World Journal of *Gastroenterology*

World J Gastroenterol 2018 January 28; 24(4): 445-548

Published by Baishideng Publishing Group Inc

J G World Journal of Gastroenterology

Contents

Weekly Volume 24 Number 4 January 28, 2018

REVIEW

445 Vitamin D deficiency and hepatitis viruses-associated liver diseases: A literature review Hoan NX, Tong HV, Song LH, Meyer CG, Velavan TP

ORIGINAL ARTICLE

Basic Study

461 Diet switch and omega-3 hydroxy-fatty acids display differential hepatoprotective effects in an obesity/ nonalcoholic fatty liver disease model in mice Rodriguez-Echevarria R, Macias-Barragan J, Parra-Vargas M, Davila-Rodriguez JR, Amezcua-Galvez E,

Armendariz-Borunda J

475 Overexpression of CREPT confers colorectal cancer sensitivity to fluorouracil

Kuang YS, Wang Y, Ding LD, Yang L, Wang Y, Liu SH, Zhu BT, Wang XN, Liu HY, Li J, Chang ZJ, Wang YY, Jia BQ

Retrospective Cohort Study

484 Early prediction of survival in hepatocellular carcinoma patients treated with transarterial chemoembolization plus sorafenib

Meng XC, Chen BH, Huang JJ, Huang WS, Cai MY, Zhou JW, Guo YJ, Zhu KS

Retrospective Study

494 Low glucose metabolism in hepatocellular carcinoma with GPC3 expression Li YC, Yang CS, Zhou WL, Li HS, Han YJ, Wang QS, Wu HB

Clinical Trial Study

504 Application value of enhanced recovery after surgery for total laparoscopic uncut Roux-en-Y gastrojejunostomy after distal gastrectomy Zang YF, Li FZ, Ji ZP, Ding YL

Observational Study

511 Influence of NUDT15 variants on hematological pictures of patients with inflammatory bowel disease treated with thiopurines Kojima Y, Hirotsu Y, Omata W, Sugimori M, Takaoka S, Ashizawa H, Nakagomi K, Yoshimura D, Hosoda K, Suzuki Y, Mochizuki H, Omata M

META-ANALYSIS

519 Impact of mechanical bowel preparation in elective colorectal surgery: A meta-analysis Rollins KE, Javanmard-Emamghissi H, Lobo DN

Contents

CASE REPORT

537 Intraductal papillary bile duct adenocarcinoma and gastrointestinal stromal tumor in a case of neurofibromatosis type 1

Lee JM, Lee JM, Hyun JJ, Choi HS, Kim ES, Keum B, Jeen YT, Chun HJ, Lee HS, Kim CD, Kim DS, Kim JY

543 Neuroendocrine carcinoma of the gastric stump: A case report and literature review *Ma FH, Xue LY, Chen YT, Xie YB, Zhong YX, Xu Q, Tian YT*

Contents	Volume	<i>World Journal of Gastroenterology</i> 24 Number 4 January 28, 2018		
ABOUT COVER	Editorial board member of <i>World Journal of Gastroenterology</i> , Alisan Kahraman, MD, Associate Professor, Department of Gastroenterology and Hepatology University Hospital of Essen, Essen, North-Rhine Westphalia 45147, Germany			
AIMS AND SCOPE	DSCOPE <i>World Journal of Gastroenterology (World J Gastroenterol, WJG</i> , print ISSN 1007-9327, o ISSN 2219-2840, DOI: 10.3748) is a peer-reviewed open access journal. <i>WJG</i> was e lished on October 1, 1995. It is published weekly on the 7 th , 14 th , 21 st , and 28 th each me The <i>WJG</i> Editorial Board consists of 642 experts in gastroenterology and hepatology 59 countries. The primary task of <i>WJG</i> is to rapidly publish high-quality original articles, rev and commentaries in the fields of gastroenterology, hepatology, gastrointestinal en- copy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gast testinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional apy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal pathophysiology, gastrointestinal laboratory medicine, gastrointestinal molecular ogy, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal gen- gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointest therapeutics. <i>WJG</i> is dedicated to become an influential and prestigious journal in troenterology and hepatology, to promote the development of above disciplines, ar improve the diagnostic and therapeutic skill and expertise of clinicians.			
INDEXING/ABSTRACTING	<i>World Journal of Gastroenterology (WJG)</i> is now in Science Citation Index Expanded (also known a Medicus, MEDLINE, PubMed, PubMed Centr 2018 edition of Journal Citation Reports [®] cites impact factor: 3.176), ranking <i>WJG</i> as 29 th amo ogy (quartile in category Q2).	al and Directory of Open Access Journals. The the 2016 impact factor for <i>WJG</i> as 3.365 (5-year		
EDITORS FOR Respons	~ · ·	le Science Editor: Xue-Jiao Wang Iditorial Office Director: Ze-Mao Gong		
NAME OF JOURNAL World Journal of Gastroenterology				
ISSN ISSN 1007-9327 (print) ISSN 2219-2840 (online) LAUNCH DATE October 1, 1995 FREQUENCY Weekly EDITORS-IN-CHIEF Damian Garcia-Olmo, MD, PhD, Doctor, Profes- sor, Surgeon, Department of Surgery, Universidad Autonoma de Madrid; Department of General Sur- gery, Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain Stephen C Strom, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karo- linska Institutet, Stockholm 141-86, Sweden	CA 90822, United States EDITORIAL BOARD MEMBERS All editorial board members resources online at http:// www.wignet.com/1007-9327/editorialboard.htm EDITORIAL OFFICE Ze-Mao Gong, Director World Journal of Gastreenterology Baishideng Publishing Group Inc 7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA Telephone: +1-925-2238242 Fax: +1-925-2238243 E-mail: editorialoffac@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk http://www.wjgnet.com PUBLISHER Baishideng Publishing Group Inc 7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA Telephone: +1-925-2238242	PUBLICATION DATE January 28, 2018 COPYRIGHT © 2018 Baishideng Publishing Group Inc. Articles pub- lished by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. SPECIAL STATEMENT All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opin- ions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated. INSTRUCTIONS TO AUTHORS Full instructions are available online at http://www. wjgnet.com/bgg/gerinfo/204		

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.3748/wjg.v24.i4.445

World J Gastroenterol 2018 January 28; 24(4): 445-460

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Vitamin D deficiency and hepatitis viruses-associated liver diseases: A literature review

Nghiem Xuan Hoan, Hoang Van Tong, Le Huu Song, Christian G Meyer, Thirumalaisamy P Velavan

Nghiem Xuan Hoan, Le Huu Song, Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi 10004, Vietnam

Nghiem Xuan Hoan, Christian G Meyer, Thirumalaisamy P Velavan, Molecular Genetics of Infectious Diseases, Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany

Nghiem Xuan Hoan, Hoang Van Tong, Le Huu Song, Christian G Meyer, Thirumalaisamy P Velavan, Vietnamese-German Center of Medical Research (VG-CARE), Hanoi 10004, Vietnam

Hoang Van Tong, Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 10004, Vietnam

Christian G Meyer, Thirumalaisamy P Velavan, Medical Faculty, Duy Tan University, Da Nang, Vietnam

Author contributions: Meyer CG and Velavan TP shared senior authorship; Hoan NX, Tong HV, Song LH, Meyer CG and Velavan TP searched the publications, extracted data, summarized data in tables and discussed the literature and wrote the review; all authors approved the final version of this review.

ORCID number: Nghiem Xuan Hoan (0000-0002-6426-7818); Hoang Van Tong (0000-0002-7170-8810); Le Huu Song (0000-0003-2056-8499); Christian G Meyer (0000-0001-55 61-2985); Thirumalaisamy P Velavan (0000-0002-9809-9883).

Conflict-of-interest statement: We declare that we have no conflicts of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0//

Manuscript source: Invited manuscript

Correspondence to: Thirumalaisamy P Velavan, PhD, Professor, Molecular Genetics of Infectious Diseases, Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany. velavan@medizin.uni-tuebingen.de Telephone: +49-7071-2985981 Fax: +49-7071-294684

Received: November 28, 2017 Peer-review started: November 29, 2017 First decision: December 13, 2017 Revised: January 8, 2018 Accepted: January 16, 2018 Article in press: January 16, 2018 Published online: January 28, 2018

Abstract

The secosteroid hormone vitamin D has, in addition to its effects in bone metabolism also functions in the modulation of immune responses against infectious agents and in inhibiting tumorigenesis. Thus, deficiency of vitamin D is associated with several malignancies, but also with a plethora of infectious diseases. Among other communicable diseases, vitamin D deficiency is involved in the pathogenesis of chronic liver diseases caused by hepatitis B and C viruses (HBV, HCV) and high prevalence of vitamin D deficiency with serum levels below 20 mg/mL in patients with HBV and HCV infection are found worldwide. Several studies have assessed the effects of vitamin D supplementation on the sustained virological response (SVR) to interferon (IFN) plus ribavirin (RBV) therapy in HBV and HCV infection. In these studies, inconsistent results were reported. This review addresses general aspects of vitamin D deficiency and, in particular, the significance of vitamin D hypovitaminosis in the outcome of HBVand HCV-related chronic liver diseases. Furthermore,

Baishideng®

WJG | www.wjgnet.com

current literature was reviewed in order to understand the effects of vitamin D supplementation in combination with IFN-based therapy on the virological response in HBV and HCV infected patients.

Key words: Vitamin D; Vitamin D deficiency; Chronic liver disease; Hepatitis B virus infection; Hepatitis C virus infection; Liver cirrhosis; Hepatocellular carcinoma; Sustained virological response; Vitamin D supplementation

© **The Author(s) 2018.** Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Vitamin D deficiency is common and associated with chronic liver diseases. Several studies have ascribed a strong association of vitamin D insufficiency with unfavorable clinical courses and progression of liver disease in hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. However, any causal relation is so far not fully understood. In addition, there are inconsistent results with regard to the impact of vitamin D supplementation on the virological response to IFN-based therapy; this applies particularly to HCV infections. The present review addresses general aspects of vitamin D deficiency and focuses on its association with HBV and HCV infection. Furthermore, the effects of vitamin D supplementation in combination with IFN-based therapy on the virological response in HBV and HCV infected patients are reviewed.

Hoan NX, Tong HV, Song LH, Meyer CG, Velavan TP. Vitamin D deficiency and hepatitis viruses-associated liver diseases: a literature review. *World J Gastroenterol* 2018; 24(4): 445-460 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i4/445.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i4.445

INTRODUCTION

Vitamin D deficiency affects almost one billion people globally^[1]. Further to its crucial role in bone metabolism by supporting enteric absorption of calcium, magnesium, phosphate, iron and zinc, vitamin D has important non-skeletal effects which are involved in many biological processes. In addition to insufficient sun exposure, seasonality, place of residence, diet and the extent of skin pigmentation, which all affect vitamin D bioavailability, hepatitis B and C, the major causes of liver cirrhosis (LC) and hepatocellular carcinoma (HCC), may also contribute to vitamin D deficiency. Low vitamin D serum levels are associated with many human diseases^[2,3] and frequently observed in chronic liver diseases; vitamin D constraints contribute to disease progression in chronic hepatitis B^[4,5], chronic hepatitis $C^{[6,7]}$, but also to non-alcoholic fatty liver disease (NAFLD)^[8-10]. Protective properties of vitamin D in preventing HBV and HCV replication and in retarding clinical progression of HBV/HCV-related liver diseases

have been reported^[11-14].

The prevalence of vitamin D insufficiency in patients with HBV and HCV infection covers the broad range from 16% up to 100%^[5,15,16]. Several studies have demonstrated a strong association between vitamin D insufficiency and the clinical outcome and disease progression of HBV and HCV infections. This applies in particular to the onset of LC. However, the causal relation and applying pathophysiological mechanisms are not fully understood. Although increasing numbers of studies describe the influence of vitamin D deficiency on either the outcome of HBV/HCV-related liver disease or on the virological response to interferon (IFN)/ribavirin (RBV) treatment, the findings are still inconsistent^[6,17-23] (Ref. 19: ClinicalTrials.gov; identifier NCT01277601). Conflicting observations and conclusions apply also to several randomized clinical trials in which the effects of vitamin D supplementation were evaluated^[24-29].

Here, we address general aspects of vitamin D deficiency and, in particular, focus on its association with HBV and HCV-related chronic liver disease. We also review the effects of vitamin D supplementation in combination with IFN-based therapy on the virological response in HBV and HCV infected patients.

LITERATURE SEARCH

A systematic literature search was conducted using PubMed, MEDLINE and ClinicalTrials.gov (identifiers given where applicable). Search terms used in various combinations were "vitamin D", "vitamin D deficiency", "hepatitis B virus infection", "hepatitis C virus infection", "chronic liver disease", "liver cirrhosis" and "hepatocellular carcinoma". We did not restrict the search to a certain period of time. Thus, articles written in English and published in peer-reviewed journals describing associations of vitamin D deficiency with clinical outcomes or the effects of vitamin D in combination with IFN-based therapy on the virological response in HBV and HCV infected patients were included. Abstracts, letters and posters presented in conferences were not considered.

