the mean and variance of the obtained matrix to form features for classification. The performances of decision trees and 
support vector machines in terms of ulcers, bleeding, and normal images were further analyzed for classification.

Deep learning-based lesion detection in WCE images is based mainly on CNNs for lesion detection, multiclassification 
of lesions, and so on. For example, Aoki et al[42] proposed a deep learning-based method for the detection of erosions and 
ulcerations in WCE images, which used SSD convolutional neural network learning to train cropped WCE images. Li et al
[43] used the CNN models LeNet, AlexNet, GoogLeNet, and VGGNet convolutional neural networks to detect intestinal 
bleeding, and used the strategy of image augmentation during the training process, which provides good robustness in 
the face of complex and variable intestinal images. Shin et al[44] proposed the detection of colon polyps in WCE images 
on the basis of an improved Faster R-CNN model, which Shin et al[44] adopts the network structure of Inception ResNet 
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Figure 11  Wireless capsule endoscopy_detection model detection visualization results. Different letters in the image represent different types of 
lesions. A: Duodenal bulbar ulcer; B: Ulcerative trauma; C: Luminal stenosis; D: Gastritis; E: Small intestinal nodule; F: Stomach; G: Submucosal mass of the small 
intestine; H: Colonic mucosal melanosis; I: Esophageal protruding lesion tumor mass; J: Large ulcer; K: Angular notch; L: Duodenal papilla; M: Duodenal bulb; N: 
Reflux esophagitis; O: Large intestine; P: Bile; Q: Colocystosis hemorrhoids; R: Esophagus; S: Gastric antrum; T: Duodenal bulbar erosion.

Figure 12  Example of a wrongly detected lesion. A and B: Examples of misdetected lesions; C and D: Lesions with low detection accuracy.

in the backbone network to optimize the performance of the model. Moreover, to further improve the detection accuracy, 
Shin et al[44] also adopted a new strategy to replace the ROI pooling layer in the original model to improve the accuracy 
of detecting polyps in the reflective region. Thuan et al[45] introduces an encoder-decoder model, RaBiT, which integrates 
a lightweight Transformer-based architecture in the encoder to model multilevel global semantic relationships. The 
decoder consists of multiple BiFPNs and reverse attention modules to enhance the fusion of multilevel feature mappings, 
gradually refining polyp boundaries to improve the model's generalization ability. Park and Lee[46], which is based on 
the U-Net framework, proposes a novel deep learning model, SwinE-Net, for polyp segmentation, which effectively 
combines CNN-based EfficientNet with the Swin Transformer. The Swin Transformer primarily facilitates accurate and 
robust medical segmentation while preserving global semantics without sacrificing the low-level features provided by the 



Xiao ZG et al. Multi-lesion detection in WCE

WJG https://www.wjgnet.com 5125 December 28, 2024 Volume 30 Issue 48

CNNs. These studies demonstrate that existing deep learning models have made significant advancements in addressing 
the detection of specific lesions in WCE images.

Although a great deal of current research has focused on the detection of pathological abnormalities in WCE images 
and videos, most studies have focused on the detection of a single or a few types of lesions. However, in real medical 
practice, many different types of lesions may exist in the digestive tract at the same time, which requires the detection 
algorithms to be able to identify and process multiple types of pathological abnormalities at the same time. Therefore, to 
achieve the detection of multicategory lesion images in the digestive tract, we design an end-to-end convolutional neural 
network, the WCE_Detection model. First, a multidetection head strategy is adopted in the target detection network to 
enhance the model's ability to capture lesions of various sizes and morphologies by detecting them at different feature 
scales, which significantly reduces the missed detection rate of small-scale or irregular lesions. Second, BiFPN is used to 
fuse deep and shallow features through jump connections, so that shallow high-resolution features are combined with 
deep high-semantic information, which enhances the model's ability to detect fine-grained lesions, and thus reduces the 
detection error rate in complex scenes. In addition, we incorporate the Swin Transformer to further enhance the model's 
capability for multiscale feature representation through its self-attention mechanism and hierarchical structure. The 
combination of the Swin Transformer with BiFPN enables the model to better handle long-distance dependencies and 
global features, thus improving the feature representation and detection of different types of lesions. These innovations 
significantly improve the detection efficiency and accuracy of our proposed method, which is used to detect 23 types of 
lesions in the digestive tract, and provide doctors with more comprehensive and accurate diagnostic information.

To further verify the effectiveness of the improved algorithm, this paper redesigned the YOLOv8 backbone network as 
the basis, introduced improved modules one-by-one, and conducted multiple experiments. The experimental results are 
shown in Table 4. In the table, "Y" means that the module is designed on the original YOLOv8 algorithm for the 
experiment.

