OPINION REVIEW
7620 Whipple’s operation with a modified centralization concept: A model in low-volume Caribbean centers
 Cawich SO, Pearce NW, Naraynsingh V, Shakla P, Deshpande RR

REVIEW
7631 Role of micronutrients in Alzheimer’s disease: Review of available evidence
 Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH

MINIREVIEWS
7642 Application of imaging techniques in pancreaticobiliary maljunction
 Wang JY, Mu PY, Xu YK, Bai YY, Shen DH
7653 Update on gut microbiota in gastrointestinal diseases
 Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H
7665 Vascular complications of pancreatitis
 Kalas MA, Leon M, Chavez LO, Canalizo E, Sarani S

ORIGINAL ARTICLE
Clinical and Translational Research
7674 Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis
 Zheng L, Ji YY, Dai YC, Wen XL, Wu SC

Case Control Study
7686 Comprehensive proteomic signature and identification of CDKN2A as a promising prognostic biomarker and therapeutic target of colorectal cancer
 Wang QQ, Zhou YC, Zhou Ge YJ, Qin G, Yin TF, Zhao DY, Tan C, Yao SK

Retrospective Cohort Study
7698 Is anoplasty superior to scar revision surgery for post-hemorrhoidectomy anal stenosis? Six years of experience
 Weng YT, Chu KJ, Lin KH, Chang CK, Kang JC, Chen CY, Hu JM, Pu TW

Retrospective Study
7708 Short- (30-90 days) and mid-term (1-3 years) outcomes and prognostic factors of patients with esophageal cancer undergoing surgical treatments
 Shi MK, Mei YQ, Shi JL
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7720</td>
<td>Effectiveness of pulsed radiofrequency on the medial cervical branches for cervical facet joint pain</td>
<td>Chang MC, Yang S</td>
</tr>
<tr>
<td>7738</td>
<td>Correlation between the warning symptoms and prognosis of cardiac arrest</td>
<td>Zheng K, Bai Y, Zhai QR, Du LF, Ge HX, Wang GX, Ma QB</td>
</tr>
<tr>
<td>7749</td>
<td>Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder</td>
<td>Tang CY, Wen F</td>
</tr>
<tr>
<td>7760</td>
<td>Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases of the central nervous system after empirical treatment</td>
<td>Chen YY, Guo Y, Xue XH, Pang F</td>
</tr>
<tr>
<td>7785</td>
<td>Prospective single-center feasible study of innovative autorelease bile duct supporter to delay adverse events after endoscopic papillectomy</td>
<td>Liu SZ, Chai NL, Li HK, Feng XX, Zhai YQ, Wang NJ, Gao Y, Gao F, Wang SS, Linghu EQ</td>
</tr>
<tr>
<td>7794</td>
<td>Performance of Dexcom G5 and FreeStyle Libre sensors tested simultaneously in people with type 1 or 2 diabetes and advanced chronic kidney disease</td>
<td>Ölafsdóttir AF, Andelin M, Saeed A, Sofizadeh S, Hamoodi H, Jansson PA, Lind M</td>
</tr>
<tr>
<td>7808</td>
<td>Complications of chronic pancreatitis prior to and following surgical treatment: A proposal for classification</td>
<td>Murruste M, Kirsimägi Ü, Kase K, Veršinina T, Talving P, Leiner U</td>
</tr>
<tr>
<td>7825</td>
<td>Effects of comprehensive nursing on postoperative complications, mental status and quality of life in patients with glioma</td>
<td>Dong H, Zhang XL, Deng CX, Luo B</td>
</tr>
<tr>
<td>7832</td>
<td>Predictors of long-term anxiety and depression in discharged COVID-19 patients: A follow-up study</td>
<td>Boyraz RK, Şahan E, Boylu ME, Korporar İ</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7859</td>
<td>Rectal nonsteroidal anti-inflammatory drugs, glyceryl trinitrate, or combinations for prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis: A network meta-analysis</td>
<td>Shi QQ, Huang GX, Li W, Yang JR, Ning XY</td>
</tr>
<tr>
<td>7872</td>
<td>Effect of celecoxib on improving depression: A systematic review and meta-analysis</td>
<td>Wang Z, Wu Q, Wang Q</td>
</tr>
<tr>
<td>7883</td>
<td>CASE REPORT</td>
<td>Rectal mature teratoma: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liu JL, Sun PL</td>
</tr>
<tr>
<td>7890</td>
<td>CASE REPORT</td>
<td>Antibiotic and glucocorticoid-induced recapitulated hematological remission in acute myeloid leukemia: A case report and review of literature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sun XY, Yang XD, Yang XQ, Ju B, Xu NN, Xu J, Zhao XC</td>
</tr>
<tr>
<td>7899</td>
<td>CASE REPORT</td>
<td>Non-secretory multiple myeloma expressed as multiple extramedullary plasmacytoma with an endobronchial lesion mimicking metastatic cancer: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lee SB, Park CY, Lee HJ, Hong R, Kim WS, Park SG</td>
</tr>
<tr>
<td>7906</td>
<td>CASE REPORT</td>
<td>Latamoxef-induced severe thrombocytopenia during the treatment of pulmonary infection: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhang RY, Zhang JJ, Li JM, Xu YY, Xu YH, Cai XJ</td>
</tr>
<tr>
<td>7913</td>
<td>CASE REPORT</td>
<td>Multicentric reticulohistiocytosis with prominent skin lesions and arthritis: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xu XL, Liang XH, Liu J, Dong X, Zhang L, Wang ZG</td>
</tr>
<tr>
<td>7924</td>
<td>CASE REPORT</td>
<td>Brainstem abscesses caused by Listeria monocytogenes: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang J, Li YC, Yang KY, Wang J, Dong Z</td>
</tr>
<tr>
<td>7931</td>
<td>CASE REPORT</td>
<td>Primary hypertension in a postoperative paraganglioma patient: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wei JH, Yan HL</td>
</tr>
<tr>
<td>7936</td>
<td>CASE REPORT</td>
<td>Long-term survival of gastric mixed neuroendocrine-non-neuroendocrine neoplasm: Two case reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Woo LT, Ding YF, Mao CY, Qian J, Zhang XM, Xu N</td>
</tr>
<tr>
<td>7944</td>
<td>CASE REPORT</td>
<td>Percutaneous transforaminal endoscopic decompression combined with percutaneous vertebroplasty in treatment of lumbar vertebral body metastases: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ran Q, Li T, Kuang ZP, Guo XH</td>
</tr>
<tr>
<td>7950</td>
<td>CASE REPORT</td>
<td>Atypical imaging features of the primary spinal cord glioblastoma: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liang XY, Chen YP, Li Q, Zhou ZW</td>
</tr>
<tr>
<td>7960</td>
<td>CASE REPORT</td>
<td>Resection with limb salvage in an Asian male adolescent with Ewing’s sarcoma: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lai CY, Chen KJ, Ho TY, Li LY, Kuo CC, Chen HT, Fong YC</td>
</tr>
<tr>
<td>7968</td>
<td>CASE REPORT</td>
<td>Early detection of circulating tumor DNA and successful treatment with osimertinib in thr790met-positive leptomeningeal metastatic lung cancer: A case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xu LQ, Wang YJ, Shen SL, Wu Y, Duan HZ</td>
</tr>
</tbody>
</table>
Contents