VITAMIN D: METABOLISM AND FUNCTION

Vitamin D was first identified as a prohormone early in the 20th century. It is a fat-soluble secosteroid and regulates skeletal and non-skeletal functions^[30]. Adequate vitamin D levels are required for bone growth and remodeling of osseous structures by osteoblasts and osteoclasts, thus protecting from osteoporosis^[30,31]. Vitamin D promotes the absorption of calcium, magnesium, phosphate, iron and zinc from the gut and maintains essential serum calcium and phosphate concentrations to warrant normal bone mineralization and to prevent hypocalcaemia.

Since the discovery of the vitamin D receptor (VDR)

the non-skeletal functions of vitamin D have gained attention. VDR is a member of the nuclear receptor family of transcription factors and is expressed on more than 35 types of solid tissues^[32], but also on macrophages as well as on T and B cells^[33,34]. Vitamin D is involved in physiological processes through VDR activation, including the regulation of immune responses, cell growth and cell differentiation^[35,36]. Therefore, vitamin D is considered a powerful modulator of pathophysiological mechanisms in several infectious diseases, cancers and metabolic disorders^[6,37-39].

Vitamin D occurs as vitamin D3 (25(OH)D3; cholecalciferol) and vitamin D2 (25(OH)D2; ergocalciferol). More than 90% of vitamin D3, the prevailing form of vitamin D, are produced in the skin by means of sunlight exposure, while the remainder is retrieved from dietary components^[3,30]. Vitamin D2 does not depend on sunlight and only minute amounts of vitamin D2 are derived from plants^[40]. Both vitamin D3 and D2 are inert. To become biologically active they need to be sequentially converted to their intermediate metabolite [calcidiol, 25(OH)D] and the final active form [calcitriol, 1,25(OH)₂D] by hydroxylation in the liver and the kidney^[1]. Hydroxylation of vitamin D is a process that introduces a hydroxyl group (-OH) into vitamin D2 and D3 in the liver to form 25-hydroxyvitamin D [25(OH)D]. The metabolites are further hydroxylated in the kidney to produce the active form calcitriol. The active form circulates as a hormone in the blood stream to regulate the concentrations of calcium and phosphate and to promote healthy growth and remodeling of bones^[41].

Precise quantification of calcitriol is problematic due to its short half-life and the serum concentrations that are 1000 times less compared to those of 25(OH)D. In contrast, 25(OH)D has a half-life of approximately three weeks, making it an appropriate and largely reliable indicator of the individual vitamin D status^[1,42].

An appropriate duration of exposure to ultraviolet B (UVB) radiation is crucial in cutaneous vitamin D production^[1,43], and a strong correlation exists between vitamin D serum levels, UVB exposure and geographical residence^[1,44,45]. As latitudes increase, disposable amounts of vitamin D decrease^[44]. At latitudes > 37°N and < 37°S, sunlight does not sufficiently induce vitamin D synthesis in the skin, in particular during the winter months^[46]. Latitude and UVB exposure are, however, not exclusive indicators of vitamin D deficiency. Other factors are age, nutritional components and skin pigmentation as well as certain chronic pathological conditions^[1,43,45].

VITAMIN D DEFICIENCY

A standard definition of vitamin D deficiency does not exist. Formerly, the vitamin D status was assessed empirically, *e.g.*, through overt diagnoses of childhood rickets and osteomalacia in adults^[47,48]. Today, the recognition of deficiency relies on quantification of vitamin D serum levels, representing the current supply rather than functional activity and, thus, not sufficiently supporting a standard definition of vitamin D deficiency.

Serum 25(OH)D levels are inversely correlated with parathyroid hormone (PTH) levels. Low levels of vitamin D stimulate PTH production and, consequently, PTH may be considered a surrogate marker in the diagnosis of vitamin D deficiency. However, high vitamin D levels do not always lead to decreased PTH levels. If vitamin D values are above approximately 30 ng/mL, serum PTH levels will be at a low steady level^[49,50]. Thus, current and widely accepted definitions of vitamin D levels include deficiency (< 20 ng/mL), insufficiency (20-30 ng/mL), and sufficiency (> 30 ng/mL)^[1].

Vitamin D deficiency is associated with a wide spectrum of diseases including not only bone disorders, but also several autoimmune and infectious diseases, asthma and malignancies as well as psychiatric conditions^[1,51,52]. Vitamin D inadequacy involves both deficiency and insufficiency and constitutes an underestimated health factor in many populations^[53]. In developed countries, vitamin D deficiency is very common, with almost half of the population affected^[1]. Moreover, global assessment of the vitamin D status in postmenopausal women with osteoporosis showed that 24% had severe deficiency (< 10 ng/mL), with the highest prevalences reported in central and southern Europe^[42]. A similar trend was reported in a crosssectional, observational study conducted at 61 sites across the United States, indicating that 52% and 18% among 1536 postmenopausal women receiving osteoporosis treatment had 25(OH)D levels of less than 30 ng/mL and 20 ng/mL^[49], respectively.

Vitamin D deficiency is common in western and northern countries, but also in Africa and Asia^[4,54-58]. Serum levels in Asian populations were assessed in three large cross-sectional studies in China (n = 3262)^[56], South Korea (n = 6925)^[55], and in Thailand (n = 2641)^[54]. These studies defined deficiency as levels of < 20 ng/mL and indicated highest prevalences of deficiency in China (69%) and in South Korea (males 47%; females 65%)^[55]. In contrast, a significantly lower prevalence of deficiency of 6% only was observed in Thailand^[54]. This results most likely from its geographical location close to the equator. In Vietnam, recent studies with, however, smaller sample sizes found that vitamin D deficiency prevalences range from 16 to 63%^[4,59,60].

Vitamin D deficiency in African populations may be attributed to the skin pigmentation, traditional full-length clothing, and the occurrence of infectious diseases (tuberculosis, HIV/AIDS, malaria) which are associated with deficiency^[61-65]. A cross-sectional analysis of adults in a National Health and Nutrition Examination Survey (n = 8415) conducted in the United States reported that vitamin D insufficiency among African Americans was as high as 81%, but only 28% in individuals of European descent^[66]. Other studies also consistently indicate that vitamin D deficiency is more prevalent in immigrants from Africa to the United States and to Europe^[67,68]. These reports underline that skin pigmentation is an

important factor in reducing vitamin D production.

Sub-Saharan Africa and several parts of Asia bear a heavy burden of communicable diseases, which may affect the vitamin D status. Several studies investigated the causal effect of vitamin D deficiency on the severity and progression of infectious diseases, in particular of tuberculosis^[69-71] and respiratory tract infections^[72-74]. Recently, vitamin D deficiency has also been implicated in susceptibility to viral hepatitis and the severity and progression of viral hepatitis-associated chronic liver diseases^[4,12,75-77].

VITAMIN D DEFICIENCY IN CHRONIC HEPATITIS B AND C

Whether low vitamin D levels are the cause or the result of certain diseases, including chronic viral liver diseases, is not clear. Based on 290 prospective and intervention studies, a systematic review has recently concluded that vitamin D deficiency might be a result and a biological marker of deteriorating health, driving 25(OH)D to low concentrations, rather than a cause of disease^[2]. Vitamin D deficiency may contribute to liver damage through increased inflammation and fibrosis^[6,39]. Other studies have shown that vitamin D deficiency is clearly associated with unfavorable clinical outcomes and accelerated progression of chronic liver diseases due to viral hepatitis, alcohol consumption and NAFLD^[4,8,10,12,60,78-82]. Although vitamin D is associated with NAFLD, a recent study showed that vitamin D insufficiency was not associated with the presence of NAFLD^[83]. Relationship between vitamin D deficiency and the pathogenesis of NAFLD has been systematically reviewed^[10], and that vitamin D could be used as a supplement in the management of NAFLD. However, clinical trials concluded that vitamin D supplementation has a less impact on the NAFLD pathogenesis such as hepatic fat, injury, and hepatic steatosis^[84,85]. Notably, vitamin D deficiency may also contribute to reduced antiviral responses in IFN/RBV treatment of hepatitis B and $C^{[6,19,28,86]}$. Comparable studies with regard to more recent treatment regimens such as IFN-free and directacting antiviral agents are not available so far.

Worldwide, approximately 257 and 130-150 million people are affected by chronic hepatitis B and C, respectively, making it a significant cause of viral infection-related fatality^[87,88]. A high prevalence of vitamin D deficiency occurs in almost all chronic liver diseases and their progression, irrespective of their etiology^[9,19,78]. Based on results of studies on vitamin D insufficiency and deficiency in chronic hepatitis B and C, serum vitamin D levels of < 20 ng/mL range from 16%-100%^[5,15,16] (Tables 1 and 2). Although high prevalences of vitamin D insufficiency are observed both in healthy populations and in patients with viral hepatitis, significantly higher rates of deficiency were found in hepatitis patients compared to controls in several studies^[4,6,80].

Vitamin D deficiency and chronic hepatitis B

So far, most studies on associations of HBV-related liver diseases with vitamin D deficiency were cross-sectional studies (Table 1). In such study designs, any fluctuation of vitamin D levels over the course of HBV infection cannot be assessed and a causative association of vitamin D levels with HBV-related liver diseases cannot reliably be established.

Vitamin D is significantly associated with virus replication in chronic HBV infection. Recently, several studies have shown that insufficient vitamin D levels most likely fail to suppress HBV replication and contribute to poor clinical courses^[4,11,12,89]. Vitamin D levels are positively correlated with albumin levels and platelet counts and, inversely, with ALT levels during the active phase of hepatitis B^[19,39,78]. Serum levels of < 10 ng/mL can be predictive for low serum albumin levels and the severity of chronic liver disease^[22,75]. However, other studies have reported that vitamin D insufficiency was not correlated with liver function parameters, possibly due to the fact that vitamin D levels depend also on the composition of study cohorts and the study designs^[4,11]. Liver disease progression in patients with chronic hepatitis B appears also to be influenced crucially by distinct viral factors, in particular by the infecting HBV genotypes. Genotypes C and B are the major causes of chronic hepatitis B and subsequent LC and HCC in East Asia^[90-92]. Recent studies indicate that patients infected with genotype B had a higher prevalence of vitamin D insufficiency than those infected by the C genotype^[23,93].

To the best of our knowledge, there are only two studies which have investigated the association of baseline vitamin D levels with sustained virological response (SVR) to nucleoside/nucleotide analogues (NUC) or IFN α in addition to treatment with NUC in chronic hepatitis B. It was shown that the baseline levels (cutoff value: 30 ng/mL) can predict the virological response at week 104 (67% in the insufficiency group vs 82% in the sufficient group, P < 0.001) in patients with chronic hepatitis B treated with NUC^[29]. Chan et al^[19], however, concluded, inconsistent with the findings given in Ref. 29, that baseline vitamin D levels are not associated with more favorable treatment outcomes in patients treated with either tenofovir disoproxil fumarate (TDF) plus Peg-IFN α or TDF or Peg-IFN α monotherapy^[19]. Further prospective studies assessing associations of baseline vitamin D levels and treatment outcomes in chronic hepatitis B, particularly in the IFN α based therapy, are worth to be conducted.

