GUIDELINES

7088
Chinese guidelines on the management of liver cirrhosis (abbreviated version)
Xu XY, Ding HG, Li WG, Xu JH, Han Y, Jia JD, Wei L, Duan ZP, Ling-Hu EQ, Zhuang H

MINIREVIEWS

7104
Role of pancreatography in the endoscopic management of encapsulated pancreatic collections – review and new proposed classification
Proença IM, dos Santos MEL, de Moura DTH, Ribeiro IB, Matuguma SE, Cheng S, McCarty TR, do Monte Junior ES, Sakai P, de Moura EGH

ORIGINAL ARTICLE

Basic Study

7118
*Discovery of unique African *Helicobacter pylori* CagA-multimerization motif in the Dominican Republic*

7131
Nimbolide inhibits tumor growth by restoring hepatic tight junction protein expression and reduced inflammation in an experimental hepatocarcinogenesis
Ram AK, Vairappan B, Srinivas BH

Case Control Study

7153
Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome
Wei W, Wang HF, Zhang Y, Zhang YL, Niu BY, Yao SK

7173
Alteration of fecal tryptophan metabolism correlates with shifted microbiota and may be involved in pathogenesis of colorectal cancer
Sun XZ, Zhao DY, Zhou YC, Wang QQ, Qin G, Yao SK

Retrospective Cohort Study

7191
High mortality associated with gram-negative bacterial bloodstream infection in liver transplant recipients undergoing immunosuppression reduction
Chen F, Pang XY, Shen C, Han LZ, Deng YX, Chen XS, Zhang JJ, Xia Q, Qian YB

Retrospective Study

7204
Liver fibrosis index-based nomograms for identifying esophageal varices in patients with chronic hepatitis B related cirrhosis
Xu SH, Wu F, Guo LH, Zhang WB, Xu HX
Clinical Trials Study
7222 Relationship between the incidence of non-hepatic hyperammonemia and the prognosis of patients in the intensive care unit
Yao ZP, Li Y, Liu Y, Wang HL

Observational Study
7232 Association between ADAMTS13 activity–VWF antigen imbalance and the therapeutic effect of HAIC in patients with hepatocellular carcinoma

SYSTEMATIC REVIEWS
7242 Diagnosis and treatment of iron-deficiency anemia in gastrointestinal bleeding: A systematic review
Cotter J, Baldaia C, Ferreira M, Macedo G, Pedroto I

CASE REPORT
7258 Endoscopic mucosal ablation - an alternative treatment for colonic polyps: Three case reports
Mendoza Ladd A, Espinoza J, Garcia C

7263 Tuberous sclerosis patient with neuroendocrine carcinoma of the esophagogastric junction: A case report
ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Professor Udo Rolle is a Distinguished Professor at the University Hospital of the Goethe-University in Frankfurt, Germany. Having received his doctoral degree from the University of Leipzig in 1994, Prof. Rolle undertook his postgraduate training, first at the University of Leipzig (Germany) and then at the University Hospital Dublin (Ireland), receiving his habilitation in 2003. He rose to Full Professor and Chief Surgeon in the Department of Paediatric Surgery and Paediatric Urology at the University Hospital Frankfurt in 2008. His ongoing research interests involve neonatal GI surgery, pediatric GI motility disorders with long-term follow-up in various congenital anomalies. Currently, he serves as President of the German Association of Paediatric Surgery, General Secretary of the World Federation of Associations of Paediatric Surgery, and General Secretary of the UEMS section of Paediatric Surgery. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 edition of Journal Citation Report® cites the 2019 impact factor (IF) for WJG as 3.665; IF without journal self cites: 3.534; 5-year IF: 4.048; Ranking: 35 among 88 journals in gastroenterology and hepatology; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ya-Jie Ma; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL

World Journal of Gastroenterology

ISSN

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE

October 1, 1995

FREQUENCY

Weekly

EDITORS-IN-CHIEF

Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS

http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE

December 7, 2020

COPYRIGHT

© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.itppublishing.com
Observational Study

Association between ADAMTS13 activity–VWF antigen imbalance and the therapeutic effect of HAIC in patients with hepatocellular carcinoma