Delayed arterial symptomatic epidural hematoma on the 14th day after posterior lumbar interbody fusion: A case report
Hao SS, Gao ZF, Li HK, Liu S, Dong SL, Chen HL, Zhang ZF

Clinical and genetic analysis of nonketotic hyperglycinemia: A case report
Ning JJ, Li F, Li SQ

Ectopic Cushing's syndrome in a patient with metastatic Merkel cell carcinoma: A case report
Ishay A, Touma E, Vornicova O, Doduk-Gad R, Goldman T, Bisharat N

Occurrence of MYD88L265P and CD79B mutations in diffuse large B cell lymphoma with bone marrow infiltration: A case report
Huang WY, Weng ZY

Rare case of compartment syndrome provoked by inhalation of polyurethane agent: A case report
Choi JH, Oh HM, Hwang JH, Kim KS, Lee SY

Acute ischemic Stroke combined with Stanford type A aortic dissection: A case report and literature review
He ZY, Yao LP, Wang XK, Chen NY, Zhao JJ, Zhou Q, Yang XF

Compound-honeysuckle-induced drug eruption with special manifestations: A case report
Zhou LF, Lu R

Spontaneous internal carotid artery pseudoaneurysm complicated with ischemic stroke in a young man: A case report and review of literature
Zhong YL, Feng JP, Luo H, Gong XH, Wei ZH

Microcystic adnexal carcinoma misdiagnosed as a "recurrent epidermal cyst": A case report
Yang SX, Mou Y, Wang S, Hu X, Li FQ

Accidental discovery of appendiceal carcinoma during gynecological surgery: A case report
Wang L, Dong Y, Chen YH, Wang YN, Sun L

Intra-ampullary papillary-tubular neoplasm combined with ampullary neuroendocrine carcinoma: A case report
Zavrtanik H, Lucar B, Tomažič A

LETTER TO THE EDITOR

Commentary on "Primary orbital monophasic synovial sarcoma with calcification: A case report"
Tokur O, Aydın S, Karavas E
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Bennete Aloysius Fernandes, MDS, Professor, Faculty of Dentistry, SEGi University, Kota Damansara 47810, Selangor, Malaysia. drben17@yahoo.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ju Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
August 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Retrospective Study

Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder

Cai-Yun Tang, Fang Wen

Abstract

BACKGROUND
Iron plays an important role in neurodevelopmental functions in the brain. Serum ferritin levels are different in children with attention deficit hyperactivity disorder and tic disorder than in healthy children.

AIM
To explore the current status of iron deficiency in children with neurodevelopmental disorders and its sex and age effects.

METHODS
A total of 1565 children with attention deficit hyperactivity disorder (ADHD), 1694 children with tic disorder (TD), 93 children with ASD and 1997 healthy control children were included between January 1, 2020, and December 31, 2021 at Beijing Children’s Hospital. We describe the differences in age levels and ferritin levels between different disease groups and their sex differences. The differences between the sexes in each disease were analyzed using the t test. The incidence rate of low serum ferritin was used to describe the differences between different diseases and different age groups. A chi-square test was used to analyze the difference in the incidence of low serum ferritin between the disease group and the control group. Analysis of variance was used for comparisons between subgroups, and regression analysis was used for confounding factor control.