Association of vitamin D deficiency with SVR to antiviral therapy in chronic hepatitis C patients

In several studies the role of the vitamin D status as well as the effects of vitamin D supplementation on the efficacy of IFN α plus RBV in the treatment of chronic hepatitis C have been investigated (Table 2). Most studies showed high prevalences of vitamin D deficiency and significant associations of low baseline

Table 1 Represei	ntative studies o	on vitamin D deficier	ncy in chronic hepatitis B	virus p	patients	
Study population Diagnosis Sample size (<i>n</i>)	Study design	Length of follow-up	Vitamin D cutoff (ng/mL)	(%)	Main results	Ref.
China CHB (<i>n</i> = 560)	Multicenter, randomized, controlled	104 wk from initiation of antiviral treatment	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency	21 55 24	Vitamin D insufficiency highly prevalent in treatment-naïve patients with chronic hepatitis B Baseline levels predict virologic response at week 104 after treatment initiation (67% in the insufficiency group vs 82% in the sufficient group)	Yu et al ^[29] , 2017
China CHB (<i>n</i> = 133)	Cross-sectional	NA	< 14: severe deficiency ≥ 14: deficiency < 30 sufficiency	27 66 7	Vitamin D deficiency significantly associated with HBV genotype B	Zhu et al ^[93] , 2016
Vietnam CHB (<i>n</i> = 165) LC (<i>n</i> = 127) HCC (<i>n</i> = 108)	Cross-sectional	NA	< 10: severe deficiency < 20: deficiency < 30: insufficiency ≥ 30: sufficiency	10.4 41.5 32.4 15.7	Vitamin D insufficiency frequent among HBV patients Reduced vitamin D levels significantly associated with clinical progression of LC Vitamin D levels and HBV DNA loads strongly and inversely correlated	Hoan <i>et al^[4],</i> 2016
China CHB (<i>n</i> = 115) LC (<i>n</i> = 115) HC (<i>n</i> = 115)	Cross-sectional	NA	< 10: deficiency < 20: insufficiency ≥ 20: sufficiency	83 17 0	Vitamin D levels significantly lower in LC compared to CHB and HC groups (<i>P</i> < 0.001) Child-Pugh score independently associated with vitamin D deficiency (cutoff < 10 ng/mL)	Zhao <i>et al^[5],</i> 2016
South Korea CHB $(n = 110)$ Other CLD $(n = 97)$	Cross-sectional	NA	< 10: deficiency < 20: insufficiency ≥ 20: sufficiency	34.8 45.4 19.8	Vitamin D deficiency independently associated with advanced liver fibrosis	Ko <i>et al</i> ^[154] , 2016
Iran CHB (<i>n</i> = 84)	Cross-sectional	NA	< 10: deficiency < 20: insufficiency ≥ 20: sufficiency	17.9 34.5 47.6	No significant association of vitamin D levels in treated and treatment-naïve patients	Sali <i>et al</i> ^[155] , 2016
Multicenter in Europe, Asia and North America CHB (<i>n</i> = 737)	Randomized, open-label, active- controlled clinical trial	48 wk of TDF + PegIFN 16 wk of TDF + PegIFN followed by 32 wk of TDF 48 wk PegIFN or 120 wk of TDF	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency	58 35 7	Reduced vitamin D levels highly prevalent among untreated CHB patients Low baseline levels of vitamin D associated with high HBV DNA loads, abnormal ALT at week 48 independent of treatment groups Baseline vitamin D levels not associated with treatment outcomes	Chan <i>et al</i> ^[19] , 2015
China CHB (<i>n</i> = 426)	Cross-sectional	NA	< 32 insufficiency ≥ 32 sufficiency	82 18	Vitamin D deficiency common among patients with CHB and associated with adverse clinical outcomes	Wong <i>et al</i> ^[78] , 2015
China CHB (<i>n</i> = 242)	Cross-sectional	NA	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency	8.7 31.4 60	Higher prevalence of vitamin D insufficiency in HBV genotype B patients than in genotype C patients Vitamin D levels not associated with HBV DNA levels or the stage of fibrosis in CHB patients	Yu <i>et al</i> ^[23] , 2015
China CHB (<i>n</i> = 133)	Cross-sectional	NA	< 14: deficiency < 30: insufficiency ≥ 30: sufficiency	27 66.2 6.8	Higher prevalence of vitamin D insufficiency in HBV genotype B patients than in genotype C patients Vitamin D levels not associated with other clinical parameters	Zhu <i>et al</i> ^[93] , 2016
Germany CHB (<i>n</i> = 203)	Cross-sectional	NA	< 10: deficiency < 20: insufficiency ≥ 20: sufficiency	34 47 19	HBV DNA viral loads as strong predictor of low vitamin D levels in CHB patients	Farnik <i>et al</i> ^[12] , 2013

Egypt	Cross-sectional	NA	< 10: deficiency	OBI:	Vitamin D levels significantly	Mashaly <i>et al</i> ^[156] ,
OBI (<i>n</i> = 16)			< 30: insufficiency	12.5	higher in OBI than in CHB	2016
CHB (n = 52)			\geq 30: sufficiency	CHB:	patients	
				40.4	Serum level of vitamin D	
				OBI:	inversely correlated with HBV	
				62.5	DNA loads	
				CHB:		
				59.6		
				OBI: 25		
				CHB: 0		
China	Cross-sectional	NA	< 10: deficiency	13.3	Vitamin D levels negatively	Chen et al ^[11] , 2015
CHB (n = 128)			< 20: insufficiency	61.7	correlated with HBV DNA loads	
			\geq 20: sufficiency	25	Effective antiviral therapy might	
					increase the level of vitamin D in	
					CHB patients	
Iran	Cross-sectional	NA	< 10: deficiency	58	Vitamin D levels inversely	Mohamadkhani et
CHB (n = 173)			< 20: insufficiency	39	correlated with HBV DNA levels	al ^[89] , 2015
			\geq 20: sufficiency	3		

CHB: Chronic hepatitis B; LC: Liver cirrhosis; HCC: Hepatocellular carcinoma; CLD: Chronic liver disease; OBI: Occult hepatitis B infection; NA: Not applicable.

levels of 25(OH)D at the time of antiviral therapy initiation and lower odds of achieving SVR, which is defined as undetectable serum HCV RNA level at 24 wk after cessation of treatment. However, other studies reported rather inconsistent and partly contradicting results^[7,16,20,94], possibly due to heterogeneity in patient inclusion criteria (HCV infection or HIV/HCV coinfection, ethnicity) and characteristics of vitamin D assessment (seasonality, cutoff values, laboratory methods)^[86].

To date, five meta-analyses have described an association of baseline vitamin D levels with SVR^[28,86,95-97] (Table 2). One study showed a significant association of SVR with vitamin D deficiency. Low odds of achieving SVR rates were found in patients with vitamin D levels of < 20 ng/mL compared to patients with levels of \geq 20 ng/mL (OR = 0.5, 95%CI: 0.3-0.9)^[86]. A similar result was found in another study, which reported high rates of SVR in HCV patients with vitamin D levels of \geq 30 ng/mL (OR = 1.6; 95%CI: 1.1-2.2) and in patients supplemented with vitamin D (OR = 4.6; 95%CI: 1.7-12.6), regardless of viral genotypes^[28]. In contrast, Kitson et al^[95] reported that baseline 25(OH)D levels were not associated with SVR in Peg-IFN/RBV treatment, also regardless of the viral genotype involved^[95]. The main differences in these metaanalyses are the study designs and patient selection strategies, as, for instance, studies involving patients with HCV/HIV coinfections were excluded in the third meta-analysis, but included in the other meta-analyses.

When looking at the effect of vitamin D supplementation as an adjuvant to IFN α /RBV therapy for treatment of chronic HCV infections, some evidence indicates that vitamin D supplementation improves the SVR (Table 2). SVR rates in patients supplemented with vitamin D depend on the infecting HCV genotypes, and range from 54%-86% for HCV genotype 1 (18.5% and 42% in the non-supplemented control groups)^[17,98] up to 95% for HCV genotype 2 and 3 infections (77% in the non-supplemented control group)^[21]. A meta-analysis including eleven studies reported high odds of SVR (OR

= 4.6, 95%CI: 1.7-12.6) in vitamin D supplemented groups compared to non-supplemented patient groups, regardless of genotypes^[28]. A retrospective study in Italy has assessed the effect of supportive vitamin D treatment in combination with antiviral therapy (IFN α plus RBV) in recurrent HCV infections of patients who had undergone liver transplantation. Vitamin D supplementation could increase SVR rates significantly^[98]. In contrast, other studies showed inconsistent results for the HCV genotypes 4 and $1^{[15]}$. Randomized prospective studies with small sample sizes and lacking a placebo-controlled arm challenge the application of vitamin D as an adjuvant substance in order to enhance SVR^[15,17,21,26]. Although vitamin D may be relevant in the treatment of chronic hepatitis C, further randomized, placebo-armed studies are required in order to confirm whether vitamin D supplementation in fact improves the SVR in combination with IFN in HCV infections.

VITAMIN D AND VIRAL HEPATITIS-RELATED LIVER CIRRHOSIS

In an assessment of liver cirrhosis (LC) mortality in 187 countries during the period from 1980 to 2010, global fatalities increased from approximately 676000 in 1980 to more than 1 million in 2010, accounting for approximately 2% of all causes of death^[99]. There is growing evidence that vitamin D deficiency is associated with progression of LC caused by various etiologies, mainly by HBV and HCV infection, but also by alcoholic and NAFLD^[4,10,39,75,100-104]. Vitamin D deficiency reflects also hepatic dysfunction and is associated with mortality in patients with LC, regardless of underlying causes^[102,104].

The association of vitamin D with LC has been more intensively discussed in chronic hepatitis C and in NAFLD patients, rather than in chronic hepatitis B. A recent meta-analysis included seven studies in order to assess vitamin D serum levels and advanced liver

Study population Diagnosis	Study design	Length of follow-up	Vitamin D cutoff (ng/mL)	(%)	Main results	Ref.
Sample size (<i>n</i>) Study objective						
Italy CHC (<i>n</i> = 197) HCV genotype 1	Cross-sectional	NA	< 30: deficiency \geq 30: sufficiency	73 27	Low vitamin D linked to severe fibrosis and low SVR in IFN-based treatment	Petta <i>et al</i> ^[6] , 2010
controls (<i>n</i> = 49) United States	Prospective	12 wk after cessation	< 20: deficiency	43	Vitamin D deficiency associated	Backstedt <i>et al</i> ^[18] ,
CHC $(n = 218)$	Trospective	of antiviral therapy	< 30: insufficiency	33	with HCV-related LC and with	2017
LC (n = 123) Non-LC (n = 95)		SVR12: defined as a viral load undetectable or below the level of detection at week 12 after cessation of antiviral treatment	≥ 30: sufficiency	24	hepatic function No significant association between SVR12 and serum vitamin D levels at baseline	
Switzerland	Case-control	NA	< 30: deficiency	74	No significant association between	Lange et al ^[20] , 2012
CHC (n = 269) HCV genotypes 1-4			\geq 30: sufficiency	26	SVR and serum vitamin D levels irrespective of genotypes	
Spain	Cross-sectional	NA	< 20: deficiency	36	Vitamin D deficiency not related	Ladero <i>et al</i> ^[157] ,
CHC genotypes 1-4 (<i>n</i> = 182)			< 30: insufficiency \geq 30: sufficiency	41 23	to biochemical and virological variables or to the stage of fibrosis stage	2013
Northern Italy	Prospective	24 wk after cessation	< 20: deficiency	46.4		Bitetto <i>et al</i> ^[25] , 201
CHC (<i>n</i> = 211)	-	of antiviral therapy	\geq 20: sufficiency	53.6	were 50%, 61%, and 69% in CHC	
HCV genotypes 1-5		SVR24: defined as a viral load			patients with baseline vitamin D levels of $\leqslant 10$ ng/mL, 10-20 ng/mL,	
		undetectable or below the level of detection at week 24 after cessation of antiviral treatment			and > 20 ng/mL, respectively	
Multicenter study, United States Cases (histological progression or clinical decompensation; (<i>n</i> = 129), controls (<i>n</i> = 129)	Nested case- control study	Over 4 yr	At baseline: cases: 44.8 controls, 44.0	Not stated	No difference in vitamin D levels in patients with and without progression of HCV-associated liver disease	Corey <i>et al</i> ^[158] , 201
Multicenter study, Japan CHC (<i>n</i> = 247) HCV genotype 1b	Case-control	NA	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency At baseline: 22(6–64)		NS5A Y93H and L31M resistance- associated variants associated with vitamin D deficiency	Okubo <i>et al</i> ^[159] , 2016
Multicenter study, France HCV-HIV coinfection (n = 189)	Cross-sectional	NA	< 30: deficiency ≥ 30: sufficiency	85 15	Low serum vitamin D levels correlated with liver fibrosis as assessed by FibroTest No association between SVR rate to IFN-based therapy and baseline vitamin D levels	Terrier <i>et al</i> ^[7] , 201
Japan CHC (<i>n</i> = 619)	Cross-sectional	NA	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency	47 36.7 16.3	Vitamin D levels influenced by gender, age, hemoglobin level, albumin and seasonality	Atsukawa <i>et al</i> ^[160] 2015
Egypt CHC (<i>n</i> = 70) controls (<i>n</i> = 50)	Cross-sectional	NA	At baseline Cases: 18.6 Control: 56	NA	Vitamin D decreased in HCV patients	Reda <i>et a</i> l. ^[161] , 201
Australia CHC (<i>n</i> = 274) HCV genotype 1	Case-control	NA	< 20: deficiency < 30: insufficiency ≥ 30: sufficiency	16 48 36	Baseline vitamin D levels not associated with SVR or fibrosis stage in HCV genotype 1 but deficiency associated with high activity	Kitson <i>et al</i> ^[16] , 201
Japan CHC (<i>n</i> = 177)	Prospective	24 wk after cessation of antiviral therapy	Not stated	NA	SVR24 rates: 65% in patients with vitamin D levels > 18 ng/mL vs 38.5% in patients with vitamin D levels of < 18 ng/mL	Atsukawa <i>et al</i> ^[162] 2014

