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Abstract
Type II diabetes mellitus (T2DM) has experienced a dramatic increase globally 
across countries of various income levels over the past three decades. The 
persistent prevalence of T2DM is attributed to a complex interplay of genetic and 
environmental factors. While numerous pharmaceutical therapies have been 
developed, there remains an urgent need for innovative treatment approaches 
that offer effectiveness without significant adverse effects. In this context, the 
exploration of the gut microbiome presents a promising avenue. Research has 
increasingly shown that the gut microbiome of individuals with T2DM exhibits 
distinct differences compared to healthy individuals, suggesting its potential role 
in the disease’s pathogenesis and progression. This emerging field offers diverse 
applications, particularly in modifying the gut environment through the adminis-
tration of prebiotics, probiotics, and fecal microbiome transfer. These inter-
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ventions aim to restore a healthy microbiome balance, which could potentially alleviate or even reverse the 
metabolic dysfunctions associated with T2DM. Although current results from clinical trials have not yet shown 
dramatic effects on diabetes management, the groundwork has been laid for deeper investigation. Ongoing and 
future clinical trials are critical to advancing our understanding of the microbiome’s impact on diabetes. By further 
elucidating the mechanisms through which microbiome alterations influence insulin resistance and glucose 
metabolism, researchers can develop more targeted interventions. The potential to harness the gut microbiome in 
developing new therapeutic strategies offers a compelling prospect to transform the treatment landscape of T2DM, 
potentially reducing the disease’s burden significantly with approaches that are less reliant on traditional pharma-
ceuticals and more focused on holistic, systemic health improvements.

Key Words: Type II diabetes; Gut microbiome; Probiotics; Prebiotics; Fecal microbiota transplantation

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Type II diabetes mellitus (T2DM) has surged globally, driven by genetic and environmental factors. Amidst 
pharmaceutical options, exploring the gut microbiome stands out. Research reveals distinct microbiome differences in 
T2DM, suggesting its role in pathogenesis. Interventions such as prebiotics, probiotics, and fecal transfers aim to restore 
balance. While clinical trials have not shown dramatic effects yet, ongoing research holds promise. Understanding 
microbiome mechanisms could revolutionize T2DM treatment, emphasizing holistic health approaches.
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INTRODUCTION
The human gut microbiome is a complex ecosystem, hosting thousands of bacterial species, each exerting a unique 
influence on host metabolism. This intricate interplay involves a variety of signaling molecules derived from dietary 
components that are metabolized by these microbiota. The role of the gut microbiome extends beyond digestion, as it 
actively engages with multiple bodily systems to maintain physiological homeostasis[1]. In the context of type II diabetes 
mellitus (T2DM), the gut microbiome exhibits notable changes, termed dysbiosis, where there is an increase in bacteria 
that negatively impact metabolic health and a decrease in beneficial bacteria[2,3]. This shift can lead to a cascade of health 
issues, including metabolic disorders, cardiovascular complications, neuronal diseases, and various inflammatory 
conditions, as depicted in Figure 1[4,5].

Despite understanding the broad impacts of gut microbiome dysbiosis, specific pathways, and interactions that lead to 
T2DM remain underexplored. The mechanisms through which microbial products and toxins contribute to increased 
intestinal permeability and subsequent inflammation are not fully elucidated. Furthermore, the exact nature of changes in 
the production of short-chain fatty acids (SCFAs), lipopolysaccharides, and bile acids in diabetics requires detailed invest-
igation[6-8]. These gaps in knowledge hinder the full exploitation of the gut microbiome as a target for therapeutic 
interventions. Understanding these pathways in greater depth could unveil novel strategies to manage or potentially 
reverse the effects of dysbiosis in diabetic patients. The primary objective of this review is to synthesize current 
understandings of the microbiome’s role in T2DM, with a particular focus on the pathophysiological changes associated 
with dysbiosis. We aimed to identify and discuss novel therapeutic strategies that target the microbiome to ameliorate the 
symptoms and complications associated with T2DM.

GUT MICROBIOTA AND ITS EFFECTS ON T2DM
Organisms with a positive correlation with the disease
The microbiome composition in individuals with diabetes, particularly T2DM, exhibits significant variations compared to 
non-diabetic individuals. Notably, the phyla Proteobacteria and Firmicutes[3] are predominantly observed in diabetics. 
Within Firmicutes, there is a noted increase in the genus Ruminococcus and a decrease in Clostridium species[3], as 
demonstrated in Figure 2, which outlines the microbiota profile variation in T2DM. However, observations in patients of 
different ethnicities may vary and needs further investigation.