RESULTS
A total of 1565 ADHD patients aged 5-12 years were included in this study, and the average serum ferritin levels of male and female children were 36.82 ± 20.64 μg/L and 35.64 ± 18.56 μg/L, respectively. A total of 1694 TD patients aged 5-12 years were included in this study, and the average serum ferritin levels of male and female children were 35.72 ± 20.15 μg/L and 34.54 ± 22.12 μg/L, respectively. As age increased, the incidence of low serum ferritin in ADHD and TD first decreased and then increased, and 10 years old was the turning point of rising...
levels. The incidence of ADHD with low serum ferritin was 8.37%, the incidence of TD with low serum ferritin was 11.04%, and the incidence of the healthy control group with low serum ferritin was 8.61%, among which male children with TD accounted for 9.25% and female children with TD accounted for 11.62%. There was a significant difference among the three groups ($P < 0.05$). In addition, there were 93 children with ASD with an average serum ferritin level of $30.99 \pm 18.11 \mu g/L$ and a serum ferritin incidence of 15.05%.

CONCLUSION

In conclusion, low serum ferritin is not a risk factor for ADHD or TD. The incidence of low serum ferritin levels in children with ADHD and TD between 5 and 12 years old decreases first and then increases with age.

Key Words: Iron deficiency; Attention deficit hyperactivity disorder; Tic disorder; Serum ferritin levels; Retrospective study

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: By investigating the status of iron deficiency in children with neurodevelopmental disorders and its influence on gender and age, it is suggested to check the serum ferritin level and related hematological indexes of children with neurodevelopmental disorders at the age of 5-10 years, and make necessary iron supplementation.

Citation: Tang CY, Wen F. Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder. *World J Clin Cases* 2022; 10(22): 7749-7759

URL: https://www.wjgnet.com/2307-8960/full/v10/i22/7749.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i22.7749

INTRODUCTION

Iron deficiency in early childhood can lead to developmental abnormalities in gene expression, neurotransmitter function, neurometabolism and other aspects related to brain development, which in turn affects children’s sensorimotor functions, growth and development, cognitive language, social emotions, the development of learning and memory, and so on[1]. Iron deficiency can also lead to a decrease in iron content in the brain, which can cause central nervous system dysfunction and ultimately lead to neuropsychiatric symptoms[2]. Iron participates in several basic biochemical functions in the brain, is a cofactor for many metabolic processes and material synthesis and has important effects on neurodevelopmental functions such as myelination, transmitter transmission, and gene expression[3].

Notably, it has been reported that iron deficiency in children is associated with neurodevelopmental diseases, leading to abnormalities in growth and development, learning behavior, motor function, social emotion, intellectual development, cognitive ability, language function, sleep cycle, etc.[4-6]. Ferritin is an objective and sensitive indicator for the investigation and study of iron deficiency because serum ferritin is an important iron storage protein that is crucial for iron homeostasis and participates in a variety of physiological and pathological processes. Serum ferritin is one of the most reliable and widely used markers of iron storage status in the body[7]. The variability of serum ferritin levels is lower than that of serum iron levels, and when iron reserves are depleted, the decline of serum ferritin precedes the decline of serum iron[8].

Neurodevelopmental outcomes include attention deficit disorder hyperactivity (ADHD), tic disorders (TD) and autism spectrum disorders (ASD). The incidence of neurodevelopmental disorders in children is also increasing year by year[8]. The following will introduce iron deficiency-related research on these three diseases. First, a study of ADHD confirmed that the serum ferritin level of children with ADHD was significantly lower than that of the control group[9]. Mahmoud et al studied 58 untreated children with ADHD and found that the serum ferritin level of children with ADHD was significantly lower than that of the control group[10]. There are also studies on the serum ferritin level and the Conners Parental Rating Scale (CPRS) total score. There is a significant negative correlation between serum ferritin levels and scores on the Conners Teacher Rating Scale (CTRS)[11,12]. This suggests that iron deficiency may indicate more severe ADHD symptoms. It should be emphasized that iron supplementation can also improve ADHD symptoms[13,14]. Studies have also found that iron supplementation is related to the increase in serum ferritin levels and the parallel reduction in the severity of ADHD symptoms assessed by the parents’ Conners score[15]. Second, studies on TD have shown that children and adults with...
mature Tourette syndrome have reduced serum ferritin[3]. A large-scale epidemiological study showed that children with iron deficiency anemia are at increased risk of tic disorder, iron storage status may be related to children’s tics, and low ferritin levels may be the result of pediatric tic risk factors for the development of the disease or predictors of the severity of tics in children[16]. A study of 107 children and adults found that ferritin levels were significantly reduced. Compared with the control group, the caudate nucleus and putamen nucleus of TS patients were larger[17]. Lower iron reserves may help to reduce the size of the caudate and putamen nuclei, thereby increasing the susceptibility to tics[18].

Third, research on ASD has shown that anemia diagnosed earlier in pregnancy was associated with an increased risk of the development of ASD, ADHD, and particularly ID in offspring[19]. In a study that investigated iron levels in ASD patients aged 19 mo to 13 years, 52% of ASD children developed ID[20]. Another study showed that 8.3% of autistic children aged 1 to 2 years, 14.2% of autistic children aged 3 to 5 years, and 20% of autistic children aged 6 to 10 years had below-normal serum ferritin levels[21]. Other studies have shown that children with ASD have significantly lower serum hemoglobin, hematocrit, iron, and mean corpuscular volume levels than healthy children, but these are not enough to cause anemia[22]. However, meta-analyses have shown that the available evidence is inconsistent with regard to whether iron levels are lower in children with ASD[23].