Egypt	Randomized	Until 72 wk from	< 20: deficiency	95	No impact of vitamin D	Esmat <i>et al</i> ^[15] , 2015
CHC (n = 101) HCV genotype 4 Vitamin D supplementation group	prospective	start of antiviral therapy SVR was assessed at week 72 from	≥ 20: insufficiency≥ 30: sufficiency	5 0	supplementation on SVR in HCV genotype 4 patients No correlation between vitamin D levels and stage of liver fibrosis	,
(<i>n</i> = 50), controls (<i>n</i> = 51) Israel CHC (<i>n</i> = 72)	Randomized prospective	initiation of antiviral treatment 24 wk after cessation of antiviral treatment	< 10: severe deficiency < 20: insufficiency	21 59	Addition of vitamin D to Peg- IFN α /RBV therapy improves	Abu-Mouch <i>et al</i> ^[17] , 2011
HCV genotype 1 Vitamin D supplementation group (n = 36), controls $(n = 36)$	II		≥ 20: sufficiency	20	SVR24 (86% vs 42%)	
Israel CHC (<i>n</i> = 50) HCV genotype 2 and 3 Vitamin D	Randomized prospective	24 wk after cessation of antiviral treatment	< 12: deficiency < 32: insufficiency ≥ 32: sufficiency	26 54 20	Addition of vitamin D to IFN α / RBV therapy improves SVR24 (95% in treated group vs 77% in controls)	Nimer <i>et al</i> ^[21] , 2012
supplementation group $(n = 20)$, controls $(n = 30)$						
France CHC ($n = 516$) HCV genotype 1	Randomized controlled	Until 72 wk from initiation of antiviral therapy	Not stated	Not stated	No impact of vitamin D levels on efficacy of antiviral therapy in naïve genotype 1 HCV patients	Belle <i>et al</i> ^[24] , 2017
Egypt	Randomized	24 wk after cessation	< 12: deficiency	33.3	Addition of vitamin D to	Eltayeb et al ^[26] ,
CHC ($n = 66$) Vitamin D group ($n = 20$)	prospective	of antiviral treatment	< 32: insufficiency \geq 32: sufficiency	43.3 23.4	conventional Peg-IFNα/RBV therapy improved SVR24	2015
controls (n = 30) Germany CHC (n = 468) HCV genotypes 1-3	Retrospective	24 wk after cessation of antiviral treatment	< 30: deficiency ≥ 30: sufficiency	66 34	Vitamin D deficiency correlated with SVR in HCV genotype 2 and 3 patients (50% vs 81%: SVR24 for patients with and without severe vitamin D deficiency)	Lange <i>et al</i> ^[80] , 2011
Taiwan CHC (<i>n</i> = 132) HCV genotype 1-2	Retrospective	SVR was assessed at week 48 (HCV genotype 1) and at week 24 (HCV genotype 2) from initiation of antiviral treatment	Not stated	Not stated	Vitamin D can suppress HCV replication in hepatic cell lines Vitamin D serum levels associated with both SRV and RVR to Peg- IFN α based therapy	Jee-Fu <i>et al</i> ^[13] , 2017
Germany CHC (n = 398) HCV genotype 1	Retrospective	SVR was assessed at week 24 from initiation of antiviral treatment	At baseline 18.7 (3-84.3)	Not stated	Addition of vitamin D to Peg- IFNα/RBV therapy for treatment- naïve patients with chronic HCV genotype 1: no significant association with SVR	Grammatikos <i>et</i> al ^[94] , 2014
Austria HCV-HIV coinfection (n = 65)	Retrospective	24 wk after cessation of antiviral treatment	< 10: deficiency < 30: insufficiency ≥ 30: sufficiency	57 23 20	Low vitamin D levels may impair virological response to Peg- IFNα/RBV therapy, especially in difficult-to-treat patients	Mandorfer <i>et al</i> ^[163] , 2013
Italy CHC ($n = 42$) Vitamin D supplementation group ($n = 15$) controls ($n = 27$)	Retrospective	SVR was assessed at week 48 from initiation of antiviral treatment	< 10: severe deficiency < 20: insufficiency ≥ 20: sufficiency	Not stated	Vitamin D supplementation improves SVR rate following Peg-IFNα/RBV therapy (54% in vitamin D group vs 18.5% in control group)	Bitetto <i>et al</i> ^[98] , 2011a
Multicenter study, United States CHC (<i>n</i> = 1292)	Retrospective	24 wk after cessation of antiviral treatment	< 12: severe deficiency < 20: insufficiency ≥ 20: sufficiency	19 48 33	Higher vitamin D levels not associated with SVR in Peg-IFNα/ RBV therapy	Loftfield <i>et al</i> ^[27] , 2016
HCV genotype 1 Meta-analysis To assess vitamin D levels related to ALF and/or SVR (<i>n</i> = 3755) (11 studies for SVR, 7 studies for ALF)	Meta-analysis	NA	< 10: severe deficiency < 20: deficiency < 30: insufficiency ≥ 30: sufficiency	Not stated	Low vitamin D levels related to ALF Low vitamin D levels at baseline in CHC patients were associated with a higher likelihood of having ALF and lower odds of achieving SVR	Garcia-Alvarez <i>et</i> al ^[86] , 2014

Meta-analysis To clarify any association between baseline vitamin D levels and SVR ($n =$ 2605) (11 studies)	Meta-analysis	NA	Not stated	NA	Baseline vitamin D levels not associated with SVR in Peg- IFNa/RBV therapy, regardless of genotype Effect of vitamin D supplementation on SVR to be determined	Kitson <i>et al</i> ^[95] , 2014
Meta-analysis To assess the association of vitamin D levels with the severity of liver fibrosis in CHC ($n = 8321$) (6 studies)	Meta-analysis	NA	Not stated	NA	Lower serum vitamin D is a risk factor for severity of liver fibrosis in chronic HCV patients.	Luo <i>et al^[97]</i> , 2014
Meta-analysis To evaluate the association between vitamin D levels and SVR in CHC (<i>n</i> = 1575) (8 observational and 3 interventional studies)	Meta-analysis	NA	At baseline 17-43 ng/mL	NA	High SVR rates observed in patients with vitamin D levels > 30 ng/mL High SVR rates observed in CHC patients supplemented with vitamin D, regardless of genotype	Villar <i>et al</i> ^[28] , 2013
Meta-analysis To access the association between vitamin D supplementation and SVR rate to PEG-IFN/ RBV in CHC (<i>n</i> = 548) (7 studies)	Meta-analysis	NA	NA	NA	Vitamin D supplementation significantly increased SVR rates to Peg-IFNα/RBV at 24 wk	Kim <i>et al</i> ^[96] , 2017

CHC: Chronic hepatitis C; LC: Liver cirrhosis; ALF: Acute liver fairlure; IFNa: Interferon alpha; RBV: Ribavirin; Peg-IFN: Pegylated interferon; SVR: Sustained virolagical response; RVR: Rapid virological response; NA: Not applicable.

fibrosis in patients with chronic hepatitis C. Low vitamin D levels were related to advanced fibrosis, with two cutoff values set of either 10 ng/mL (OR = 2.5, 95%CI: 1.2-4.7) or 30 ng/mL (OR = 2.2, 95%CI: 1.2-4.0)^[86]. With regard to chronic hepatitis B, two studies have recently reported a strong and inverse correlation of serum vitamin D levels with progression of $LC^{[45]}$. Abnormal vitamin D metabolism in LC was described almost four decades ago^[105,106]. It was mainly attributed to impaired hydroxylation resulting from impaired liver function^[100]. In LC patients, vitamin D deficiency is also caused by dietary lacks, malabsorption and decreased hepatic production of vitamin D binding protein^[75,107,108].

Vitamin D is involved in inhibition of inflammation and liver fibrosis, substantiated by the observation that VDR knockout mice spontaneously develop hepatic fibrosis^[77,109]. The function of vitamin D in mesenchymal multipotent cells is to decrease expression of collagen and profibrotic factors [transforming growth factor beta 1 (TGF β 1) and serpin family E member 1 (SERPINE1)]^[110], suggesting vitamin D supplementation as preventive and supportive treatment in $LC^{[110]}$. Furthermore, vitamin D directly inhibits the proliferation and profibrotic phenotype of hepatic stellate cells and reduces thioacetamide-induced liver fibrosis in an animal model^[109]. There are several lines of evidence to support an inverse association of vitamin D levels with liver fibrosis induced by chronic viral hepatitis^[4,100,111,112]. More specifically, a high expression of hepatic Toll-like receptors (TLR2 and TLR4) can result in the production of tumor necrosis factor alpha (TNF α) in chronic hepatitis C^[113]. This cytokine is shown to modulate fibrosis^[114,115]. In this context, vitamin D might elicit an anti-inflammatory mechanism by downregulating the expression of TLR2 and TLR4 molecules. Recent *in-vivo* studies have documented on the reduced production of TNF α by monocytes, macrophages and myeloid dendritic cells treated with vitamin D^[116,117]. Corroborating the findings, a yet another study show that circulating vitamin D levels inversely correlate with TLR2 and TLR4 expression^[118].

Fibrotic conditions appear to be reversible and even curable^[119,120] when interventions are initiated at early stages^[121]. Several observations have underlined the importance of vitamin D supplementation in the treatment of chronic liver diseases. However, so far there have been no randomized prospective trials to assess the role of vitamin D supplementation in the treatment of LC.

VITAMIN D DEFICIENCY AND HEPATITIS-RELATED HEPATOCELLULAR CARCINOMA

Both incidences and mortality rates of certain cancers are higher in northern latitudes, where sunlight exposure is rather scarce^[122,123]. Sound epidemiologic studies have shown that vitamin D deficiency is associated with an increased risk of colon, breast, prostrate, and ovarian cancers^[124-130]. Not much information is, however, available on an association

of serum vitamin D levels with either the risk or the incidence and mortality rates of HCC caused by chronic viral hepatitis.

In a recent cross-sectional study from Vietnam a high prevalence of vitamin D deficiency was observed in HBV-related HCC patients compared to healthy individuals, and vitamin D deficiency was associated with unfavorable courses of the disease^[4]. In chronic hepatitis C, distinct single nucleotide polymorphisms in genes related to the vitamin D signaling pathway, including cytochrome P450 family 2 subfamily R member 1 [CYP2R1, encoding the liver 25-hydroxylase (rs1993116, rs10741657)], 7-dehydrocholesterol reductase [DHCR7, encoding the 7-dehydrocholesterol reductase (rs7944926, rs12785878)] were investigated and an association between the human genotypes and reduced 25(OH)D3 serum levels in the development of HCV-related HCC was observed^[131]. Another study indicated that vitamin D might be a potential biomarker for the development of HCC in patients with chronic hepatitis C^[132]. In addition, a large prospective cohort study examined the association between serum vitamin D levels and the incidence of liver cancer among 520000 participants in ten European countries^[76]. During more than 10 years of follow-up, a total of 204 HCC cases, mostly due to HBV and HCV infection, were identified. Serum levels of 25(OH)D were inversely associated with the risk of HCC. This finding was in agreement with another prospective study showing that lower serum 25(OH)D3 concentrations in 200 HCC patients, also caused largely by HBV and HCV infection, were associated with poor outcomes and end stages of HCC, classified according to the BCLC (Barcelona Clinic Liver Cancer) staging system and the Cancer of the Liver Italian Program (CLIP) score^[133]. Overall survival rates of HCC patients with serum 25(OH)D3 levels of ≤ 10 ng/mL were significantly lower than those of patients with serum levels > 10 ng/mL. In addition, the levels were independently associated with the overall survival in a multivariate analysis^[133]. Apparently, vitamin D deficiency is associated with tumor progression and a poor prognosis in HCC patients. Although the results suggest this role of vitamin D in HCC, it remains to be determined further whether the association holds and is causal.

VITAMIN D AND ITS ANALOGUES IN HCC PREVENTION

Vitamin D has numerous additional functions in the prevention of cancer due to its antiproliferative, proapoptotic, differentiating, antiangiogenic and antiinvasive properties^[134-136]. Several *in vitro* and *in vivo* studies have suggested that vitamin D inhibits growth of HCC cell lines and effectively suppresses DNA damage^[137-139]. Data from several preclinical studies have assigned an important role of vitamin D in prevention and treatment of certain malignancies^[135,140,141]. Furthermore, in a randomized clinical trial (ClinicalTrials.gov; identifier NCT00352170) vitamin D and calcium supplementation have substantially reduced the risk of cancer^[142]. These observations have raised increasing awareness of ensuring adequate vitamin D levels in order to reduce the risk of neoplasms.