Research highlights that the Firmicutes-to-Bacteroides ratio, which is typically below 0.8 in healthy individuals, is 
elevated in those with T2DM and obesity. This altered ratio is indicative of microbial dysbiosis associated with these 
conditions[9-11]. Using a Predomics approach, three species have been identified as significant biomarkers for T2DM: 
Enterococcus faecium, Eubacterium linosum, and Absiella spp.[12]. Eubacterium linosum, an anaerobic acetogenic bacterium, is 
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Figure 1 Communication channels of the gut with various systems of the body through metabolites produced by the gut microbiota. LPS: 
Lipopolysaccharides; SCFAs: Short-chain fatty acids.

Figure 2 Microbiota profile variation in type II diabetes mellitus. DM: Diabetes mellitus.

particularly noteworthy for its metabolic functions, including acetate production, sulfate reduction, and the degradation 
of urea and arginine. These metabolic activities contribute to chronic low-grade inflammation via pro-inflammatory 
cytokines and metabolites, a hallmark of T2DM[13,14]. Additionally, the production of acetate through the fermentation 
of galacto-oligosaccharides or inulin is linked to alterations in insulin sensitivity and weight gain[8,15]. Certain species 
within the Firmicutes phylum are recognized for their enhanced capacity to break down complex sugars and fatty acids, 
thereby potentially increasing the risk of obesity and T2DM[16]. On the other hand, some species within the Proteobacteria 
phylum, such as Fusobacterium spp., are implicated in protein fermentation and degradation, leading to dysbiosis. Fusobac-
terium spp. also contributes to pathogenicity by inducing inflammatory cytokines [interleukin (IL)-1β, tumor necrosis 
factor (TNF)-α, IL-17, etc.], which further exacerbate the inflammatory state[17,18].

Organisms with a negative correlation with the disease
Several organisms exhibit a negative correlation with T2DM, primarily through mechanisms that involve the production 
of anti-inflammatory and immunoregulatory metabolites such as butyrate and propionate[14]. Among these, the genus 
Bifidobacterium is notably protective against T2DM, attributed to its cross-feeding mechanisms that enhance metabolic 
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health[19]. Animal studies further corroborate the benefits of various species within this genus, demonstrating an 
increase in glucose tolerance[20-24].

Another significant genus negatively correlated with T2DM is Bacteroides. This group, which includes species like 
Bacteroides uniformis and Bacteroides acidifaciens, is known to improve glucose tolerance and insulin sensitivity, and is 
instrumental in managing metabolic diseases exacerbated by poor diet[25,26]. Despite their reduced presence in 
individuals with T2DM, other genera such as Faecalibacterium, Akkermansia, and Roseburia also exhibit similar negative 
correlations with the disease, though they are not as abundantly reported[27]. Lactobacillus species display variable associ-
ations with T2DM; however, species like Lactobacillus plantarum[28], Lactobacillus casei[29], and Lactobacillus reuteri[30] 
have been shown to improve symptoms when administered as probiotics. In synergy with Bifidobacterium, they confer a 
collective protective effect against the disease[31-37]. SCFAs such as butyrate play crucial roles beyond their metabolic 
functions; they regulate pancreatic beta-cell activity, reduce hepatic gluconeogenesis, and modulate immune system 
functions. The reduction in these critical microbiota directly contributes to the pathogenesis of T2DM.

Gut metabolites
The fermentation of nutrients by gut microbiota leads to the production of metabolites like SCFAs (butyrate, propionate, 
acetate), branched-chain amino acids, indoles, imidazoles, and succinates. These are predominantly produced by genera 
including Bacteroides, Akkermansia, Prevotella, Faecalibacterium, Lactobacillus, Clostridium, and Propionibacterium. These 
metabolites have diverse and significant interactions within the gut environment, as illustrated in Figure 3.

Pathogenesis of dysbiosis contributing to worsening T2DM
Alteration in permeability and steatosis: Changes in the gut microbiome composition have been associated with T2DM 
progression, particularly a decrease in species such as Bacteroides and Akkermansia. These microbes are crucial for the 
regulation of tight junction proteins including occludin and claudin, which maintain intestinal barrier integrity[4,38]. The 
disruption of these tight junctions leads to increased intestinal permeability. This, in turn, facilitates enhanced nutrient 
absorption and altered glycemic control, propelling the progression toward steatosis. Concurrently, the reduction in 
microbial populations that regulate hepatic gluconeogenesis exacerbates liver steatosis.