There is a lack of cohort studies on the status of iron deficiency and iron supplementation in children with ADHD, TD and ASD among Chinese children and adolescents. The sex and age effects of iron deficiency and the critical period of iron supplementation are unclear. In conclusion, the level of iron deficiency in neurodevelopmental disorders of ADHD, TD and ASD and the status of sex-age effects are still unclear, and data from Chinese samples are lacking. This study will adopt the thinking of retrospective research and investigation by enrolling ADHD, TD and ASD children in the psychiatric department of Beijing Children's Hospital as the sample. The sample size is large, and more attention can be paid to the comparison of the difference in serum ferritin levels of ADHD, TD and ASD children with respect to gender and age than previous studies. This study will explore the current status of iron deficiency in children with neurodevelopmental disorders and its influence on sex and age, providing an important reference for the correlation between neurodevelopmental disorders and ferritin and necessary iron supplementation.

MATERIALS AND METHODS

Participants
We retrospectively reviewed data from Beijing Children's Hospital for consecutive diagnoses of ADHD, TD, and ASD between January 1, 2020, and December 31, 2021. This study was in accordance with the Declaration of Helsinki and approved by the Institutional Ethics Committee of Beijing Children's Hospital (No. IEC-C-006-A04-V-06). We confirmed that all patient data were anonymous in this study. Additionally, children with normal physical examinations were selected as a healthy control group. The possible influencing factors of ferritin results should be strictly controlled, and drug use and comorbidities of patients should be thoroughly analyzed to prevent drugs and other diseases from affecting the results of ferritin examination of patients. There were also strict admission and exclusion criteria. The diagnosis of neurodevelopmental disorders was carried out by professional psychiatrists. More details are provided in Figure 1.

Inclusion criteria and exclusion criteria
Inclusion criteria: (1) Children who met the DSM-V diagnostic criteria for ADHD, TD and ASD; and (2) Children who had completed the ferritin test during the visit were included in the study. Exclusion criteria: Patients suffering from other movement disorders, epilepsy, malabsorption-related disorders, low serum hemoglobin levels and/or receiving iron supplements, acute febrile disease, malignancy and autoimmune diseases.

Methods for ferritin analysis
Serum ferritin was detected by a Beckman DXI800 automatic immune electrochemiluminescence analyzer and an original matching serum ferritin detection kit. After all children washed their hands with soap, 1 mL of venous blood was collected, and serum samples were separated for detection and tested by full-time staff in the biochemical room of the hospital testing center. The experimental process was strictly controlled by quality and tested in accordance with the operating procedures. The standard of low serum ferritin was 15 μg/L[23].

Data extraction and bias control
We extracted the identity, sex, age, diagnosis and ferritin level of subjects from the test bank based on the records of the Psychiatric Department of Beijing Children's Hospital. Considering the possible bias caused by the small sample size, our criterion for the inclusion of subjects is that when the ferritin test amount of the age group of the child needs to involve more than 50 cases, the subjects of this age group...
should be included.

In order to avoid the bias of retrospective study to the greatest extent, the inclusion criteria and exclusion criteria of research objects are restricted to narrow the differences between research objects. A case-control study was used to control confounding factors. The age of confounding factors was stratified and then treated with corresponding statistical methods. Analysis of variance was used for comparisons between subgroups. Linear regression and logistic regression models were used to control the confounding bias.

Data analysis

SPSS version 23 was used for statistical analysis. We used the mean, standard deviation, and 95% confidence intervals to describe age levels, ferritin levels, and sex differences between disease groups. A test was used to analyze the sex difference in each disease, and the chi-square test was used to analyze the difference in the low incidence of serum ferritin between the disease group and the control group, with $P = 0.05$ considered as significant. Analysis of variance was used for comparisons between subgroups, and regression analysis was used for confounding factor control. The low incidence of serum ferritin was used to describe differences between disease and age groups.

RESULTS

Patient characteristics

A total of 1565 children with ADHD, 1694 TD children, 93 ASD children and 1997 healthy control children were included in this study. The age range was from 5 to 12 years old. In the ADHD group, 1317 children (84.15%) were male, and 248 children (15.85%) were female. The average age of the children was 7.92 ± 1.85 years. The average serum ferritin of the children was 36.63 ± 20.32 μg/L. The average serum ferritin levels of male and female children were 36.82 ± 20.64 μg/L and 35.64 ± 18.56 μg/L, respectively. There was no significant difference in the average age of male and female children ($P > 0.05$).

In the TD group, 1282 children (64.2%) were male, and 412 children (35.8%) were female. The average age of the children was 7.61 ± 2.03 years. The average serum ferritin of the children was 35.43 ± 20.64 μg/L. The average serum ferritin levels of male and female children were 35.72 ± 20.15 μg/L and 34.54 ± 22.12 μg/L, respectively. There was no significant difference in the average age of male and female children ($P > 0.05$).

In the ASD group, 83 children (89.25%) were male, and 10 children (10.75%) were female. The average age of the children was 6.14 ± 2.88 years. The average serum ferritin of the children was 30.99 ± 18.11 μg/L. The average serum ferritin levels of male and female children were 31.42 ± 18.58 μg/L and 27.42 ± 13.73 μg/L, respectively. There was no significant difference in the average age of male and female children ($P > 0.05$). In the healthy control group, 979 children (49.02%)
were male, and 1018 children (50.98%) were female. The average age of the children was 7.61 ± 2.03 years. The average serum ferritin of the children was 71.66 ± 51.99 μg/L. The average serum ferritin levels of male and female children were 74.34 ± 51.19 μg/L and 69.08 ± 52.64 μg/L, respectively. There was a significant difference in the average age of male and female children (P < 0.05).