The vitamin D analogues paricalcitol, doxercalciferol and tacalcitol have meanwhile been approved for application in patients with osteoporosis and psoriasis^[143] and analogues of vitamin D receptor activators such as maxacalcitol (OCT), 16-ene analogs, 19-nor analogs, LG190119 have been tested in preclinical studies on diabetes, several cancers (e.g., leukemia, colon, breast, prostate, pancreatic cancer)^[144-146]. With regard to HCC, the vitamin D analogue seocalcitol, which has proven effects in animal models of $\ensuremath{\mathsf{cancer}}^{[147\text{-}149]}$ has been investigated in patients with inoperable HCC in a phase II clinical trial (ClinicalTrials.gov; identifier NCT00051532)^[150]. Seocalcitol may be effective in the treatment of HCC, especially in early stages when prolonged treatment can be instituted. In addition, seocalcitol is 50-200 times more effective in inhibiting proliferation and differentiation of human cancer cell lines than natural vitamin D3^[151].

In a phase 1 clinical trial the safety of high doses of vitamin D administered in lipiodol and directly injected into the hepatic artery of 8 patients with refractory HCC was evaluated^[152]. Lipiodol is an oily substance consisting of polyunsaturated esters enriched in iodine used as a vector for chemoembolization or internal radiotherapy in unresectable HCCs^[153]. Although this study was not specifically designed as a pilot study of vitamin D efficacy in HCC, the results showed a certain stabilization of tumor marker levels, suggesting some efficacy of vitamin D^[152]. Another clinical trial (ClinicalTrials.gov; identifier NCT01575717) is currently performed to assess the effect of two different doses of vitamin D3 (2000 IU vs 4000 IU) on serum 250HD levels in HCC patients on liver transplant lists. Nevertheless, so far, there are no approved vitamin D analogues available for supportive HCC treatment.

CONCLUSION

Vitamin D deficiency is very common and frequently observed in HBV- and HCV-associated chronic liver diseases. It negatively affects the clinical courses and promotes progression of liver diseases, but causal relations are still not fully understood. Several lines support that sufficient vitamin D levels play an important role during antiviral treatment of HBV and HCV infections. However, the effect of vitamin D supplementation in combination with IFN-RBV based therapy on virological responses is still unclear. Various non-skeletal effects of vitamin D, including antiinflammatory, antifibrotic and antitumor properties have emphasized an association of vitamin D deficiency with unfavorable liver disease outcomes, in particular, liver cirrhosis. There is currently no approved

recommendation for vitamin D supplementation and vitamin D analogues as supportive adjuvant treatment regimes in viral hepatitis and related chronic disorders. Further randomized, placebo-armed studies need to be performed in order to confirm whether supplementation of vitamin D or vitamin D analogues improve SVRs in combination with specific antiviral treatment strategies in HBV or HCV infections.

ACKNOWLEDGMENTS

Hoang Van Tong gratefully acknowledges financial support from Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 108.02-2017.15. Thirumalaisamy P Velavan acknowledges the support from Federal Ministry of Education and Research, Germany (BMBF01DP17047).

REFERENCES

- 1 Holick MF. Vitamin D deficiency. *N Engl J Med* 2007; **357**: 266-281 [PMID: 17634462 DOI: 10.1056/NEJMra070553]
- Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. *Lancet Diabetes Endocrinol* 2014; 2: 76-89 [PMID: 24622671 DOI: 10.1016/S2213-8587(13)70165-7]
- 3 Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. *Am J Clin Nutr* 2008; 87: 1080S-1086S [PMID: 18400738]
- 4 Hoan NX, Khuyen N, Binh MT, Giang DP, Van Tong H, Hoan PQ, Trung NT, Anh DT, Toan NL, Meyer CG, Kremsner PG, Velavan TP, Song LH. Association of vitamin D deficiency with hepatitis B virus - related liver diseases. *BMC Infect Dis* 2016; 16: 507 [PMID: 27659316 DOI: 10.1186/s12879-016-1836-0]
- 5 Zhao XY, Li J, Wang JH, Habib S, Wei W, Sun SJ, Strobel HW, Jia JD. Vitamin D serum level is associated with Child-Pugh score and metabolic enzyme imbalances, but not viral load in chronic hepatitis B patients. *Medicine* (Baltimore) 2016; **95**: e3926 [PMID: 27399065 DOI: 10.1097/MD.00000000003926]
- 6 Petta S, Cammà C, Scazzone C, Tripodo C, Di Marco V, Bono A, Cabibi D, Licata G, Porcasi R, Marchesini G, Craxí A. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. *Hepatology* 2010; **51**: 1158-1167 [PMID: 20162613 DOI: 10.1002/hep.23489]
- 7 Terrier B, Carrat F, Geri G, Pol S, Piroth L, Halfon P, Poynard T, Souberbielle JC, Cacoub P. Low 25-OH vitamin D serum levels correlate with severe fibrosis in HIV-HCV co-infected patients with chronic hepatitis. *J Hepatol* 2011; 55: 756-761 [PMID: 21334402 DOI: 10.1016/j.jhep.2011.01.041]
- 8 Iruzubieta P, Terán Á, Crespo J, Fábrega E. Vitamin D deficiency in chronic liver disease. *World J Hepatol* 2014; 6: 901-915 [PMID: 25544877 DOI: 10.4254/wjh.v6.i12.901]
- 9 Stokes CS, Volmer DA, Grünhage F, Lammert F. Vitamin D in chronic liver disease. *Liver Int* 2013; 33: 338-352 [PMID: 23402606 DOI: 10.1111/liv.12106]
- 10 Barchetta I, Cimini FA, Cavallo MG. Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future. *Nutrients* 2017; 9: 10-15 [PMID: 28906453 DOI: 10.3390/ nu9091015]
- 11 Chen EQ, Bai L, Zhou TY, Fe M, Zhang DM, Tang H. Sustained suppression of viral replication in improving vitamin D serum concentrations in patients with chronic hepatitis B. *Sci Rep* 2015; 5: 15441 [PMID: 26486883 DOI: 10.1038/srep15441]
- 12 Farnik H, Bojunga J, Berger A, Allwinn R, Waidmann O, Kronenberger B, Keppler OT, Zeuzem S, Sarrazin C, Lange CM. Low vitamin D serum concentration is associated with high levels

of hepatitis B virus replication in chronically infected patients. *Hepatology* 2013; **58**: 1270-1276 [PMID: 23703797 DOI: 10.1002/hep.26488]

- 13 Huang JF, Ko YM, Huang CF, Yeh ML, Dai CY, Hsieh MH, Huang CI, Yang HL, Wang SC, Lin ZY, Chen SC, Yu ML, Chuang WL. 25-Hydroxy vitamin D suppresses hepatitis C virus replication and contributes to rapid virological response of treatment efficacy. *Hepatol Res* 2017; 47: 1383-1389 [PMID: 28225575 DOI: 10.1111/hepr.12878]
- 14 Gutierrez JA, Jones KA, Flores R, Singhania A, Woelk CH, Schooley RT, Wyles DL. Vitamin D Metabolites Inhibit Hepatitis C Virus and Modulate Cellular Gene Expression. J Virol Antivir Res 2014; 3 [PMID: 26594646 DOI: 10.4172/2324-8955.1000129]
- 15 Esmat G, El Raziky M, Elsharkawy A, Sabry D, Hassany M, Ahmed A, Assem N, El Kassas M, Doss W. Impact of vitamin D supplementation on sustained virological response in chronic hepatitis C genotype 4 patients treated by pegylated interferon/ ribavirin. *J Interferon Cytokine Res* 2015; **35**: 49-54 [PMID: 25061714 DOI: 10.1089/jir.2014.0060]
- 16 Kitson MT, Dore GJ, George J, Button P, McCaughan GW, Crawford DH, Sievert W, Weltman MD, Cheng WS, Roberts SK. Vitamin D status does not predict sustained virologic response or fibrosis stage in chronic hepatitis C genotype 1 infection. J Hepatol 2013; 58: 467-472 [PMID: 23183524 DOI: 10.1016/ j.jhep.2012.11.017]
- 17 Abu-Mouch S, Fireman Z, Jarchovsky J, Zeina AR, Assy N. Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naïve patients. *World J Gastroenterol* 2011; 17: 5184-5190 [PMID: 22215943 DOI: 10.3748/wjg.v17.i47.5184]
- 18 Backstedt D, Pedersen M, Choi M, Seetharam A. 25-Vitamin D levels in chronic hepatitis C infection: association with cirrhosis and sustained virologic response. *Ann Gastroenterol* 2017; 30: 344-348 [PMID: 28469365 DOI: 10.20524/aog.2017.0120]
- 19 Chan HL, Elkhashab M, Trinh H, Tak WY, Ma X, Chuang WL, Kim YJ, Martins EB, Lin L, Dinh P, Charuworn P, Foster GR, Marcellin P. Association of baseline vitamin D levels with clinical parameters and treatment outcomes in chronic hepatitis B. J Hepatol 2015; 63: 1086-1092 [PMID: 26143444 DOI: 10.1016/ j.jhep.2015.06.025]
- 20 Lange CM, Bibert S, Kutalik Z, Burgisser P, Cerny A, Dufour JF, Geier A, Gerlach TJ, Heim MH, Malinverni R, Negro F, Regenass S, Badenhoop K, Bojunga J, Sarrazin C, Zeuzem S, Müller T, Berg T, Bochud PY, Moradpour D; Swiss Hepatitis C Cohort Study Group. A genetic validation study reveals a role of vitamin D metabolism in the response to interferon-alfa-based therapy of chronic hepatitis C. *PLoS One* 2012; 7: e40159 [PMID: 22808108 DOI: 10.1371/ journal.pone.0040159]
- 21 Nimer A, Mouch A. Vitamin D improves viral response in hepatitis C genotype 2-3 naïve patients. *World J Gastroenterol* 2012; 18: 800-805 [PMID: 22371640 DOI: 10.3748/wjg.v18.i8.800]
- 22 Rode A, Fourlanos S, Nicoll A. Oral vitamin D replacement is effective in chronic liver disease. *Gastroenterol Clin Biol* 2010; 34: 618-620 [PMID: 20801590 DOI: 10.1016/j.gcb.2010.07.009]
- 23 Yu R, Sun J, Zheng Z, Chen J, Fan R, Liang X, Zhu Y, Liu Y, Shen S, Hou J. Association between vitamin D level and viral load or fibrosis stage in chronic hepatitis B patients from Southern China. *J Gastroenterol Hepatol* 2015; **30**: 566-574 [PMID: 25238258 DOI: 10.1111/jgh.12783]
- 24 Belle A, Gizard E, Conroy G, Lopez A, Bouvier-Alias M, Rouanet S, Peyrin-Biroulet L, Pawlotsky JM, Bronowicki JP. 25-OH vitamin D level has no impact on the efficacy of antiviral therapy in naïve genotype 1 HCV-infected patients. *United European Gastroenterol J* 2017; 5: 69-75 [PMID: 28405324 DOI: 10.1177/2 050640616640157]
- 25 Bitetto D, Fattovich G, Fabris C, Ceriani E, Falleti E, Fornasiere E, Pasino M, Ieluzzi D, Cussigh A, Cmet S, Pirisi M, Toniutto P. Complementary role of vitamin D deficiency and the interleukin-28B rs12979860 C/T polymorphism in predicting antiviral response in chronic hepatitis C. *Hepatology* 2011; 53: 1118-1126

[PMID: 21480318 DOI: 10.1002/hep.24201]