Inflammation and altered lipopolysaccharides: Increased intestinal permeability allows greater absorption of dietary 
products and bacterial endotoxins, such as lipopolysaccharides, into the bloodstream. This elevates the production of pro-
inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-17, and other cytokines linked to T helper (Th)1, Th2, and Th17 
responses. This state of endotoxemia drives systemic inflammation and reactive oxygen species production, leading to the 
destruction of pancreatic beta cells and the onset of insulin resistance[4,38]. The absence of protective microbial effects 
due to altered microbiota composition, such as those from Roseburia intestinalis, Bacteroides fragilis, Akkermansia spp., and 
Lactobacillus casei, further compounds the problem. These species induce anti-inflammatory cytokines like IL-10, which 
may help mitigate low-grade inflammation and potentially improve insulin sensitivity. Roseburia intestinalis, for example, 
also promotes the production of IL-22, enhancing insulin sensitivity, and transforming growth factor-beta, inhibiting 
inflammatory processes.

Fatty acid metabolism: The altered composition of gut flora observed in T2DM patients may affect the production of 
SCFAs. These SCFAs, such as butyrate and propionate, are essential in promoting fatty acid oxidation by inhibiting the 
expression of peroxisome proliferator-activated receptor-gamma[39]. The absence of these regulatory mechanisms is 
evident in conditions like increased serum malonaldehyde, a marker for lipid oxidation, which is typically reduced by 
Lactobacillus casei and Akkermansia muciniphila in experimental models, but is elevated in diabetic subjects[40,41]. This 
disruption leads to enhanced fat accumulation in adipose tissue and the liver[42-44], triggering a modification in bile acid 
metabolism. Such alterations further propagate inflammation and microbial imbalance, perpetuating a cyclical exacer-
bation of T2DM pathogenesis[4]. Having discussed the potential associations between gut metabolites from microbiome 
dysbiosis and T2DM progression, specific targets to ameliorate their impact remains an area of future research.

Changes of the gut microbiome at different stages/complications of T2DM
The changes in the gut microbiome studied through various human and animal studies, a targeted replenishment of gut 
microbiota, can lead to delay or prevention in complications of diabetes through supplementation by probiotics, 
prebiotics, and fecal microbial transplantation, which in turn restores the stability of gut microbiota, as mentioned in 
Table 1.

Effects of diabetic medications on the gut microbiome
Metformin: Metformin is well-documented for its favorable modifications to the gut microbiome. According to Ismail 
and Evans-Molina[45], metformin treatment leads to changes in the composition of gut microbiota, enhancing the 
production of SCFAs and altering bile acids. These changes result in increased levels of glucagon-like peptide-1 (GLP-1), 
which promotes insulin secretion. Additionally, metformin helps normalize the altered microbial community by 
reversing the Firmicutes/Bacteroides ratio, which is often disrupted in diabetic conditions, thus restoring the microbiome 
toward a healthier state[4].

Sulfonylureas: The effects of sulfonylureas on the gut microbiome are less clear, with studies presenting conflicting data. 
One study reports that the use of sulfonylureas is associated with increased levels of phenylalanine and tryptophan, 
suggesting a potential impact on the microbiome[46]. However, another study found no significant changes in the 
composition of the gut microbiota with sulfonylurea treatment[47]. This indicates that the influence of sulfonylureas on 



Jeyaraman M et al. Gut microbiome and diabetes mellitus

WJD https://www.wjgnet.com 1878 September 15, 2024 Volume 15 Issue 9

Table 1 Dysbiosis observed in various stages of diabetes mellitus

Dysbiosis observedComplication/stage 
observed Decreased Increased

Diabetic nephropathy Lactobacillus, Bifidobacterium, Bacteroides, Prevotella, Roseburia, 
Ruminococcaceae, and Faecalibacterium

Enterococcus, Enterobacteriaceae, Clostridaceae, Klebsiella, 
and Parabacterides

Diabetic neuropathy Bacteroides and Faecalibacterium Escherichia, Blautia, Ruminococcus torques, and Lachno-
clostridium

Diabetic retinopathy Bacteroidetes and Actinobacteria Escherihia, Enterobacter, and Acidaminococcus

Cerebrovascular disease Lachnospiraceae, Ruminococcaceae, Bacteroidetes, Prevotella, and 
Faecalibacterium

Enterobacteriaceae, Veillonellaceae, Bifidobacterium, Lactoba-
cillus, and Oscillobacter

Cardiovascular disease Roseburia, Eubacterium spp, Bacteroides and Faecalibacterium Collinsella, Escherichia-Shigella, Enterococcus, and the ratio 
of Firmicutes to Bacteroides

Peripheral vascular disease - Firmicutes, Actinobacteria, Verrucomicrobia, and Proteo-
bacteria

Figure 3 Metabolite breakdown products of gut microbiome. GLP-1: Glucagon-like peptide-1.

the gut microbiome may vary depending on other factors such as dosage, duration of treatment, and individual patient 
microbiome composition.