The results showed that the incidence of ADHD with low serum ferritin was 8.37% (131/1565), the incidence of TD with low serum ferritin was 11.04% (182/1649), and the incidence of ASD with low serum ferritin was 15.05% (14/93). The incidence in the healthy control group with low serum ferritin was 8.61% (172/1997). There was a significant difference among the four groups (P < 0.05). More details are provided in Tables 1 and 2.

Regression analysis

In the linear regression using the fitting least square method, ADHD (β = -0.110, P < 0.001) and TD (β = -0.114, P < 0.001) were both associated with lower level of serum ferritin even after age and sex (see Table 3). In logistic regression analyses, ADHD and TD were not significantly associated with to low serum ferritin concentration in univariate models. And the associations were still not statistically significant in multivariate models. Besides, we found sex 2 was related to the increased risk of low serum ferritin concentration with adjusted OR of 1.38 (95%CI, 1.08-1.75) (see Table 4).

Comparison of serum ferritin in different age groups

To better present the ferritin levels of children with ADHD and TD in different age groups, we first conducted analysis of variance for different subgroups of different disease groups according to age and found that ferritin levels in different age groups of different disease groups were statistically significant. ASD data were not included in this analysis because of the small sample size of ASD patients grouped by age. More details are provided in Table 5.

Next, we calculated the incidence of low serum ferritin in different age groups of 5-12 years old and found that in ADHD, TD and healthy controls, as age increased, the incidence of low serum ferritin first decreased and then increased. The high trend, at 10 years old, was the turning point of rising levels. ASD data were not included in this analysis because of the small sample size of ASD patients grouped by age. More details are provided in Figure 2.

DISCUSSION

This study mainly explores the level of ferritin in children with ADHD and TD and its effects on sex and age. This study is currently the largest sample size study in China to explore ADHD and TD iron deficiency. This study shows that serum ferritin levels are significantly correlated with sex, age and disease type, which is inconsistent with most previous research results on ADHD and TD ferritin levels at home and abroad[9,12,24]. This may be due to the further research results obtained on the basis of fully controlling confounding factors by using more scientific statistical methods. The results showed that the incidence of ADHD with low serum ferritin was 8.37%, and the incidence of TD with low serum ferritin was 11.04%. The incidence of low serum ferritin in ASD was 15.05%, but low serum ferritin was not a risk factor for ADHD or TD. The results are consistent with previous studies[25-27]. At the same time, we reported ferritin levels of children of different ages and sexes, which can provide an important reference for follow-up studies of iron deficiency in children with ADHD and TD.

The results of this study show that the incidence of low serum ferritin deficiency in children 5-12 years old with ADHD is 8.37%, and the incidence of low serum ferritin deficiency in children 5-12 years old with TD is 11.04%, which is related to the normal control group. This is lower than the results of similar studies at home and abroad[12,28]. Low serum ferritin was not a risk factor for ADHD or TD. The possible reason is that the reference value ranges used in different studies are different. This study uses the World Health Organization guidelines and expert consensus on the diagnosis and treatment of iron deficiency in China. The reference value limit is 15 μg/L[29], and the reference value range used in domestic studies on ADHD serum ferritin is 24 μg/L or 30 μg/L[25,27]. In related foreign studies, the limit of ADHD serum ferritin is set higher[12]. Thus, when the cutoff value of serum ferritin levels in children with ADHD is different, the incidence of low serum ferritin deficiency is also different. This highlights the lack of ferritin norms in children with ADHD. Therefore, in future studies, it is necessary to establish serum ferritin standards based on Chinese ADHD samples to provide a more detailed and substantial basis and recommendations for the supplementation of ferritin in children with ADHD.

The results of this study showed that ferritin levels were different at different ages of ADHD and TD, and the incidence of low serum ferritin levels in children with ADHD and TD between 5 and 12 years old decreases first and then increases with age. Ten years old is the turning point. Generally, the age range of 5-10 years old is a period of high incidence for ADHD and TD visits, as well as a period of high incidence of iron deficiency. This suggests that the relationship between iron deficiency and ADHD and TD still needs to be further explored. Although there are many qualitative studies on the relationship between the two[12], there are few studies on the levels of serum ferritin in different age groups. Therefore, based on this research, this study recommends that at the age of 5-10 years, special attention
Table 1 Characteristics of patients and control subjects

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>ADHD</th>
<th>TD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1997</td>
<td>1565</td>
<td>1694</td>
<td>93</td>
</tr>
<tr>
<td>(M/F)</td>
<td>(979/1018)</td>
<td>(1317/248)</td>
<td>(1282/412)</td>
<td>(83/10)</td>
</tr>
<tr>
<td>%</td>
<td>49.02/50.98</td>
<td>84.15/15.85</td>
<td>64.2/35.8</td>
<td>89.25/10.75</td>
</tr>
<tr>
<td>Age</td>
<td>8.57 ± 2.28</td>
<td>7.92 ± 1.85</td>
<td>7.61 ± 2.03</td>
<td>6.14 ± 2.88</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>SF</td>
<td>71.66 ± 51.99</td>
<td>36.63 ± 20.64</td>
<td>36.63 ± 20.32</td>
<td>30.99 ± 18.11</td>
</tr>
<tr>
<td>F (%)</td>
<td>8.61a</td>
<td>8.37a</td>
<td>11.04a</td>
<td>15.05a</td>
</tr>
</tbody>
</table>

*P < 0.05.