Table 4 presents the experimental results obtained with varying numbers of detection heads, highlighting the impact of 
increasing the number of detection heads on the model's ability to identify targets across different scales. While using two 
detection heads allows for the detection of targets at multiple scales, the performance remains inadequate for handling 
more complex, multiscale scenarios. In YOLOv8, there are three detection heads. Compared with two detectors, three 
detectors can provide better detection results in complex scenes. By further increasing the number of detection heads to 
four, more pronounced scale variations can be effectively managed, leading to improved detection of small, large, and 
medium targets. However, expanding the number of detection heads to five yields only marginal improvements in 
mAP50, while significantly increasing both the model complexity and inference time.

Table 5 shows the results of different neck experiments. The neck structure is the key component connecting the 
backbone network and the detection head, and is responsible for fusing different scale features to improve the detection 
of multiscale targets. The structure of the FPN is relatively simple, with lower computational overhead and faster 
inference speed, but the FPN adopts a unidirectional top-down feature fusion strategy, which may lead to information 
loss or failure to make full use of the underlying detailed features. In YOLOv8, the PANet structure is used, which makes 
the multiscale features more fully fused, and improves the detection of targets at different scales. However, redundant 
information may also be introduced, and the network may produce a certain degree of feature information loss. The 
BiFPN structure provides a better feature weighting mechanism on the basis of the effect of feature fusion and computa-
tional efficiency, which improves the detection ability for multiscale targets, especially small target detection, and is 
suitable for the pursuit of high-precision and complex scenarios.

Table 6 shows that the CBAM module enhances feature extraction through channel attention and spatial attention 
mechanisms. However, its attention mechanism relies primarily on convolutional operations, which limits its ability to 
model global features. The SE module applies channel weighting through global average pooling, with minimal computa-
tional overhead that does not significantly increase network complexity. However, it only enhances features in the 
channel dimension, limiting its ability to model spatial features. This restriction can lead to the neglect of complex spatial 
relationships, resulting in suboptimal detection performances. ViT effectively handles long-range dependencies and 
complex global contextual information, offering significant advantages in scene understanding and object relevance 
modeling. However, at high resolutions, ViT demands substantial computational resources and results in longer 
inference times, making it less suitable for real-time applications. The Swin Transformer combines the global feature 
modeling advantages of ViT with the efficiency of convolutional networks, achieving multiscale feature extraction 
through a hierarchical design that enhances computational efficiency (Table 7).

Adding extra detection heads: We add additional detection heads to perform the detection task more effectively with 
multiscale detection heads, and reduce the semantic gap by fusing different levels of feature information. Although the 
number of layers of WCE_Detection changes from 295 to 361, and the FPS changes from 189.47 to 179.19 after we add an 
extra detection head, the detection speed decreases, but the mAP50 increases from 88.6 to 89.2, which also shows the 
effectiveness of the extra detection head.

Replacement of the neck via the BiFPN structure: Although the introduction of additional detection heads helps to 
extract more layers of feature information, effectively fusing these features is still a challenge. An inappropriate fusion 
strategy may lead to redundancy or loss of information, thus affecting the final detection results. We choose to use the 
BiFPN feature pyramid network, which enables better fusion and utilization of features at different scales. When we used 
the BiFPN structure, the total number of layers of the model did not change, the FPS changed from the original 179.17 to 
183.35, the detection speed increased, and the mAP50 increased from 89.2 to 90.6, so it was effective when the neck of the 
model was replaced with the BiFPN structure.
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Table 4 Experimental results of different numbers of detection heads

Method P2 P3 P4 P5 mAP50 GFLOPS FPS

Method 1 Y N N N 87.1 47.9 233.65

Method 2 N Y N N 88.6 79.1 189.47

Method 3 N N Y N 89.2 126.7 179.19

Method 4 N N N Y 89.5 166.3 153.95

Y: Means that the module is designed on the original YOLOv8 algorithm for the experiment; N: Means that the module was not used in the model design.

Table 5 Experimental results of different necks

Method FPN PANet BiFPN mAP50 GFLOPS FPS

Method 1 Y N N 86.3 58.6 226.63

Method 2 N Y N 88.6 79.1 189.47

Method 3 N N Y 90.1 98.4 178.36

Y: Means that the module is designed on the original YOLOv8 algorithm for the experiment; N: Means that the module was not used in the model design.

Table 6 Experimental results of different attention modules

Method CBAM SE VIT Swin Transformer mAP50 GFLOPS FPS

Method 1 Y N N N 88.9 133.6 163.96

Method 2 N Y N N 87.2 121.5 173.73

Method 3 N N Y N 89.2 219.9 103.76

Method 4 N N N Y 90.7 159.7 149.58

Y: Means that the module is designed on the original YOLOv8 algorithm for the experiment; N: Means that the module was not used in the model design.