Alpha-glucosidase inhibitors: Alpha-glucosidase inhibitors prevent the breakdown of oligosaccharides in the small 
intestine, thereby increasing their availability as nutrients for gut bacteria. This alteration in nutrient availability 
promotes the growth of beneficial microbes such as Bacteroides, Lactobacillus, and Faecalibacterium, while reducing 
populations of potentially pathogenic bacteria like Ruminococcus and Butyricicoccus[48]. These microbial shifts are 
associated with changes in bile acid profiles and improvements in prognostic factors for T2DM.

GLP-1 agonists: GLP-1 agonists, which slow gastric emptying, induce significant shifts in the gut microbial community. 
Studies indicate a reduction in obesity-promoting organisms within the Firmicutes phylum and an increase in po-
pulations of Verrucomicrobia and microbes from the orders Clostridiales and Bacteroidales[49]. These drugs also promote the 
growth of SCFA-producing bacteria such as Bifidobacterium and Bacteroides, further supporting glycemic control and 
metabolic health[50].

Sodium-glucose co-transporter type 2 inhibitors: Sodium-glucose co-transporter type 2 inhibitors, such as sotagliflozin, 
impact the gut microbiome by decreasing the Firmicutes/Bacteroides ratio and enhancing fatty acid production[51]. This 
alteration not only affects the microbial landscape but also has broader implications for energy metabolism and insulin 
sensitivity in T2DM patients. A summary of the effects of diabetic medications on the gut microbiome is tabulated in 
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Table 2.

Influence of diet and exercise on gut microbiome
The influence of diet and exercise on the gut microbiome has significant implications for the management of conditions 
such as T2DM. Various dietary patterns and physical activities have been shown to differentially affect the composition 
and functionality of the gut microbiota, with direct consequences on metabolic health (Table 3).

Dietary influences
A diet rich in plant-based fibers such as cellulose, inulin, pectin, and dextrin has been found to confer multiple health 
benefits, including reduced insulin resistance, lower serum cholesterol levels, and stable blood glucose levels. These 
effects are largely attributed to the enrichment of beneficial gut bacteria that negatively correlate with metabolic diseases. 
These bacteria produce SCFAs such as butyrates and propionates, which play a crucial role in reducing the production of 
pro-inflammatory cytokines, thereby mitigating inflammation associated with T2DM[4,52]. Conversely, diets high in fats 
and proteins, particularly from animal sources, tend to foster a pro-inflammatory gut environment. This is largely due to 
an increase in lipopolysaccharides, which are potent inflammatory agents. However, it is important to note that not all 
protein-rich diets have adverse effects. Diets rich in plant proteins can enhance the proliferation of beneficial microbes 
such as Lactobacillus spp. and Bifidobacterium spp. In contrast, diets high in animal proteins tend to increase levels of 
Bacteroides and Bilophila, which have mixed effects on health depending on the overall dietary context[53]. The Mediter-
ranean diet, which is rich in vegetables, fruits, nuts, seeds, and whole grains, has been specifically noted for its positive 
alterations to the gut microbiota. Adherence to this diet enhances the production of SCFAs, thereby improving insulin 
sensitivity. Observational studies in obese patients have shown increases in beneficial genera such as Roseburia and 
Oscillospira, alongside a reduction in Prevotella spp., which are associated with dysbiosis and metabolic disturbances. The 
beneficial shifts in the gut microbiome are contingent upon strict adherence to the dietary regimen[54].

Exercise influence
Physical exercise also plays a critical role in modulating the gut microbiome. Low-intensity physical activities have been 
associated with favorable changes in the gut microbiota composition, including an increase in the Bacteroides/Firmicutes 
ratio[55-57]. This shift helps mitigate the adverse effects of an unhealthy diet and contributes to overall metabolic health. 
Exercise-induced modifications to the microbiome can enhance the resilience of the gut ecosystem, promoting a balance 
that favors metabolic health and potentially reducing the risk or severity of T2DM.