HC: Healthy control; ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder; ASD: Autism spectrum disorders; SF: Serum ferritin; F: Incidence of low serum ferritin.

Table 2 Description of the average distribution of age and serum ferritin level

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mini</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC age</td>
<td>5.00</td>
<td>12.00</td>
<td>8.57</td>
<td>2.28</td>
<td>-0.03</td>
<td>-1.26</td>
<td>8.47</td>
<td>8.67</td>
</tr>
<tr>
<td>HC SF</td>
<td>1.30</td>
<td>200.00</td>
<td>71.66</td>
<td>51.99</td>
<td>0.76</td>
<td>-0.51</td>
<td>69.38</td>
<td>50.63</td>
</tr>
<tr>
<td>ADHD age</td>
<td>5.00</td>
<td>12.00</td>
<td>7.92</td>
<td>1.85</td>
<td>0.47</td>
<td>-0.65</td>
<td>7.83</td>
<td>8.01</td>
</tr>
<tr>
<td>ADHD SF</td>
<td>2.60</td>
<td>148.60</td>
<td>36.63</td>
<td>20.32</td>
<td>1.53</td>
<td>3.42</td>
<td>35.62</td>
<td>37.64</td>
</tr>
<tr>
<td>TD age</td>
<td>5.00</td>
<td>12.00</td>
<td>7.61</td>
<td>2.03</td>
<td>0.49</td>
<td>-0.76</td>
<td>7.52</td>
<td>7.71</td>
</tr>
<tr>
<td>TD SF</td>
<td>2.90</td>
<td>262.70</td>
<td>35.43</td>
<td>20.64</td>
<td>2.66</td>
<td>15.31</td>
<td>34.45</td>
<td>36.41</td>
</tr>
<tr>
<td>ASD age</td>
<td>1</td>
<td>14.00</td>
<td>6.14</td>
<td>2.88</td>
<td>0.47</td>
<td>0.35</td>
<td>5.55</td>
<td>6.73</td>
</tr>
<tr>
<td>ASD SF</td>
<td>4.7</td>
<td>89.6</td>
<td>30.98</td>
<td>18.11</td>
<td>1.25</td>
<td>1.41</td>
<td>27.26</td>
<td>34.71</td>
</tr>
</tbody>
</table>

HC: Healthy control; ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder; ASD: Autism spectrum disorders; SF: Serum ferritin.

should be given to the assessment of serum ferritin levels in children with ADHD and TD. It is necessary to pay attention to differences in different age groups and determine whether it is possible to establish reference intervals for different age groups of ADHD and TD based on different serum ferritin levels to facilitate more sensitive detection of these levels and timely supplementation. Achieving the greatest improvement in ADHD and TD symptoms will be an important research direction for future ADHD and TD ferritin deficiency investigations and follow-up interventions.

The etiological and physiological mechanisms of ADHD and TD caused by iron deficiency are as follows: First, this metal plays an active role in the anabolism of neurotransmitters, the activity of dopamine D2 receptors, and the concentration of basal ganglia (especially the Globus pallidus). Iron is a cofactor of enzymes necessary for the synthesis and catabolism of monoaminergic neurotransmitters[12, 30]. Monoamine neurotransmitters mainly include epinephrine and norepinephrine, 5-hydroxytryptamine, and dopamine. Dopamine neurotransmitters act on the prefrontal lobe and striatum, and dysfunction of the prefrontal striatum plays an important role in the pathogenesis of ADHD. Iron deficiency is related to a decrease in dopamine transporter expression[18], the gene of dopamine transporter is related to the genetic susceptibility of ADHD[31]. Second, iron is a part of neuron development, myelination, DNA synthesis/repair and phospholipid metabolism[1], which is the basis for the neurodevelopmental disease ADHD in children. Third, iron deficiency leads to residual structural defects and the neurological function-related gene imbalance hypothesis[6]. Early nutrient intake (such as malnutrition) during the critical period of life will lead to abnormal structural development, ranging from overall structural abnormalities to fine ultrastructural changes. Therefore, in future research, we need to further explore the inner link between iron deficiency and the occurrence of ADHD symptoms and provide a new perspective for the exploration of the pathophysiological mechanism of ADHD and TD[32].
Table 3 The β of attention deficit hyperactivity disorder/tic disorder for the level of serum ferritin among children

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
<th>Model 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>P</td>
<td>β</td>
<td>P</td>
<td>β</td>
<td>P</td>
</tr>
<tr>
<td>Among children with ADHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADHD</td>
<td>-0.107</td>
<td>< 0.001</td>
<td>-0.107</td>
<td>< 0.001</td>
<td>-0.110</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Age</td>
<td>0.011</td>
<td>< 0.001</td>
<td>0.011</td>
<td>< 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>0.021</td>
<td>< 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Among children with TD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>-0.113</td>
<td>< 0.001</td>
<td>-0.108</td>
<td>< 0.001</td>
<td>-0.114</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Age</td>
<td>0.001</td>
<td>< 0.001</td>
<td>0.010</td>
<td>< 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>0.021</td>
<td>< 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 1 was not adjusted for any other variables; Model 2 was further adjusted for age; Model 3 was further adjusted for age and sex. ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder.

