Reviewer #1:
Scientific Quality: Grade B (Very good)
Language Quality: Grade B (Minor language polishing)
Conclusion: Minor revision
Specific Comments to Authors:
This is an editorial of the ground breaking work which discusses the role of TLR and microRNA in ameliorating and halting the progression of diabetic kidney disease in a rat module. The author examines this and discusses the molecular mechanisms underlying the interaction of the TLR and diabetic kidney disease and also discuss how microRNA may serve as a target for reducing the burden or progression and thereby improving the lifestyle of patients with diabetic kidney disease.

A few comments:

1. Some words may be more appropriate and have been highlighted in the attached text.

 ACTION: The highlighted words have been replaced. Many thanks.

2. The conclusion is rather long the authors of this editorial may consider renaming the place the put conclusion as summary and let the conclusion start from the last paragraph only the remove the first two words- In summary

 ACTION: Conclusion paragraph has been limited to the last paragraph and the content moved to the new summary section as suggested. Thanks.

Reviewer #2:
Scientific Quality: Grade C (Good)
Language Quality: Grade B (Minor language polishing)
Conclusion: Minor revision
Specific Comments to Authors:
This paper discusses the feasibility of inhibition of TLR4 activation based on MicroRNA-630 in the treatment of DKD, which has clinical significance. However, there are several points in the paper that need to be revised or clarified.

1. Almost all studies on DKD anti-inflammatory therapy mentioned in the article have failed. This point I have a different view, because the current treatment of nephritis requires the use of glucocorticoids, glucocorticoids have a powerful anti-inflammatory effect. Perhaps the author wants to express a different meaning, the author can further clarify.

 ACTION: The reviewer is correct in commenting that glucocorticoids have a powerful anti-inflammatory effect in kidneys, playing a significant role in the management of various renal diseases due to their anti-inflammatory and
immunosuppressive properties. These renal conditions include glomerulonephritis, nephrotic syndrome, autoimmune kidney disease, and in kidney transplantation. While glucocorticoids can be highly effective in managing renal diseases, their long-term use is associated with various adverse effects such as osteoporosis, hypertension, hyperglycemia, weight gain, and increased susceptibility to infections. At present, new strategies have been evaluated to improve kidney function, delay the progression of the disease and eventually improve kidney survival including finerenone and iSGLT2. Trials designed to find effective renoprotection in DKD patients through anti-inflammatory actions that have failed or were prematurely stopped because of safety concerns include ruboxistaurin, sulodexide and bardoxolone methyl.

2. TLR4 is a key trigger factor for human innate immunity. Inhibiting the activation of TLR4 is an important blow to host innate immunity and will further induce other infections. Therefore, from this point, it can be seen that the therapeutic mechanism of MicroRNA-630 is not fundamentally different from the current glucocorticoid/immunosuppressive approach. I did not see from the paper that MicroRNA-630 is targeted and has no significant effect on the natural immunity of the host while treating DKD. It may also be that the author did not describe the effect of MicroRNA-630 on the natural immunity of the host, and I think this discussion should not be missing. ACTION: Again, the reviewer is correct in commenting that the work of Wu et al. did not describe the potential effects of microRNA-630 on the recurrence of infections arising from the modulation of the host’s natural immunity. This limitation is now included in the discussion.