Hiroaki Takaya, Tadashi Namisaki, Kei Moriya, Naotaka Shimotozto, Kosuke Kaji, Hiroyuki Ogawa, Koji Ishida, Yuki Tsuji, Daisuke Kaya, Hirotestu Takagi, Yukihisa Fujinaga, Norihisa Nishimura, Yasuhiko Sawada, Hideto Kawaratani, Takemi Akahane, Masanori Matsumoto, Hitoshi Yoshiji

ORCID number: Hiroaki Takaya 0000-0002-4990-7573; Tadashi Namisaki 0000-0002-3158-5318; Kei Moriya 0000-0002-2878-8296; Naotaka Shimozato 0000-0002-7558-4165; Kosuke Kaji 0000-0002-1822-6759; Hiroyuki Ogawa 0000-0002-2553-1305; Koji Ishida 0000-0003-3090-170X; Yuki Tsuji 0000-0001-7625-4208; Daisuke Kaya 0000-0003-2922-5679; Hirotestu Takagi 0000-0002-2024-6214; Yukihisa Fujinaga 0000-0003-2402-574X; Norihisa Nishimura 0000-0002-6295-3283; Yasuhiko Sawada 0000-0002-4875-5366; Hideto Kawaratani 0000-0002-4361-0592; Takemi Akahane 0000-0002-6675-0475; Masanori Matsumoto 0000-0002-7243-3126; Hitoshi Yoshiji 0000-0002-5243-8544.

Author contributions: Takaya H, Namisaki T, Moriya K, Shimozato N, Kaji K, Ogawa H, Ishida K, Tsuji Y, Kaya D, Takagi H, Fujinaga Y, Nishimura N, Sawada Y, Kawaratani H, and Akahane T performed data analysis; Takaya H, Namisaki T, Matsumoto M, and Yoshiji H wrote the manuscript.

Institutional review board statement: Informed consent for the use of resected tissue was obtained from all patients. The

Abstract

BACKGROUND
Prediction of HAIC treatment response is important for improving the prognosis in patients with hepatocellular carcinoma (HCC). The progression of HCC is related to hypercoagulability and angiogenesis. It is known that ADAMTS13 and von Willebrand factor (VWF) are related to hypercoagulability. In addition, previous study reported that the association between ADAMTS13 and VWF, and angiogenesis via vascular endothelial growth factor (VEGF). Recently, ADAMTS13 and VWF have been associated with the prognosis in patients with various kinds of cancer undergoing chemotherapy.

AIM
To investigate whether ADAMTS13 and VWF become useful biomarkers of treatment response in HCC patients before the initiation of HAIC treatment.

METHODS
Seventy-two patients were enrolled in this study. ADAMTS13 activity (ADAMTS13:AC), VWF antigen (VWF:Ag) and VEGF levels were determined via enzyme-linked immunosorbent assay. Univariable and multivariable analyses were performed to determine the predictive factors of treatment response in patients with HCC undergoing HAIC treatment.
RESULTS
ADAMTS13:AC levels in HCC patients with stable disease (SD) + partial response (PR) of HAIC treatment were significantly higher than those with progressive disease (PD) \(P < 0.05 \). In contrast, VWF:Ag/ADAMTS13:AC ratio and VEGF levels in HCC patients with SD + PR were significantly lower than those with PD (both \(P < 0.05 \)). Patients with high VWF:Ag/ADAMTS13:AC ratio (\(> 2.7 \)) had higher VEGF levels than those with low ratio (\(\leq 2.7 \)). Multivariable analysis revealed that VWF:Ag/ADAMTS13:AC ratio was a predictive factor of HAIC treatment response.

CONCLUSION
VWF:Ag/ADAMTS13:AC ratio may become a useful biomarker of treatment response in HCC patients before the initiation of HAIC treatment.

Key Words: ADAMTS13; Von Willebrand factor; Vascular endothelial growth factor; Biomarkers; Hepatocellular carcinoma; HAIC

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The prediction of HAIC treatment response is needed to improve the prognosis in patients with hepatocellular carcinoma (HCC). Von Willebrand factor antigen (VWF:Ag)/ADAMTS13 activity (ADAMTS13:AC) ratio was significantly lower in HCC patients with stable disease + partial response than those with progressive disease. VWF:Ag/ADAMTS13:AC ratio become a useful biomarker to predict HAIC treatment response.