- 26 Eltayeb AA, Abdou MA, Abdel-aal AM, Othman MH. Vitamin D status and viral response to therapy in hepatitis C infected children. *World J Gastroenterol* 2015; 21: 1284-1291 [PMID: 25632203 DOI: 10.3748/wjg.v21.i4.1284]
- 27 Loftfield E, O'Brien TR, Pfeiffer RM, Howell CD, Horst R, Prokunina-Olsson L, Weinstein SJ, Albanes D, Morgan TR, Freedman ND. Vitamin D Status and Virologic Response to HCV Therapy in the HALT-C and VIRAHEP-C Trials. *PLoS One* 2016; 11: e0166036 [PMID: 27832143 DOI: 10.1371/journal. pone.0166036]
- 28 Villar LM, Del Campo JA, Ranchal I, Lampe E, Romero-Gomez M. Association between vitamin D and hepatitis C virus infection: a meta-analysis. *World J Gastroenterol* 2013; 19: 5917-5924 [PMID: 24124339 DOI: 10.3748/wjg.v19.i35.5917]
- 29 Yu R, Tan D, Ning Q, Niu J, Bai X, Chen S, Cheng J, Yu Y, Wang H, Xu M, Shi G, Wan M, Chen X, Tang H, Sheng J, Dou X, Shi J, Ren H, Wang M, Zhang H, Gao Z, Chen C, Ma H, Jia J, Hou J, Xie Q, Sun J. Association of baseline vitamin D level with genetic determinants and virologic response in patients with chronic hepatitis B. *Hepatol Res* 2017; Epub ahead of print [PMID: 28834607 DOI: 10.1111/hepr.12972]
- 30 Wintermeyer E, Ihle C, Ehnert S, Stöckle U, Ochs G, de Zwart P, Flesch I, Bahrs C, Nussler AK. Crucial Role of Vitamin D in the Musculoskeletal System. *Nutrients* 2016; 8: (6). E319 [PMID: 27258303 DOI: 10.3390/nu8060319]
- 31 DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80: 1689S-1696S [PMID: 15585789]
- 32 Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. *Am J Clin Nutr* 2008; 88: 491S-499S [PMID: 18689389]
- 33 Aranow C. Vitamin D and the immune system. J Investig Med 2011; 59: 881-886 [PMID: 21527855 DOI: 10.2310/ JIM.0b013e31821b8755]
- 34 Backe F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. *Curr Opin Pharmacol* 2010; 10: 482-496 [PMID: 20427238 DOI: 10.1016/j.coph.2010.04.001]
- 35 Yang L, Ma J, Zhang X, Fan Y, Wang L. Protective role of the vitamin D receptor. *Cell Immunol* 2012; 279: 160-166 [PMID: 23246677 DOI: 10.1016/j.cellimm.2012.10.002]
- 36 **Bikle D**. Nonclassic actions of vitamin D. *J Clin Endocrinol Metab* 2009; **94**: 26-34 [PMID: 18854395 DOI: 10.1210/jc.2008-1454]
- 37 Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O'Sullivan MJ, Margolis KL, Ockene JK, Phillips L, Pottern L, Prentice RL, Robbins J, Rohan TE, Sarto GE, Sharma S, Stefanick ML, Van Horn L, Wallace RB, Whitlock E, Bassford T, Beresford SA, Black HR, Bonds DE, Brzyski RG, Caan B, Chlebowski RT, Cochrane B, Garland C, Gass M, Hays J, Heiss G, Hendrix SL, Howard BV, Hsia J, Hubbell FA, Jackson RD, Johnson KC, Judd H, Kooperberg CL, Kuller LH, LaCroix AZ, Lane DS, Langer RD, Lasser NL, Lewis CE, Limacher MC, Manson JE; Women's Health Initiative Investigators. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med 2006; 354: 684-696 [PMID: 16481636 DOI: 10.1056/ NEJMoa055222]
- 38 Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. *Nat Rev Drug Discov* 2010; 9: 941-955 [PMID: 21119732 DOI: 10.1038/nrd3318]
- 39 Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G, Arcaro G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. *Nutr Metab Cardiovasc Dis* 2007; 17: 517-524 [PMID: 16928437 DOI: 10.1016/j.numecd.2006.04.002]
- 40 Heaney RP, Recker RR, Grote J, Horst RL, Armas LA. Vitamin D(3) is more potent than vitamin D(2) in humans. *J Clin Endocrinol Metab* 2011; 96: E447-E452 [PMID: 21177785 DOI: 10.1210/jc.2010-2230]
- 41 Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. *Chem Biol* 2014; 21: 319-329 [PMID:

24529992 DOI: 10.1016/j.chembiol.2013.12.016]

- 42 Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 2001; 86: 1212-1221 [PMID: 11238511 DOI: 10.1210/jcem.86.3.7327]
- 43 Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. *Dermatoendocrinol* 2013; 5: 51-108 [PMID: 24494042 DOI: 10.4161/derm.24494]
- 44 Kimlin MG, Olds WJ, Moore MR. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J Photochem Photobiol B 2007; 86: 234-239 [PMID: 17142054 DOI: 10.1016/j.jphotobiol.2006.10.004]
- 45 **Holick MF**. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need? *Adv Exp Med Biol* 2008; **624**: 1-15 [PMID: 18348443 DOI: 10.1007/978-0-387-77574-6_1]
- 46 Cheng TC, Lu Z, Holick MH. Photobiology of vitamin D. In: Holick MF, editor Vitamin D: Molecular Biology, Physiology, and Clinical Applications. New Jork: Humana Press, 1999: 17-37
- 47 Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. *Crit Rev Clin Lab Sci* 2016; 53: 132-145 [PMID: 26479950 DOI: 10.3109/10408363.2015.1094443]
- 48 Stanbury SW, Torkington P, Lumb GA, Adams PH, de Silva P, Taylor CM. Asian rickets and osteomalacia: patterns of parathyroid response in vitamin D deficiency. *Proc Nutr Soc* 1975; 34: 111-117 [PMID: 1103154]
- 49 Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, Petruschke RA, Chen E, de Papp AE. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. *J Clin Endocrinol Metab* 2005; **90**: 3215-3224 [PMID: 15797954 DOI: 10.1210/jc.2004-2364]
- 50 Thomas MK, Lloyd-Jones DM, Thadhani RI, Shaw AC, Deraska DJ, Kitch BT, Vamvakas EC, Dick IM, Prince RL, Finkelstein JS. Hypovitaminosis D in medical inpatients. *N Engl J Med* 1998; 338: 7777-783 [PMID: 9504937 DOI: 10.1056/NEJM199803193381201]
- 51 Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl J Med 2011; 364: 248-254 [PMID: 21247315 DOI: 10.1056/ NEJMcp1009570]
- 52 van den Berg KS, Marijnissen RM, van den Brink RH, Naarding P, Comijs HC, Oude Voshaar RC. Vitamin D deficiency, depression course and mortality: Longitudinal results from the Netherlands Study on Depression in Older persons (NESDO). *J Psychosom Res* 2016; 83: 50-56 [PMID: 27020077 DOI: 10.1016/j.jpsychores.201 6.03.004]
- 53 **Tangpricha V**, Pearce EN, Chen TC, Holick MF. Vitamin D insufficiency among free-living healthy young adults. *Am J Med* 2002; **112**: 659-662 [PMID: 12034416]
- 54 Chailurkit LO, Aekplakorn W, Ongphiphadhanakul B. Regional variation and determinants of vitamin D status in sunshineabundant Thailand. *BMC Public Health* 2011; 11: 853 [PMID: 22074319 DOI: 10.1186/1471-2458-11-853]
- 55 Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK. Vitamin D insufficiency in Korea--a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab 2011; 96: 643-651 [PMID: 21190984 DOI: 10.1210/jc.2010-2133]
- 56 Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, Li X, Yang X, Chen Y, Lin X. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. *Diabetes Care* 2009; 32: 1278-1283 [PMID: 19366976 DOI: 10.2337/dc09-0209]
- 57 Fraser DR. Vitamin D-deficiency in Asia. J Steroid Biochem Mol Biol 2004; 89-90: 491-495 [PMID: 15225826 DOI: 10.1016/ j.jsbmb.2004.03.057]
- 58 Nimitphong H, Holick MF. Vitamin D status and sun exposure in southeast Asia. *Dermatoendocrinol* 2013; 5: 34-37 [PMID: 24494040 DOI: 10.4161/derm.24054]
- 59 Nguyen HT, von Schoultz B, Nguyen TV, Dzung DN, Duc

PT, Thuy VT, Hirschberg AL. Vitamin D deficiency in northern Vietnam: prevalence, risk factors and associations with bone mineral density. *Bone* 2012; **51**: 1029-1034 [PMID: 22878155 DOI: 10.1016/j.bone.2012.07.023]

- 60 Brock K, Cant R, Clemson L, Mason RS, Fraser DR. Effects of diet and exercise on plasma vitamin D (25(OH)D) levels in Vietnamese immigrant elderly in Sydney, Australia. J Steroid Biochem Mol Biol 2007; 103: 786-792 [PMID: 17215122 DOI: 10.1016/j.jsbmb.2006.12.048]
- 61 Gibney KB, MacGregor L, Leder K, Torresi J, Marshall C, Ebeling PR, Biggs BA. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. *Clin Infect Dis* 2008; **46**: 443-446 [PMID: 18173355 DOI: 10.1086/525268]
- 62 Prentice A, Schoenmakers I, Jones KS, Jarjou LM, Goldberg GR. Vitamin D Deficiency and Its Health Consequences in Africa. *Clin Rev Bone Miner Metab* 2009; 7: 94-106 [PMID: 25110467 DOI: 10.1007/s12018-009-9038-6]
- 63 Cusick SE, Opoka RO, Lund TC, John CC, Polgreen LE. Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. *PLoS One* 2014; 9: e113185 [PMID: 25470777 DOI: 10.1371/journal.pone.0113185]
- 64 Kibirige D, Mutebi E, Ssekitoleko R, Worodria W, Mayanja-Kizza H. Vitamin D deficiency among adult patients with tuberculosis: a cross sectional study from a national referral hospital in Uganda. *BMC Res Notes* 2013; 6: 293 [PMID: 23886009 DOI: 10.1186/1756-0500-6-293]
- 65 Mehta S, Giovannucci E, Mugusi FM, Spiegelman D, Aboud S, Hertzmark E, Msamanga GI, Hunter D, Fawzi WW. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. *PLoS One* 2010; **5**: e8770 [PMID: 20098738 DOI: 10.1371/journal.pone.0008770]
- 66 Gutiérrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. *Osteoporos Int* 2011; 22: 1745-1753 [PMID: 20848081 DOI: 10.1007/s00198-010-1383-2]
- Emilion E, Emilion R. Estimation of the 25(OH) vitamin D threshold below which secondary hyperparathyroidism may occur among African migrant women in Paris. *Int J Vitam Nutr Res* 2011; 81: 218-224 [PMID: 22237770 DOI: 10.1024/0300-9831/a000073]
- 68 Kruger MC, Kruger IM, Wentzel-Viljoen E, Kruger A. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. *Nutr Res* 2011; **31**: 748-758 [PMID: 22074799 DOI: 10.1016/j.nutres.2011.09.012]
- 69 Chocano-Bedoya P, Ronnenberg AG. Vitamin D and tuberculosis. Nutr Rev 2009; 67: 289-293 [PMID: 19386033 DOI: 10.1111/ j.1753-4887.2009.00195.x]
- 70 Daley P, Jagannathan V, John KR, Sarojini J, Latha A, Vieth R, Suzana S, Jeyaseelan L, Christopher DJ, Smieja M, Mathai D. Adjunctive vitamin D for treatment of active tuberculosis in India: a randomised, double-blind, placebo-controlled trial. *Lancet Infect Dis* 2015; 15: 528-534 [PMID: 25863562 DOI: 10.1016/S1473-3099(15)70053-8]
- Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin d deficiency and tuberculosis progression. *Emerg Infect Dis* 2010; 16: 853-855 [PMID: 20409383 DOI: 10.3201/eid1605.091693]
- 72 Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E. Epidemic influenza and vitamin D. *Epidemiol Infect* 2006; **134**: 1129-1140 [PMID: 16959053 DOI: 10.1017/S0950268806007175]
- Fleming DM, Elliot AJ. Epidemic influenza and vitamin D. *Epidemiol Infect* 2007; 135: 1091-1092; author reply 1092-1095 [PMID: 17352841 DOI: 10.1017/S0950268807008291]
- 74 Schwalfenberg G. Vitamin D for influenza. *Can Fam Physician* 2015; 61: 507 [PMID: 26071153]
- 75 Fisher L, Fisher A. Vitamin D and parathyroid hormone in outpatients with noncholestatic chronic liver disease. *Clin Gastroenterol Hepatol* 2007; 5: 513-520 [PMID: 17222588 DOI:

10.1016/j.cgh.2006.10.015]