THERAPIES FOR T2DM BASED ON THE GUT MICROBIOME
Nutraceutical agents
Lactobacillus and Bifidobacterium are among the most extensively studied probiotics, known for their beneficial effects on 
glycemic control. Meta-analyses have demonstrated that supplementation with these microbes can significantly decrease 
hemoglobin A1c, fasting blood glucose, and markers of oxidative stress[58]. Additionally, the introduction of Akkermansia 
muciniphila, a recent focus in microbiome research, has shown promising results. In murine models, this bacterium has 
been found to increase GLP-1 levels in colon cells, enhance glucose tolerance, and maintain gut barrier integrity, thereby 
reducing inflammation and ameliorating liver damage[59]. Research indicates that Akkermansia muciniphila also 
modulates the Firmicutes/Bacteroides ratio, leading to increased butyrate production. These changes collectively 
contribute to reduced oxidative stress and improved lipid profiles and glucose tolerance[39].

Fecal microbiota transplantation
Beyond probiotics, fecal microbiota transplantation (FMT) represents a more direct method for altering the gut 
microbiome. Initially popularized through its efficacy in treating Clostridium difficile infections, which often arise from 
chronic antibiotic use and the resultant suppression of native flora, FMT has since broadened its clinical applications[60]. 
Data from various human studies suggest that FMT can decrease inflammatory markers and increase the production of 
secondary bile acids, although its effects on insulin resistance have been relatively mild[61]. This indicates that, while 
FMT holds potential, its full spectrum of therapeutic benefits in T2DM remains to be fully elucidated through additional 
clinical trials. Despite its potential, FMT carries risks, particularly the possibility of transferring a dysbiotic microbiome 
and infectious pathogens. Therefore, while FMT is a promising tool in the arsenal against metabolic diseases, its 
application must be approached with caution, ensuring rigorous screening and monitoring protocols to mitigate these 
risks. A summary of evidence of the role of the gut microbiome in T2DM is tabulated in Table 4.

Challenges and limitations
One of the principal challenges in leveraging the gut microbiome for diabetes treatment is the inherent variability in 
microbial composition among individuals. Factors such as genetics, diet, age, and environment significantly influence the 
gut microbiota, creating a highly personalized microbial ecosystem. This variability can affect the efficacy of probiotic 
treatments, as the same probiotic strains may not produce identical effects in different individuals. The lack of standard-
ization in probiotic formulations poses another significant challenge. Probiotics are available in various forms, from 
dietary supplements to fortified foods, with considerable differences in strain specificity, viability, and concentration. 
These discrepancies can lead to inconsistent study results and confusion about their clinical applicability. Moreover, the 
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Table 2 Effects of diabetic medications on gut microbiome

Medication Effects on microbiome Observed outcomes

Metformin[45] Enhances SCFA production, normalizes 
Firmicutes/Bacteroides ratio

Increased GLP-1 levels, improved insulin secretion

Sulfonylureas[46,47] Conflicting data on impact Variable influence on microbiome, potential increase in phenylalanine 
and tryptophan levels

Alpha-glucosidase 
inhibitors[48]

Increases nutrient availability for beneficial bacteria Growth of beneficial microbes like Bacteroides, improvement in T2DM 
prognostic factors

GLP-1 agonists[49,50] Changes in gastric emptying rates influence 
microbiota

Reduction in obesity-promoting organisms, increase in beneficial 
microbes like Bifidobacterium

SGLT-2 inhibitors[51] Alters microbial ratios favorably Reduction in Firmicutes/Bacteroides ratio, enhanced fatty acid 
production

DM: Diabetes mellitus; GLP-1: Glucagon-like peptide-1; SCFA: Short-chain fatty acid; SGLT-2: Sodium-glucose co-transporter type 2.