INTRODUCTION
Hepatocellular carcinoma (HCC) has one of the highest mortality rates of any cancer\(^1\). In Japan, HCC management follows the consensus-based clinical practice guidelines of the Japan Society of Hepatology (JSH)\(^1\). JSH recommends that advanced HCC patients with vascular invasion or more than four tumors should undergo chemotherapy such as HAIC or molecular-targeted drugs\(^1\). However, it is important to predict HAIC response before deciding on the appropriate chemotherapy protocol for improving the prognosis in patients with HCC.

ADAMTS13 is a metalloproteinase that is exclusively produced from hepatic stellate cells adjacent to endothelial cells (ECs)\(^4\)-\(^6\). It specifically cleaves multimeric von Willebrand factor (VWF) between the Tyr1605 and Met1606 residues in the A2 domain\(^4\),\(^7\). VWF is synthesized in vascular ECs and released into the plasma as unusually large multimers\(^9\). During ADAMTS13 enzyme–VWF substrate imbalance, VWF is improperly cleaved, resulting in the accumulation of multimers and the induction of platelet thrombi formation in the microvasculature under high shear-stress conditions\(^10\). In other words, ADAMTS13 enzyme–VWF substrate balance is related to hypercoagulability. Furthermore, the blood coagulation cascade is related to cancer progression\(^11\)-\(^13\), and our previous study has reported that ADAMTS13 enzyme–VWF substrate imbalance becomes worse based on HCC progression\(^14\),\(^15\).

Angiogenesis plays an important role in HCC progression\(^16\). A recent study has reported that ADAMTS13 enzyme–VWF substrate imbalance is related to angiogenesis\(^17\) as well as hypercoagulability and is associated with the prognosis in patients with various kinds of cancer undergoing chemotherapy\(^18\),\(^19\).

In the present study, we investigated the relationship between ADAMTS13
enzyme–VWF substrate balance and HCC in patients undergoing HAIC treatment. In addition, we sought to determine whether ADAMTS13 and VWF may become predictive biomarkers of treatment response in HCC patients before starting HAIC treatment.

MATERIALS AND METHODS

Patients

This retrospective observational study included patients with HCC who underwent HAIC treatment from December 2009 to March 2019. Patients with HCC had no vascular invasion or less than four tumors were excluded. A total of 72 patients with HCC were included in this study. HAIC treatment was performed according to the Moriya method\cite{18,19}, which features a bi-monthly protocol that is simple and easy to manage. The patients underwent dynamic computed tomographic scanning or dynamic magnetic resonance imaging at various points, namely before starting HAIC treatment, 1 mo after commencement of the treatment, and every 2 mo thereafter. HAIC treatment responses were evaluated according to modified response evaluation criteria in solid tumors. This study had no patient with infection, uncontrolled hepatic encephalopathy, ascites, or gastroesophageal varices. This study was approved by the local ethics committee in Nara Medical University and was performed according to the ethical standards laid down in the Declaration of Helsinki. Informed consent was obtained from all patients included in the study.

Determination of ADAMTS13 activity and VWF antigen levels

We collected blood samples from each patient at the time of admission, during their hospital stay, or during regular outpatient treatment before starting HAIC treatment. The plastic tubes with 0.38% sodium citrate was used to store these samples. We centrifuged these samples at 3000 × g at 4 °C for 15 min to prepare the plasma and stored the plasma at -80 °C until analysis. Plasma ADAMTS13 activity (ADAMTS13:AC) was determined using a sensitive chromogenic enzyme-linked immunosorbent assay (ELISA) (Kainos Laboratories Inc., Tokyo, Japan)\cite{20} to show a normal value of 99% ± 22%. Plasma VWF antigen (VWF:Ag) levels were measured via sandwich ELISA using a rabbit anti-human VWF polyclonal antiserum (Dako, Glostrup, Denmark). The normal VWF:Ag value is 102% ± 33%\cite{21}.