- 76 Fedirko V, Duarte-Salles T, Bamia C, Trichopoulou A, Aleksandrova K, Trichopoulos D, Trepo E, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Kvaskoff M, Kühn T, Lukanova A, Boeing H, Buijsse B, Klinaki E, Tsimakidi C, Naccarati A, Tagliabue G, Panico S, Tumino R, Palli D, Buenode-Mesquita HB, Siersema PD, Peters PH, Lund E, Brustad M, Olsen KS, Weiderpass E, Zamora-Ros R, Sánchez MJ, Ardanaz E, Amiano P, Navarro C, Quirós JR, Werner M, Sund M, Lindkvist B, Malm J, Travis RC, Khaw KT, Stepien M, Scalbert A, Romieu I, Lagiou P, Riboli E, Jenab M. Prediagnostic circulating vitamin D levels and risk of hepatocellular carcinoma in European populations: a nested case-control study. *Hepatology* 2014; 60: 1222-1230 [PMID: 24644045 DOI: 10.1002/hep.27079]
- 77 Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C, Lau SL, Atkins AR, Barish GD, Gunton JE, Liddle C, Downes M, Evans RM. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. *Cell* 2013; **153**: 601-613 [PMID: 23622244 DOI: 10.1016/ j.cell.2013.03.028]
- 78 Wong GL, Chan HL, Chan HY, Tse CH, Chim AM, Lo AO, Wong VW. Adverse effects of vitamin D deficiency on outcomes of patients with chronic hepatitis B. *Clin Gastroenterol Hepatol* 2015; 13: 783-790.e1 [PMID: 25445773 DOI: 10.1016/ j.cgh.2014.09.050]
- 79 Trépo E, Ouziel R, Pradat P, Momozawa Y, Quertinmont E, Gervy C, Gustot T, Degré D, Vercruysse V, Deltenre P, Verset L, Gulbis B, Franchimont D, Devière J, Lemmers A, Moreno C. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. *J Hepatol* 2013; 59: 344-350 [PMID: 23557869 DOI: 10.1016/j.jhep.2013.03.024]
- 80 Lange CM, Bojunga J, Ramos-Lopez E, von Wagner M, Hassler A, Vermehren J, Herrmann E, Badenhoop K, Zeuzem S, Sarrazin C. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. *J Hepatol* 2011; 54: 887-893 [PMID: 21145801 DOI: 10.1016/j.jhep.2010.08.036]
- Eliades M, Spyrou E. Vitamin D: a new player in non-alcoholic fatty liver disease? *World J Gastroenterol* 2015; 21: 1718-1727 [PMID: 25684936 DOI: 10.3748/wjg.v21.i6.1718]
- 82 Kwok RM, Torres DM, Harrison SA. Vitamin D and nonalcoholic fatty liver disease (NAFLD): is it more than just an association? *Hepatology* 2013; 58: 1166-1174 [PMID: 23504808 DOI: 10.1002/ hep.26390]
- 83 Ha Y, Hwang SG, Rim KS. The Association between Vitamin D Insufficiency and Nonalcoholic Fatty Liver Disease: A Population-Based Study. *Nutrients* 2017; 9: pii: E806 [PMID: 28749418 DOI: 10.3390/nu9080806]
- 84 Barchetta I, Del Ben M, Angelico F, Di Martino M, Fraioli A, La Torre G, Saulle R, Perri L, Morini S, Tiberti C, Bertoccini L, Cimini FA, Panimolle F, Catalano C, Baroni MG, Cavallo MG. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. *BMC Med* 2016; 14: 92 [PMID: 27353492 DOI: 10.1186/s12916-016-0638-y]
- 85 Sharifi N, Amani R, Hajiani E, Cheraghian B. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. *Endocrine* 2014; 47: 70-80 [PMID: 24968737 DOI: 10.1007/s12020-014-0336-5]
- 86 García-Álvarez M, Pineda-Tenor D, Jiménez-Sousa MA, Fernández-Rodríguez A, Guzmán-Fulgencio M, Resino S. Relationship of vitamin D status with advanced liver fibrosis and response to hepatitis C virus therapy: a meta-analysis. *Hepatology* 2014; 60: 1541-1550 [PMID: 24975775 DOI: 10.1002/hep.27281]
- Colvin HM, Mitchell AE. Hepatitis and Liver Cancer: A National Strategy for Prevention and Control of Hepatitis B and C. Washington (DC): National Academies Press (US): Macmillan, 2010
- 88 WHO. Global hepatitis report, 2017. Available from: URL: http://

www.who.int/hepatitis/publications/global-hepatitis-report2017/en/

- 89 Mohamadkhani A, Bastani F, Khorrami S, Ghanbari R, Eghtesad S, Sharafkhah M, Montazeri G, Poustchi H. Negative Association of Plasma Levels of Vitamin D and miR-378 With Viral Load in Patients With Chronic Hepatitis B Infection. *Hepat Mon* 2015; 15: e28315 [PMID: 26288634 DOI: 10.5812/hepatmon.28315v2]
- 90 Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. *Gastroenterology* 2000; 118: 554-559 [PMID: 10702206]
- 91 Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability. *J Hepatol* 2016; 64: S4-S16 [PMID: 27084035 DOI: 10.1016/j.jhep.2016.01.027]
- 92 Zhang ZH, Wu CC, Chen XW, Li X, Li J, Lu MJ. Genetic variation of hepatitis B virus and its significance for pathogenesis. *World J Gastroenterol* 2016; 22: 126-144 [PMID: 26755865 DOI: 10.3748/wjg.v22.i1.126]
- 93 Zhu H, Liu X, Ding Y, Zhou H, Wang Y, Zhou Z, Li X, Zhang Z, Dong C. Relationships between low serum vitamin D levels and HBV "a" determinant mutations in chronic hepatitis B patients. J Infect Dev Ctries 2016; 10: 1025-1030 [PMID: 27694737 DOI: 10.3855/jidc.7459]
- 94 Grammatikos G, Lange C, Susser S, Schwendy S, Dikopoulos N, Buggisch P, Encke J, Teuber G, Goeser T, Thimme R, Klinker H, Boecher WO, Schulte-Frohlinde E, Penna-Martinez M, Badenhoop K, Zeuzem S, Berg T, Sarrazin C. Vitamin D levels vary during antiviral treatment but are unable to predict treatment outcome in HCV genotype 1 infected patients. *PLoS One* 2014; 9: e87974 [PMID: 24516573 DOI: 10.1371/journal.pone.0087974]
- 95 Kitson MT, Sarrazin C, Toniutto P, Eslick GD, Roberts SK. Vitamin D level and sustained virologic response to interferonbased antiviral therapy in chronic hepatitis C: a systematic review and meta-analysis. *J Hepatol* 2014; 61: 1247-1252 [PMID: 25135863 DOI: 10.1016/j.jhep.2014.08.004]
- 96 Kim HB, Myung SK, Lee YJ, Park BJ. Efficacy of vitamin D supplementation in combination with conventional antiviral therapy in patients with chronic hepatitis C infection: a metaanalysis of randomised controlled trials. *J Hum Nutr Diet* 2017; Epub ahead of print [PMID: 28833855 DOI: 10.1111/jhn.12503]
- 97 Luo YQ, Wu XX, Ling ZX, Cheng YW, Yuan L, Xiang C. Association between serum vitamin D and severity of liver fibrosis in chronic hepatitis C patients: a systematic meta-analysis. J Zhejiang Univ Sci B 2014; 15: 900-906 [PMID: 25294379 DOI: 10.1631/jzus.B1400073]
- 98 Bitetto D, Fabris C, Fornasiere E, Pipan C, Fumolo E, Cussigh A, Bignulin S, Cmet S, Fontanini E, Falleti E, Martinella R, Pirisi M, Toniutto P. Vitamin D supplementation improves response to antiviral treatment for recurrent hepatitis C. *Transpl Int* 2011; 24: 43-50 [PMID: 20649944 DOI: 10.1111/j.1432-2277.2010.01141.x]
- 99 Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, Murray CJ, Naghavi M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. *BMC Med* 2014; **12**: 145 [PMID: 25242656 DOI: 10.1186/s12916-014-0145-y]
- 100 Konstantakis C, Tselekouni P, Kalafateli M, Triantos C. Vitamin D deficiency in patients with liver cirrhosis. *Ann Gastroenterol* 2016; 29: 297-306 [PMID: 27366029 DOI: 10.20524/aog.2016.0037]
- 101 El-Maouche D, Mehta SH, Sutcliffe CG, Higgins Y, Torbenson MS, Moore RD, Thomas DL, Sulkowski MS, Brown TT. Vitamin D deficiency and its relation to bone mineral density and liver fibrosis in HIV-HCV coinfection. *Antivir Ther* 2013; 18: 237-242 [PMID: 22910231 DOI: 10.3851/IMP2264]
- 102 Stokes CS, Krawczyk M, Reichel C, Lammert F, Grünhage F. Vitamin D deficiency is associated with mortality in patients with advanced liver cirrhosis. *Eur J Clin Invest* 2014; 44: 176-183 [PMID: 24236541 DOI: 10.1111/eci.12205]
- 103 Lim LY, Chalasani N. Vitamin d deficiency in patients with chronic liver disease and cirrhosis. *Curr Gastroenterol Rep* 2012; 14: 67-73 [PMID: 22113744 DOI: 10.1007/s11894-011-0231-7]
- 104 Paternostro R, Wagner D, Reiberger T, Mandorfer M, Schwarzer R, Ferlitsch M, Trauner M, Peck-Radosavljevic M, Ferlitsch A. Low 25-OH-vitamin D levels reflect hepatic dysfunction and are associated

with mortality in patients with liver cirrhosis. *Wien Klin Wochenschr* 2017; **129**: 8-15 [PMID: 27888359 DOI: 10.1007/s00508-016-1127-1]

- 105 Jung RT, Davie M, Hunter JO, Chalmers TM, Lawson DE. Abnormal vitamin D metabolism in cirrhosis. *Gut* 1978; 19: 290-293 [PMID: 206489]
- 106 Long RG, Skinner RK, Wills MR, Sherlock S. Serum-25-hydroxyvitamin-D in untreated parenchymal and cholestatic liver disease. *Lancet* 1976; 2: 650-652 [PMID: 60515]
- 107 Pappa HM, Bern E, Kamin D, Grand RJ. Vitamin D status in gastrointestinal and liver disease. *Curr Opin Gastroenterol* 2008; 24: 176-183 [PMID: 18301268 DOI: 10.1097/ MOG.0b013e3282f4d2f3]
- 108 Malham M, Jørgensen SP, Ott P, Agnholt J, Vilstrup H, Borre M, Dahlerup JF. Vitamin D deficiency in cirrhosis relates to liver dysfunction rather than aetiology. *World J Gastroenterol* 2011; 17: 922-925 [PMID: 21412501 DOI: 10.3748/wjg.v17.i7.922]
- 109 Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A, Brazowski E, Reif S. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. *Gut* 2011; 60: 1728-1737 [PMID: 21816960 DOI: 10.1136/gut.2010.234666]
- 110 Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. *J Endocrinol* 2009; 200: 207-221 [PMID: 19036760 DOI: 10.1677/JOE-08-0241]
- 111 Gutierrez JA, Parikh N, Branch AD. Classical and emerging roles of vitamin D in hepatitis C virus infection. *Semin Liver Dis* 2011; 31: 387-398 [PMID: 22189978 DOI: 10.1055/s-0031-1297927]
- 112 Cholongitas E, Theocharidou E, Goulis J, Tsochatzis E, Akriviadis E, Burroughs K. Review article: the extra-skeletal effects of vitamin D in chronic hepatitis C infection. *Aliment Pharmacol Ther* 2012; **35**: 634-646 [PMID: 22316435 DOI: 10.1111/j.1365-2036.2012.05000.x]
- 113 Berzsenyi MD, Roberts SK, Preiss S, Woollard DJ, Beard MR, Skinner NA, Bowden DS, Visvanathan K. Hepatic TLR2 & amp; TLR4 expression correlates with hepatic inflammation and TNF-α in HCV & amp; HCV/HIV infection. *J Viral Hepat* 2011; 18: 852-860 [PMID: 21050341 DOI: 10.1111/j.1365-2893.2010.01390.x]
- 114 Goral V, Atayan Y, Kaplan A. The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor α? *Hepatogastroenterology* 2011; 58: 943-948 [PMID: 21830421]
- 115 Wang X, Chen YX, Xu CF, Zhao GN, Huang YX, Wang QL. Relationship between tumor necrosis factor-alphaand liver fibrosis. *World J Gastroenterol* 1998; 4: 18 [PMID: 11819220 DOI: 10.3748/wjg.v4.i1.18]
- 116 Kuo YT, Kuo CH, Lam KP, Chu YT, Wang WL, Huang CH, Hung CH. Effects of vitamin D3 on expression of tumor necrosis factor-alpha and chemokines by monocytes. *J Food Sci* 2010; **75**: H200-H204 [PMID: 20722932 DOI: 10.1111/ j.1750-3841.2010.01704.x]
- 117 Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, Zügel U, Steinmeyer A, Pollak A, Roth E, Boltz-Nitulescu G, Spittler A. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. *Eur J Immunol* 2006; **36**: 361-370 [PMID: 16402404 DOI: 10.1002/eji.200425995]
- 118 Do JE, Kwon SY, Park S, Lee ES. Effects of vitamin D on expression of Toll-like receptors of monocytes from patients with Behcet's disease. *Rheumatology* (Oxford) 2008; 47: 840-848 [PMID: 18411217 DOI: 10.1093/rheumatology/ken109]
- 119 Fallowfield JA, Kendall TJ, Iredale JP. Reversal of fibrosis: no longer a pipe dream? *Clin Liver Dis* 2006; 10: 481-497, viii [PMID: 17162224 DOI: 10.1016/j.eld.2006.08.022]
- 120 Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. *J Clin Invest* 2007; 117: 539-548 [PMID: 17332881 DOI: 10.1172/JCI30542]
- 121 Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 2006; 21 Suppl 3: S84-S87 [PMID: 16958681 DOI: 10.1111/j.1440-1746.2006.04584.x]