Table 4 Odds ratio of attention deficit hyperactivity disorder/tic disorder for low serum ferritin among children

<table>
<thead>
<tr>
<th></th>
<th>Model 1, OR (95%CI)</th>
<th>Model 2, OR (95%CI)</th>
<th>Model 3, OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among children with ADHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADHD</td>
<td>0.94 (0.74-1.19)</td>
<td>0.90 (0.71-1.15)</td>
<td>0.82 (0.63-1.06)</td>
</tr>
<tr>
<td>Age</td>
<td>0.68 (0.46-1.01)</td>
<td>0.68 (0.46-1.01)</td>
<td>1.22 (0.94-1.56)</td>
</tr>
<tr>
<td>Sex</td>
<td>1.22 (0.94-1.56)</td>
<td>1.22 (0.94-1.56)</td>
<td>1.22 (0.94-1.56)</td>
</tr>
<tr>
<td>Among children with TD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>0.97 (0.77-1.22)</td>
<td>0.91 (0.72-1.15)</td>
<td>0.99 (0.78-1.28)</td>
</tr>
<tr>
<td>Age</td>
<td>0.65 (0.93-1.56)</td>
<td>0.65 (0.95-1.53)</td>
<td>1.38 (1.08-1.75)</td>
</tr>
<tr>
<td>Sex</td>
<td>1.38 (1.08-1.75)</td>
<td>1.38 (1.08-1.75)</td>
<td>1.38 (1.08-1.75)</td>
</tr>
</tbody>
</table>

ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder; OR: Odds ratio. Model 1 was not adjusted for any other variables. Model 2 was further adjusted for age. Model 3 was further adjusted for age and sex.

Future research directions of ADHD and TD iron deficiency are discussed in the following. After combining ADHD and TD ferritin research, ADHD and TD iron deficiency research can be carried out from the following three aspects in the future. First, the sensitivity index and cutoff value of ADHD and TD iron deficiency, or the establishment of a cutoff value of serum ferritin levels in different age groups, can be used to formulate specific guidelines for screening and appropriate iron supplementation. Second, most studies evaluating iron status in ADHD and TD are based on measurements of serum ferritin levels, but there is no strong evidence that serum ferritin is a highly reliable marker of brain iron. Brain iron affects nerve function and white matter myelination. The degree of correlation between serum ferritin and brain iron levels is unclear\[29,33\]. Therefore, in addition to evaluating the surrounding iron markers, the evaluation of brain iron levels is essential to determine the possible role of iron deficiency in the pathophysiology of ADHD and TD. Third, regarding whether iron supplementation can alleviate the symptoms of ADHD, related research results are inconsistent, and some studies have shown that iron supplementation can improve ADHD and TD\[13\]. Studies have also found that iron supplementation is related to the increase in serum ferritin levels and the parallel reduction in the severity of ADHD and TD symptoms as assessed by the parents’ Conner’s score\[13\]. These aspects need to be validated further. Therefore, future investigations should include iron-supplemented ADHD and TD cohort studies to provide a new perspective for ADHD and TD intervention research. In terms of iron supplementation, the course, safety and compliance of iron supplementation are also very important references\[32,33\].

The advantage of our research lies in the extraction of large samples of data. At the same time, the average serum ferritin levels of children with ADHD and TD at 5-12 years of age were analyzed, which is a measure of the serum ferritin levels of children with ADHD and TD at different ages. These measurements can provide a reference for iron supplementation. Some limitations of our study need to
Table 5 Comparison of serum ferritin in different age groups

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>HC</th>
<th>ADHD</th>
<th>TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>63.15 ± 52.54</td>
<td>28.77 ± 17.54</td>
<td>29.73 ± 21.55</td>
</tr>
<tr>
<td>6</td>
<td>65.05 ± 48.64</td>
<td>31.66 ± 16.38</td>
<td>32.68 ± 16.54</td>
</tr>
<tr>
<td>7</td>
<td>75.24 ± 55.18</td>
<td>33.78 ± 19.16</td>
<td>33.99 ± 19.48</td>
</tr>
<tr>
<td>8</td>
<td>79.05 ± 53.37</td>
<td>37.93 ± 20.34</td>
<td>36.63 ± 16.76</td>
</tr>
<tr>
<td>9</td>
<td>77.88 ± 52.77</td>
<td>43.27 ± 22.41</td>
<td>41.92 ± 23.44</td>
</tr>
<tr>
<td>10</td>
<td>77.10 ± 49.96</td>
<td>43.59 ± 21.15</td>
<td>40.74 ± 18.28</td>
</tr>
<tr>
<td>11</td>
<td>68.65 ± 49.32</td>
<td>42.36 ± 24.06</td>
<td>38.17 ± 25.55</td>
</tr>
<tr>
<td>12</td>
<td>66.85 ± 52.22</td>
<td>32.66 ± 18.77</td>
<td>39.16 ± 28.08</td>
</tr>
</tbody>
</table>

F: 3.651, P: 0.001

HC: Healthy control; ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder.