VEGF measurements

VEGF levels were determined using a commercially available kit (Immunoassay Kits, RayBiotech Inc., United States). The detection limit of VEGF was < 10 pg/mL.

Statistical analysis

The Mann–Whitney U-test and the Fisher’s exact test were performed to analyze differences between study groups and categorical data, respectively. Univariable and multivariable analysis were performed to evaluate HAIC response for HCC. Logistic regression analysis was performed to determine independent response factors, and data were expressed as median (interquartile range). A two-tailed P value of < 0.05 was considered significant. Analyses were conducted using EZR (Saitama Medical Center, Jichi Medical University, Japan), a graphical user interface of R version 2.13.0 (The R Foundation for Statistical Computing, Vienna, Austria), and a modified version of R commander (version 1.6-3) that includes statistical functions that are frequently used in biostatistics\cite{22}.

RESULTS

Clinical characteristics of the HCC patients

Table 1 showed the clinical characteristics of HCC patients. The median period of HAIC treatment was 121 (range 41-218) d and the median age of HCC patients was 70.5 (range 64.2-76.1) years. Of the study population (57 males, 15 females), 17 patients had hepatitis B virus infection, 36 had hepatitis C virus infection, 10 had alcohol abuse, 4 had non-alcoholic steatohepatitis, and 5 had others. The median maximum tumor size was 3.3 (range 2.2-5.0) cm. Tumors numbering 1, 2, 3, 4, or > 4 were 9, 5, 6, 2, and 50, respectively. Thirty-one patients had vascular invasion and no patient had distant metastasis. Serum alpha-fetoprotein (AFP), des-γ-carboxy prothrombin, and lens
Table 1 Hepatocellular carcinoma patients’ characteristics between stable disease + partial response and progressive disease with hepatic arterial infusion chemotherapy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n = 72)</th>
<th>SD + PR (n = 41)</th>
<th>PD (n = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>70.5 (64.2–76.1)</td>
<td>72.0 (66.4–76.4)</td>
<td>67.8 (58.9–75.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>57/15</td>
<td>32/9</td>
<td>25/6</td>
<td>NS</td>
</tr>
<tr>
<td>Etiology (HBV/HCV/alcohol/NASH/others)</td>
<td>17/36/10/4/5</td>
<td>6/23/5/4/3</td>
<td>11/13/5/0/2</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>3.2 (3.0–3.6)</td>
<td>3.3 (3.0–3.6)</td>
<td>3.2 (3.0–3.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Prothrombin time (%)</td>
<td>76.0 (60.5–85.3)</td>
<td>78.0 (57.0–86.0)</td>
<td>73.0 (63.5–83.0)</td>
<td>NS</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>1.2 (0.8–2.1)</td>
<td>1.2 (0.7–2.1)</td>
<td>1.2 (0.8–2.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Platelet count (<10⁴/mm³)</td>
<td>10.4 (7.1–14.9)</td>
<td>10.8 (7.0–13.2)</td>
<td>10.1 (7.6–17.1)</td>
<td>NS</td>
</tr>
<tr>
<td>AFP (ng/mL)</td>
<td>95.3 (17.9–1162.5)</td>
<td>101.0 (21.2–931.5)</td>
<td>87.1 (13.2–1349.2)</td>
<td>NS</td>
</tr>
<tr>
<td>DCP (mAU/mL)</td>
<td>359.5 (58.0–5277.5)</td>
<td>348 (42.3–1542.8)</td>
<td>609.0 (88.2–279.4)</td>
<td>NS</td>
</tr>
<tr>
<td>AFP-L3% (%)</td>
<td>33.7 (7.7–73.4)</td>
<td>34.3 (6.9–73.4)</td>
<td>22.2 (8.1–68.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Maximum tumor size (cm)</td>
<td>3.3 (2.2–5.0)</td>
<td>3.0 (2.0–5.0)</td>
<td>3.5 (2.9–3.5)</td>
<td>NS</td>
</tr>
<tr>
<td>Tumor number (1/2/3/4/>4)</td>
<td>9/5/6/2/50</td>
<td>5/4/3/2/27</td>
<td>4/1/3/0/23</td>
<td>NS</td>
</tr>
<tr>
<td>Vascular invasion (present/absent)</td>
<td>31/41</td>
<td>20/21</td>
<td>11/20</td>
<td>NS</td>
</tr>
<tr>
<td>Treatment period (days)</td>
<td>121 (41–218)</td>
<td>191 (120–311)</td>
<td>40.0 (26–61)</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Data are expressed as median (interquartile range). P values represent comparisons between SD + PR and PD with hepatic arterial infusion chemotherapy. SD: Stable disease; PR: Partial response; PD: Progressive disease; HBV: Hepatitis B virus; HCV: Hepatitis C virus; NASH: Non-alcoholic steatohepatitis; AFP: Alpha-fetoprotein; DCP: Des-γ-carboxy prothrombin; AFP-L3%: Lens culinaris agglutinin-reactive alpha-fetoprotein.