Table 7 Ablation experiment results

Method p4 BiFPN Swin Transformer mAP50 GFLOPS FPS

Method 1 N N N 88.6 79.1 189.47

Method 2 Y N N 89.2 126.7 179.19

Method 3 Y Y N 90.6 138.4 183.35

Method 4 Y Y Y 91.5 203.6 129.70

Y: Means that the module is designed on the original YOLOv8 algorithm for the experiment; N: Means that the module was not used in the model design.

Introduction of the Swin Transformer module: Based on the successful introduction of the BiFPN structure to enhance 
the performance of multiscale feature fusion and object detection, we further explored the optimization of the model 
structure. To this end, we decided to add the Swin Transformer after BiFPN to take advantage of its powerful self-
attention mechanism and efficient computational properties, which enhances the network's ability to handle complex 
scenes and object diversity, and further improves the accuracy and robustness of the model. Our idea is well proven; 
when we add the Swin Transformer, the mAP50 increases from 90.6 to 91.5; of course, adding the Swin Transformer will 
increase the computations, the number of layers of the model increases from 361 to 441, and the FPS changes from 183.35 
to 129.70, although the detection speed becomes slower, but it is far greater than the effect of real-time detection, and the 
change in mAP50 is also very obvious, which fully proves the effectiveness of the module.

In summary, through ablation experiments, we have successfully verified the effectiveness of each module of the 
WCE_Detection model proposed in this paper, which not only improves the mAP50 by 2.9 percentage points to 91.5 but 
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also has a detection speed that far exceeds that of real-time detection, reaching 129.70, making our method superior to the 
existing techniques.

The WCE_Detection model holds significant clinical relevance for early diagnosis and treatment. By automating 
digestive tract lesion detection, the model significantly reduces physicians' workload in capsule endoscopy image 
analysis, facilitates rapid and accurate lesion identification, shortens the diagnosis time, and improves the detection rate 
of early-stage lesions. This advancement enables patients to receive timely treatment, reduces the incidence of misdia-
gnosis and underdiagnosis, and ultimately enhances overall healthcare quality. In clinical applications, real-time 
performance, deployability, and seamless integration with existing clinical workflows are critical considerations. We will 
continue optimizing the computational efficiency and resource consumption of our models to ensure their efficient 
operation across various devices and their seamless integration into clinical workflows; they will become a valuable aid 
for diagnosis and treatment.

While our WCE_Detection model demonstrates substantial advantages in multicategory lesion detection, it is essential 
to acknowledge certain limitations in dataset size and lesion type coverage. Despite the current dataset encompassing 23 
types of digestive tract lesions, real clinical scenarios may involve additional lesion types, and particularly rare or 
complex lesions. Moreover, although data augmentation was employed to enhance the model's generalization 
capabilities, the limited dataset size may still impact its performance across a broader range of scenarios. Therefore, 
future research should emphasize the following aspects. First, addressing complex and rare lesions will be a primary 
focus of upcoming studies. We aim to expand the dataset and optimize the model specifically for rare lesions. Second, we 
will further optimize the model's resource consumption to ensure an efficient performance even on resource-limited 
devices. Finally, we intend to extend the WCE_Detection model's techniques to other medical imaging domains, such as 
endoscopy, computed tomography, or magnetic resonance imaging. By applying these techniques across other medical 
imaging technologies, we anticipate enhancing both the breadth and depth of disease detection, thereby supporting 
clinical diagnosis in additional fields.

CONCLUSION
In this paper, we propose a multicategory lesion detection model, WCE_Detection, for WCE images, which enhances the 
accuracy and efficiency of detecting digestive tract lesions by incorporating multidetection heads, BiFPN, and Swin 
Transformer modules. The model is designed on the basis of the YOLOv8 backbone network to enable effective end-to-
end detection of 23 digestive tract lesions. The experimental results demonstrate that WCE_Detection attains SOTA 
performance in terms of lesion detection accuracy, efficiency, and multicategory detection capability, offering robust 
technical support for the early diagnosis and treatment of digestive tract diseases. In practical applications, the model 
assists physicians in analyzing WCE images more rapidly and accurately, thereby reducing diagnostic time and 
enhancing diagnostic quality. Future work will focus on expanding the diversity of the dataset, particularly by leveraging 
GANs to generate additional images of rare lesions, thereby addressing the issue of data imbalance. Additionally, we will 
explore deploying the model on resource-constrained devices to further optimize computational efficiency. We aim to 
extend the model's application to other medical imaging domains to contribute to the advancement of clinical diagnostic 
techniques, and provide further innovations in clinical diagnostic tools.
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