Figure 2 Comparison of the incidence of low serum ferritin in different age groups and diseases between 5-12 years old. ADHD: Attention deficit hyperactivity disorder; TD: Tic disorder; HC: Healthy control.

be pointed out. First, neurodevelopmental disorders were studied in outpatient cases, and only individuals who used medical resources to seek psychiatric care were identified. Our sampling method involves convenience sampling. There may be some selection bias in the sample; however, the patients included in our study were diagnosed by professional psychiatrists, and the diagnoses were more reliable than self-reported diagnoses. Second, serum ferritin concentrations may be related to inappropriate dietary habits, and the link between neurodevelopmental disorders and altered dietary patterns remains unclear. Third, we did not have personal information that would help us understand patients' risk of mental disorders, such as environmental factors (long-term life stress, traumatic experiences) and a family history of mental disorders. Fourth, our study cannot prove a causal relationship between low serum ferritin and neurodevelopmental disease, although our results suggest a significant association between neurodevelopmental disease and serum ferritin.

CONCLUSION

Neurodevelopmental disorders (ADHD, TD and ASD) are heterogeneous diseases. The relationship
between ADHD and TD and serum ferritin needs further exploration. We found that the incidence of low serum ferritin levels in children with ADHD and TD between 5-12 years old was 8.37% and 11.04%, respectively. The incidence of ASD with low serum ferritin was 15.05%. It is recommended to routinely check the serum ferritin levels and related hematological indicators of children with ADHD, TD and ASD and to perform necessary iron supplementation. In particular, children with ADHD and TD aged 5-10 years were diagnosed. In the future, we need to conduct cohort studies to further consolidate the evidence of iron deficiency in children with ADHD, TD and ASD and carry out necessary iron intervention studies to explore the underlying mechanisms.

ARTICLE HIGHLIGHTS

Research background
Iron deficiency in early childhood can lead to developmental abnormalities in gene expression, neurotransmitter function, neurometabolism and other aspects related to brain development. It has been reported that iron deficiency in children is associated with neurodevelopmental diseases. Serum ferritin is one of the most reliable and widely used markers of iron storage status in the body. This study will explore the current status of iron deficiency in children with neurodevelopmental disorders and its influence on sex and age, providing an important reference for the correlation between neurodevelopmental disorders and ferritin and necessary iron supplementation.

Research motivation
The level of iron deficiency in neurodevelopmental disorders of attention deficit disorder hyperactivity (ADHD), tic disorder (TD) and autism spectrum disorders (ASD) and the status of sex-age effects are still unclear, and data from Chinese samples are lacking. This study will adopt the thinking of retrospective research and investigation by enrolling ADHD, TD and ASD children in the psychiatric department of Beijing Children’s Hospital as the sample. The sample size is large, and more attention can be paid to the comparison of the difference in serum ferritin levels of ADHD, TD and ASD children with respect to gender and age than previous studies.

Research objectives
This study will explore the current status of iron deficiency in children with neurodevelopmental disorders and its influence on sex and age, providing an important reference for the correlation between neurodevelopmental disorders and ferritin and necessary iron supplementation.

Research methods
A total of 1565 children with ADHD, 1694 children with TD, 93 children with ASD and 1997 healthy control children were included between January 1, 2020, and December 31, 2021 at Beijing Children’s Hospital. We describe the differences in age levels and ferritin levels between different disease groups and their sex differences. T test, Chi-square analysis, variance analysis and regression analysis were used for statistical processing of the data.

Research results
The average serum ferritin levels of male and female children were 36.82 ± 20.64 μg/L and 35.64 ± 18.56 μg/L in 1565 ADHD patients. The average serum ferritin levels of male and female children were 35.72 ± 20.15 μg/L and 34.54 ± 22.12 μg/L in 1694 TD patients. As age increased, the incidence of low serum ferritin in ADHD and TD first decreased and then increased, and 10 years old was the turning point of rising levels. The incidence of ADHD with low serum ferritin was 8.37%, the incidence of TD with low serum ferritin was 11.04%, and the incidence of the healthy control group with low serum ferritin was 8.61% (P < 0.05). There may be some selection bias and confounding factors such as diet, environmental factors and family history in the sample, and our study cannot prove a causal relationship between low serum ferritin and neurodevelopmental disease.

Research conclusions
Neurodevelopmental disorders (ADHD, TD and ASD) are heterogeneous diseases. We found that the incidence of low serum ferritin levels in children with ADHD and TD between 5-12 years old was 8.37% and 11.04%, respectively. The incidence of ASD with low serum ferritin was 15.05%. It is recommended to routinely check the serum ferritin levels and related hematological indicators of children with ADHD, TD and ASD and to perform necessary iron supplementation. In particular, children with ADHD and TD aged 5-10 years were diagnosed.

Research perspectives
In the future, we need to conduct cohort studies to further consolidate the evidence of iron deficiency in children with ADHD, TD and ASD and carry out necessary iron intervention studies to explore the
underlying mechanisms.

FOOTNOTES

Author contributions: Wen F gave suggestions for writing, analysis and revised the manuscript; Tang CY did substantial contributions to the conception and design of the work; and the acquisition, analysis, or interpretation of data for the work and drafted the manuscript.

Institutional review board statement: This study was in accordance with the Declaration of Helsinki and approved by the Institutional Ethics Committee of Beijing Children's Hospital, No. IEC-C-006-A04-V.06.

Conflict-of-interest statement: All of the authors declare that they have no competing interests.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at wenfang0812@163.com. Participants gave informed consent for data sharing, but the presented data are anonymized and risk of identification is low. No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Cai-Yun Tang 0000-0002-0871-1144; Wen Fang 0000-0002-2604-3354.

S-Editor: Wu YXJ
L-Editor: A
P-Editor: Wu YXJ

REFERENCES