Plasma ADAMTS13:AC and VWF:Ag levels

ADAMTS13:AC levels in HCC patients with SD + PR were significantly higher than those with PD (P < 0.05) (Figure 1A). VWF:Ag levels were no different between patients with SD + PR and PD (Figure 1B). The ratio of VWF:Ag to ADAMTS13:AC (VWF:Ag/ADAMTS13:AC ratio) in patients with SD + PR was significantly lower than those with PD (P < 0.05) (Figure 1C).

Plasma VEGF levels

VEGF levels in HCC patients with SD + PR were significantly lower than those with PD (P < 0.05) (Figure 2A). Patients were categorized into two groups according to receiver operating characteristic (ROC) cut-off VEGF: Low, ≤ 100 and high, > 100. Patients with high VEGF levels also had higher platelet levels than those with low VEGF (Figure 2B). Patients were categorized into two groups according to ROC cut-off VWF:Ag/ADAMTS13:AC ratio: Low, ≤ 2.7 and high, > 2.7. Patients with high VWF:Ag/ADAMTS13:AC ratio had higher VEGF levels than those with low ratio (Figure 2C).

Predictive factors for HAIC response

Patients were categorized into two groups according to ROC cut-off. Univariable analysis showed that HAIC treatment response is associated with prothrombin time (PT), VEGF, and VWF:Ag/ADAMTS13:AC ratio (Table 2). To determine the predictive factors of HAIC response, multivariable analysis was performed using PT, VEGF, and VWF:Ag/ADAMTS13:AC ratio, with these factors showing P < 0.05 in univariable analysis. VWF:Ag/ADAMTS13:AC ratio was significantly associated with HAIC treatment response via multivariable analysis (Table 2). ROC analysis showed that VWF:Ag/ADAMTS13:AC ratio is sensitivity of 53.7%, specificity of 87.1%, and area under the curve of 0.715.
Table 2 Predictive factors for response of hepatic arterial infusion chemotherapy in patients with hepatocellular carcinoma

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariable analysis</th>
<th>Multivariable analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age > 65 yr</td>
<td>2.61 (0.905–7.5)</td>
<td>0.076</td>
</tr>
<tr>
<td>Sex (male vs female)</td>
<td>0.853 (0.268–2.72)</td>
<td>0.788</td>
</tr>
<tr>
<td>Albumin > 2.8 g/dL</td>
<td>1.40 (0.404–4.85)</td>
<td>0.596</td>
</tr>
<tr>
<td>Prothrombin time > 80%</td>
<td>2.68 (1.010–7.10)</td>
<td>0.0469</td>
</tr>
<tr>
<td>Total bilirubin > 2 mg/dL</td>
<td>0.896 (0.317–2.53)</td>
<td>0.836</td>
</tr>
<tr>
<td>Platelet count > 20 × 10^4/µL</td>
<td>1.57 (0.268–9.16)</td>
<td>0.618</td>
</tr>
<tr>
<td>AFP > 50 ng/mL</td>
<td>0.523 (0.194–1.41)</td>
<td>0.199</td>
</tr>
<tr>
<td>DCP > 20 mAU/mL</td>
<td>0.381 (0.0938–1.55)</td>
<td>0.177</td>
</tr>
<tr>
<td>AFP-L3% > 20%</td>
<td>1.33 (0.491–3.62)</td>
<td>0.572</td>
</tr>
<tr>
<td>VEGF > 100 pg/mL</td>
<td>0.223 (0.0802–0.618)</td>
<td>0.0039</td>
</tr>
<tr>
<td>Maximum tumor size > 2.3 cm</td>
<td>0.414 (0.130–1.32)</td>
<td>0.137</td>
</tr>
<tr>
<td>Tumor number > 2</td>
<td>1.07 (0.261–4.35)</td>
<td>0.928</td>
</tr>
<tr>
<td>Vascular invasion (present/absent)</td>
<td>1.73 (0.665–4.51)</td>
<td>0.261</td>
</tr>
<tr>
<td>ADAMTS13:AC > 75%</td>
<td>1.25 (0.355–4.41)</td>
<td>0.727</td>
</tr>
<tr>
<td>VWF:Ag > 260%</td>
<td>0.711 (0.279–1.81)</td>
<td>0.476</td>
</tr>
<tr>
<td>VWF:Ag/ADAMTS13:AC > 2.7</td>
<td>0.141 (0.0418–0.476)</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