- 122 Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, Holick MF. The role of vitamin D in cancer prevention. *Am J Public Health* 2006; 96: 252-261 [PMID: 16380576 DOI: 10.2105/AJPH.2004.045260]
- 123 Bertino JR. Landmark Study: The Relation of Solar Radiation to Cancer Mortality in North America. *Cancer Res* 2016; 76: 185 [PMID: 26773094 DOI: 10.1158/0008-5472.CAN-15-3169]
- 124 Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? *Int J Epidemiol* 1980; 9: 227-231 [PMID: 7440046]
- 125 Davis CD, Milner JA. Vitamin D and colon cancer. Expert Rev Gastroenterol Hepatol 2011; 5: 67-81 [PMID: 21309673 DOI: 10.1586/egh.10.89]
- 126 Lefkowitz ES, Garland CF. Sunlight, vitamin D, and ovarian cancer mortality rates in US women. *Int J Epidemiol* 1994; 23: 1133-1136 [PMID: 7721513]
- 127 Moan J, Dahlback A, Lagunova Z, Cicarma E, Porojnicu AC. Solar radiation, vitamin D and cancer incidence and mortality in Norway. *Anticancer Res* 2009; 29: 3501-3509 [PMID: 19667144]
- 128 Schwartz GG. Vitamin D and the epidemiology of prostate cancer. Semin Dial 2005; 18: 276-289 [PMID: 16076349 DOI: 10.1111/ j.1525-139X.2005.18403.x]
- 129 Schwartz GG, Hulka BS. Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). *Anticancer Res* 1990; 10: 1307-1311 [PMID: 2241107]
- 130 Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. *Lancet* 1989; 2: 1176-1178 [PMID: 2572900]
- 131 Lange CM, Miki D, Ochi H, Nischalke HD, Bojunga J, Bibert S, Morikawa K, Gouttenoire J, Cerny A, Dufour JF, Gorgievski-Hrisoho M, Heim MH, Malinverni R, Müllhaupt B, Negro F, Semela D, Kutalik Z, Müller T, Spengler U, Berg T, Chayama K, Moradpour D, Bochud PY; Hiroshima Liver Study Group; Swiss Hepatitis C Cohort Study Group. Genetic analyses reveal a role for vitamin D insufficiency in HCV-associated hepatocellular carcinoma development. *PLoS One* 2013; 8: e64053 [PMID: 23734184 DOI: 10.1371/journal.pone.0064053]
- 132 Hammad LN, Abdelraouf SM, Hassanein FS, Mohamed WA, Schaalan MF. Circulating IL-6, IL-17 and vitamin D in hepatocellular carcinoma: potential biomarkers for a more favorable prognosis? *J Immunotoxicol* 2013; 10: 380-386 [PMID: 23350952 DOI: 10.3109/1547691X.2012.758198]
- 133 Finkelmeier F, Kronenberger B, Köberle V, Bojunga J, Zeuzem S, Trojan J, Piiper A, Waidmann O. Severe 25-hydroxyvitamin D deficiency identifies a poor prognosis in patients with hepatocellular carcinoma a prospective cohort study. *Aliment Pharmacol Ther* 2014; **39**: 1204-1212 [PMID: 24684435 DOI: 10.1111/apt.12731]
- 134 Vanoirbeek E, Krishnan A, Eelen G, Verlinden L, Bouillon R, Feldman D, Verstuyf A. The anti-cancer and anti-inflammatory actions of 1,25(OH) □D□. Best Pract Res Clin Endocrinol Metab 2011; 25: 593-604 [PMID: 21872801 DOI: 10.1016/ j.beem.2011.05.001]
- 135 Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. *Nat Rev Cancer* 2007; 7: 684-700 [PMID: 17721433 DOI: 10.1038/nrc2196]
- 136 Vuolo L, Di Somma C, Faggiano A, Colao A. Vitamin D and cancer. Front Endocrinol (Lausanne) 2012; 3: 58 [PMID: 22649423 DOI: 10.3389/fendo.2012.00058]
- 137 Pourgholami MH, Akhter J, Lu Y, Morris DL. In vitro and in vivo inhibition of liver cancer cells by 1,25-dihydroxyvitamin D3. *Cancer Lett* 2000; **151**: 97-102 [PMID: 10766428 DOI: 10.1016/ S0304-3835(99)00416-4]
- 138 Caputo A, Pourgholami MH, Akhter J, Morris DL. 1,25-Dihydroxyvitamin D(3) induced cell cycle arrest in the human primary liver cancer cell line HepG2. *Hepatol Res* 2003; 26: 34-39 [PMID: 12787802]
- 139 Ghous Z, Akhter J, Pourgholami MH, Morris DL. Inhibition of hepatocellular cancer by EB1089: in vitro and in vive study.

Anticancer Res 2008; 28: 3757-3761 [PMID: 19189661]

- 140 Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. *Endocrinol Metab Clin North Am* 2010; **39**: 401-418, table of contents [PMID: 20511060 DOI: 10.1016/j.ecl.2010.02.011]
- 141 Trump DL, Deeb KK, Johnson CS. Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. *Cancer J* 2010; 16: 1-9 [PMID: 20164683 DOI: 10.1097/ PPO.0b013e3181c51ee6]
- 142 Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. *Am J Clin Nutr* 2007; 85: 1586-1591 [PMID: 17556697]
- 143 Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol 2014; 5: 122 [PMID: 24772087 DOI: 10.3389/fphys.2014.00122]
- 144 Brown AJ, Slatopolsky E. Vitamin D analogs: therapeutic applications and mechanisms for selectivity. *Mol Aspects Med* 2008; 29: 433-452 [PMID: 18554710 DOI: 10.1016/ j.mam.2008.04.001]
- 145 Fujii H, Nakai K, Yonekura Y, Kono K, Goto S, Hirata M, Shinohara M, Nishi S, Fukagawa M. The Vitamin D Receptor Activator Maxacalcitol Provides Cardioprotective Effects in Diabetes Mellitus. *Cardiovasc Drugs Ther* 2015; 29: 499-507 [PMID: 26602563 DOI: 10.1007/s10557-015-6629-y]
- 146 Chiang KC, Yeh CN, Hsu JT, Yeh TS, Jan YY, Wu CT, Chen HY, Jwo SC, Takano M, Kittaka A, Juang HH, Chen TC. Evaluation of the potential therapeutic role of a new generation of vitamin D analog, MART-10, in human pancreatic cancer cells in vitro and in vivo. *Cell Cycle* 2013; **12**: 1316-1325 [PMID: 23549173 DOI: 10.4161/cc.24445]
- 147 Akhter J, Chen X, Bowrey P, Bolton EJ, Morris DL. Vitamin D3 analog, EB1089, inhibits growth of subcutaneous xenografts of the human colon cancer cell line, LoVo, in a nude mouse model. *Dis Colon Rectum* 1997; 40: 317-321 [PMID: 9118747]
- 148 Lokeshwar BL, Schwartz GG, Selzer MG, Burnstein KL, Zhuang SH, Block NL, Binderup L. Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089. *Cancer Epidemiol Biomarkers Prev* 1999; 8: 241-248 [PMID: 10090302]
- 149 Colston KW, James SY, Ofori-Kuragu EA, Binderup L, Grant AG. Vitamin D receptors and anti-proliferative effects of vitamin D derivatives in human pancreatic carcinoma cells in vivo and in vitro. Br J Cancer 1997; 76: 1017-1020 [PMID: 9376260]
- 150 Dalhoff K, Dancey J, Astrup L, Skovsgaard T, Hamberg KJ, Lofts FJ, Rosmorduc O, Erlinger S, Bach Hansen J, Steward WP, Skov T, Burcharth F, Evans TR. A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. *Br J Cancer* 2003; **89**: 252-257 [PMID: 12865912 DOI: 10.1038/sj.bjc.6601104]
- 151 Hansen CM, Mäenpää PH. EB 1089, a novel vitamin D analog with strong antiproliferative and differentiation-inducing effects on target cells. *Biochem Pharmacol* 1997; 54: 1173-1179 [PMID: 9416968]
- 152 Morris DL, Jourdan JL, Finlay I, Gruenberger T, The MP, Pourgholami MH. Hepatic intra-arterial injection of 1,25-dihydroxyvitamin D3 in lipiodol: Pilot study in patients with hepatocellular carcinoma. *Int J Oncol* 2002; **21**: 901-906 [PMID: 12239633]
- 153 Huang D, Chen Y, Chen S, Zeng Q, Zhao J, Wu R, Li Y. TACE plus percutaneous chemotherapy-lipiodol treatment of unresectable pedunculated hepatocellular carcinoma. *Medicine* (Baltimore) 2017; 96: e7650 [PMID: 28746230 DOI: 10.1097/ MD.000000000007650]
- 154 Ko BJ, Kim YS, Kim SG, Park JH, Lee SH, Jeong SW, Jang JY, Kim HS, Kim BS, Kim SM, Kim YD, Cheon GJ, Lee BR. Relationship between 25-Hydroxyvitamin D Levels and Liver Fibrosis as Assessed by Transient Elastography in Patients with Chronic Liver Disease. *Gut Liver* 2016; 10: 818-825 [PMID: 27114415 DOI: 10.5009/gnl15331]
- 155 Sali S, Tavakolpour S, Farkhondemehr B. Comparison of Vitamin

D Levels in Naive, Treated, and Inactive Carriers with Chronic Hepatitis B Virus. *J Clin Transl Hepatol* 2016; **4**: 306-309 [PMID: 28097099 DOI: 10.14218/JCTH.2016.00037]

- 156 Mashaly M, Sayed EE, Shaker GA, Anwar R, Abbas NF, Zakaria S, Barakat EA. Occult and Chronic Hepatitis B Infection: Relation of Viral Load to Serum Level of 25 Hydroxy Vitamin D. Int J Curr Microbiol App Sci 2016; 5: 660-669
- 157 Ladero JM, Torrejón MJ, Sánchez-Pobre P, Suárez A, Cuenca F, de la Orden V, Devesa MJ, Rodrigo M, Estrada V, López-Alonso G, Agúndez JA. Vitamin D deficiency and vitamin D therapy in chronic hepatitis C. *Ann Hepatol* 2013; 12: 199-204 [PMID: 23396730]
- 158 Corey KE, Zheng H, Mendez-Navarro J, Delgado-Borrego A, Dienstag JL, Chung RT; HALT-C Trial Group. Serum vitamin D levels are not predictive of the progression of chronic liver disease in hepatitis C patients with advanced fibrosis. *PLoS One* 2012; 7: e27144 [PMID: 22359532 DOI: 10.1371/journal.pone.0027144]
- 159 Okubo T, Atsukawa M, Tsubota A, Shimada N, Abe H, Yoshizawa K, Arai T, Nakagawa A, Itokawa N, Kondo C, Aizawa Y, Iwakiri K. Association between vitamin D deficiency and pre-existing resistance-associated hepatitis C virus NS5A variants. *Hepatol Res* 2017; 47: 641-649 [PMID: 27487797 DOI: 10.1111/hepr.12784]
- 160 Atsukawa M, Tsubota A, Shimada N, Yoshizawa K, Abe H, Asano T, Ohkubo Y, Araki M, Ikegami T, Kondo C, Itokawa N, Nakagawa

A, Arai T, Matsushita Y, Nakatsuka K, Furihata T, Chuganji Y, Matsuzaki Y, Aizawa Y, Iwakiri K. Influencing factors on serum 25-hydroxyvitamin D3 levels in Japanese chronic hepatitis C patients. *BMC Infect Dis* 2015; **15**: 344 [PMID: 26286329 DOI: 10.1186/s12879-015-1020-y]

- 161 Reda R, Abbas AA, Mohammed M, El Fedawy SF, Ghareeb H, El Kabarity RH, Abo-Shady RA, Zakaria D. The Interplay between Zinc, Vitamin D and, IL-17 in Patients with Chronic Hepatitis C Liver Disease. *J Immunol Res* 2015; 2015: 846348 [PMID: 26504859 DOI: 10.1155/2015/846348]
- 162 Atsukawa M, Tsubota A, Shimada N, Abe H, Kondo C, Itokawa N, Nakagawa A, Iwakiri K, Kawamoto C, Aizawa Y, Sakamoto C. Serum 25(OH)D3 levels affect treatment outcomes for telaprevir/ peg-interferon/ribavirin combination therapy in genotype 1b chronic hepatitis C. *Dig Liver Dis* 2014; **46**: 738-743 [PMID: 24880716 DOI: 10.1016/j.dld.2014.05.004]
- 163 Mandorfer M, Reiberger T, Payer BA, Ferlitsch A, Breitenecker F, Aichelburg MC, Obermayer-Pietsch B, Rieger A, Trauner M, Peck-Radosavljevic M; Vienna & Mamp; & Liver Study Group. Low vitamin D levels are associated with impaired virologic response to PEGIFN+RBV therapy in HIV-hepatitis C virus coinfected patients. *AIDS* 2013; 27: 227-232 [PMID: 23238552 DOI: 10.1097/QAD.0b013e32835aa161]
 - P- Reviewer: Abenavoli L, Gonzalez-Reimers E, Lai GY, Morini S S- Editor: Gong ZM L- Editor: A E- Editor: Ma YJ

Published by Baishideng Publishing Group Inc

7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA Telephone: +1-925-223-8242 Fax: +1-925-223-8243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk http://www.wjgnet.com

© 2018 Baishideng Publishing Group Inc. All rights reserved.