DISCUSSION

We suggest that VWF:Ag/ADAMTS13:AC ratio is a potential biomarker for HAIC treatment response in the present study. It is well-known that this ratio is related to the coagulation cascade\(^{[10]}\), which in turn plays an important role in the cancer development, including HCC\(^{[11,12]}\). Previous studies have reported that ADAMTS13 enzyme–VWF substrate imbalance is associated with cancer progression, prognosis of patients with various kinds of cancer, and response to chemotherapy\(^{[17,23]}\). Our previous study reported that VWF:Ag\(^{[7]}\) and VWF:Ag/ADAMTS13:AC ratio\(^{[13]}\) are predictive and detective factors of HCC in patients with cirrhosis, respectively. Moreover, a study has reported that the association between ADAMTS13:AC and VWF:Ag, and the treatment efficiency of molecular-targeted drugs\(^{[8]}\).

It is well-known that angiogenesis is related to the pathophysiology of HCC development\(^{[9]}\) and that VEGF plays an important role in angiogenesis\(^{[11]}\). Recently, studies have reported that VWF reduces VEGF-dependent angiogenesis via multiple intracellular and extracellular pathways involving integrin αvβ3 and angiopoietin-2\(^{[24,25]}\), and that ADAMTS13 cleaves VWF and promotes VEGFR-2 phosphorylation, as the result, induces angiogenesis. This in turn results in enhancement of VEGF expression\(^{[16]}\). Xu have reported that the important role of ADAMTS13 enzyme–VWF substrate balance in the regulation of blood vessel formation\(^{[16]}\). A previous study has reported that HAIC treatment decreases VEGF levels in patients with advanced HCC\(^{[10]}\). Therefore, VWF:Ag/ADAMTS13:AC ratio may be associated with HAIC treatment response via VEGF and angiogenesis.

Furthermore, anti-platelet therapy inhibits VEGF that induces HCC development\(^{[28]}\). A recent study has reported that anti-platelet therapy for cirrhotic patients prevents HCC development\(^{[29]}\) and prolongs survival time in hepatitis B virus mouse model of chronic liver disease\(^{[30]}\). ADAMTS13 enzyme–VWF substrate imbalance induces platelet thrombi formation\(^{[18]}\). In other words, ADAMTS13 enzyme–VWF substrate imbalance, VEGF, angiogenesis, and hypercoagulability are closely related to the cancer progression, including HCC. A previous study has found that VEGF is
Takaya H et al. A biomarker for HAIC treatment

Figure 1 Plasma ADAMTS13:AC and VWF:Ag levels in patients with hepatocellular carcinoma receiving hepatic arterial infusion chemotherapy treatment. A: ADAMTS13 activity (ADAMTS13:AC) levels were significantly higher in hepatocellular carcinoma patients receiving hepatic arterial infusion chemotherapy treatment with stable disease (SD) + partial response (PR) than in those with progressive disease (PD) (P < 0.05); B: VWF antigen (VWF:Ag) levels were not different between patients with SD + PR and PD; C: VWF:Ag/ADAMTS13:AC ratio was significantly lower in patients with SD + PR than in those with PD (P < 0.05). SD: Stable disease; PR: Partial response; PD: Progressive disease; ADAMTS13: A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13; ADAMTS13:AC: ADAMTS13 activity; VWF: Von Willebrand factor; VWF:Ag: VWF antigen; VWF:Ag/ADAMTS13:AC ratio: Ratio of VWF:Ag to ADAMTS13:AC.

Our study reported the association between VWF:Ag/ADAMTS13:AC ratio and HAIC treatment response; however, our analysis indicated that VEGF is not a predictive factor of HAIC treatment response. VWF:Ag/ADAMTS13:AC ratio may become a more useful to predict HAIC treatment response than VEGF.

Our study has some limitations that include a small sample size and short observation. Cirrhotic patients with advanced HCC occasionally develop thrombosis or inflammation (e.g., portal thrombosis, and bacterial overgrowth and translocation). When VWF:Ag/ADAMTS13:AC ratio is used as a biomarker of HAIC treatment response, thrombosis and inflammation may affect the values\(^4\). In addition, VWF:Ag/ADAMTS13:AC ratio has high specificity but moderate sensitivity to predict HAIC treatment response. Therefore, we should continue to investigate high-sensitivity biomarkers.

CONCLUSION

In summary, VWF:Ag/ADAMTS13:AC ratio is an independent predictive factor for response in patients with HCC undergoing HAIC treatment.
Figure 2 Plasma vascular endothelial growth factor levels in patients with hepatocellular carcinoma receiving hepatic arterial infusion chemotherapy treatment. A: Vascular endothelial growth factor (VEGF) levels were significantly lower in hepatocellular carcinoma patients with stable disease + partial response than in those with progressive disease (P < 0.05); B: Patients with high VEGF levels (> 100) had higher platelet levels than those with low VEGF levels (≤ 100) (P < 0.05); C: Patients with high Von Willebrand factor antigen (VWF:Ag)/ADAMTS13 activity (ADAMTS13:AC) ratio (> 2.7) had higher VEGF levels than those with low VWF:Ag/ADAMTS13:AC ratio (≤ 2.7). VEGF: Vascular endothelial growth factor; SD: Stable disease; PR: Partial response; PD: Progressive disease; ADAMTS13: A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13; ADAMTS13:AC: ADAMTS13 activity; VWF: Von Willebrand factor; VWF:Ag: VWF antigen; VWF:Ag/ADAMTS13:AC ratio: Ratio of VWF:Ag to ADAMTS13:AC.

ARTICLE HIGHLIGHTS

Research background
Predicting HAIC treatment response is important for improving the prognosis of hepatocellular carcinoma (HCC) patients.

Research motivation
ADAMTS13 and von Willebrand factor (VWF) have been associated with the prognosis in patients with various kinds of cancer receiving chemotherapy.

Research objectives
The present study was investigated whether ADAMTS13 and VWF become useful biomarkers of treatment response in HCC patients before the initiation of HAIC treatment.
Research methods
Multivariable analysis was performed to determine the predictive factors of HAIC treatment response in patients with HCC.

Research results
VWF antigen (VWF:Ag)/ADAMTS13 activity (ADAMTS13:AC) ratio predicted HAIC treatment response in multivariable analysis.

Research conclusions
VWF:Ag/ADAMTS13:AC ratio may be a useful biomarker of treatment response in patients with HCC before HAIC treatment.

Research perspectives
VWF:Ag/ADAMTS13:AC ratio has high specificity to predict HAIC treatment response. On the other hand, this biomarker has moderate sensitivity. Therefore, we should continue to investigate high-sensitivity biomarkers.

ACKNOWLEDGEMENTS
This work was helped by Ms. Yoshie Nakai, Prof. Masahito Uemura, and Professor Hiroshi Fukui.

REFERENCES

22 Kanda Y. Investigation of the freely available easy-to-use software 'EZIR' for medical statistics. *Bone Marrow Transplant* 2013; 48: 452-458 [PMID: 23208313 DOI: 10.1038/bmt.2012.244]