Table 3 Impact of diet and exercise on the gut microbiome in type 2 diabetes mellitus

Factor Description Beneficial effects

High fiber plant-based foods[4,52] Decrease in insulin resistance, stabilization of blood glucose levels, reduction in serum cholesterol

High-fat and protein diets[53] Increase in pro-inflammatory markers; variable effects based on protein source (plant vs animal)

Diet

Mediterranean diet[54] Improvement in SCFA production, enhanced insulin sensitivity, increased beneficial genera like 
Roseburia

Exercise Low-intensity physical activity[55-
57]

Favorable shifts in microbiota composition, improvement in metabolic health markers

SCFA: Short-chain fatty acid.

regulation of probiotics varies by region, affecting the quality and safety of available products.
While short-term studies have demonstrated the potential benefits of probiotics in managing T2DM, long-term safety 

and efficacy remain underexplored. Questions about the optimal duration of probiotic therapy, long-term side effects, 
and the sustainability of beneficial effects need to be addressed through longitudinal studies. A deeper mechanistic 
understanding of how probiotics interact with both the gut microbiota and the host is crucial. Current knowledge about 
the pathways through which probiotics influence metabolic health, including their effects on inflammation, insulin 
sensitivity, and lipid metabolism, is still rudimentary. Enhanced mechanistic insights would facilitate the development of 
more targeted and effective therapeutic strategies. Interactions between probiotics and other medications commonly used 
by diabetic patients pose another layer of complexity. The potential for probiotics to affect drug metabolism and efficacy 
needs thorough investigation to avoid adverse effects and ensure complementary therapeutic outcomes.

Future directions
Advancing a personalized medicine approach in microbiome research could significantly enhance the efficacy of 
treatments. By understanding individual microbiome profiles, treatments can be tailored to optimize microbial 
composition and functionality. This approach would involve integrating detailed genomic, metabolic, and dietary data to 
predict individual responses to specific probiotic strains. Research into next-generation probiotics, which are specifically 
engineered or selected based on their beneficial characteristics, is a promising direction. These could include not only 
bacteria but also other components of the microbiota such as beneficial viruses or fungi that play a role in metabolic 
regulation.

Combining probiotics with other therapeutic modalities, such as dietary interventions, pharmacotherapy, and lifestyle 
changes, could enhance overall treatment outcomes. For example, synchronizing probiotic supplementation with a fiber-
rich diet might amplify the beneficial effects on the gut microbiome. Conducting more rigorous and comprehensive 
clinical trials that focus on various demographic groups and different stages of diabetes is crucial. These studies should 
aim to clarify optimal dosages, treatment durations, and combinations of probiotic strains. Moreover, trials should also 
assess the impact of probiotics on diabetes complications, offering a broader understanding of their potential benefits. 
Enhancing healthcare provider and patient education about the potential benefits and limitations of probiotics as part of 
diabetes management is essential. Increased awareness can lead to more informed decision-making and better clinical 
outcomes. The limitations and future directions in gut microbiome research for T2DM are summarized in Table 5.
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Table 4 Summary of global studies of the gut microbiome in type 2 diabetes mellitus

Ref. Place of 
study Probiotics used Observed effects

Lactobacillus spp.

Lactococcus spp.

Propionibacterium spp.

Kumari et al[62], 2021 India

Bifidobacterium spp.

Decreased HbA1C, insulin resistance, TNF-α, IL-1β

Selenium enhancedZhao et al[63], 2020 China

Bifidobacterium spp.

Decreased FG, HbA1C, and insulin levels and improves glucose 
tolerance and lipid profile

Lactobacillus plantarum

Lactobacillus bulgaricus

Lactobacillus gasseri

Bifidobacterium breve

Bifidobacterium animalis sbsp. lactis

Bifidobacterium bifidum

S. thermophiles

Palacios et al[64], 2020 Australia

S. boulardii

Decreased FG, HbA1C, and insulin resistance

Lactobacillus acidophilus

Lactobacillus casei

Lactobacillus rhamnosus

Lactobacillus bulgaricus

Bifidobacterium breve

Bifidobacterium longum

Razmpoosh et al[65], 2019 Iran

Streptococcus thermophilus

Decreased FG, insulin resistance, and increased HDL cholesterol

Lactobacillus salivarius

Lactobacillus casei

Lactobacillus plantarum

Lactobacillus acidophilus

Bifidobacterium breve

Madempudi et al[66], 2019 India

Bifidobacterium coagulans

Decreased HbA1C and effects on lipid profile are not significant

Bifidobacterium bifidum W23

Bifidobacterium lactis W52

Lactobacillus acidophilus W37

Lactobacillus brevis W63

Lactobacillus casei W56

Lactobacillus salivarius W24

Lactobacillus lactis W19

Sabico et al[67], 2019 Saudi Arabia

Lactobacillus lacis W58

Decreased FG, insulin resistance, total cholesterol, and trigly-
cerides

Mazruei Arani et al[68], 
2019

Iran Bacillus coagulans T4 Decreased FG, insulin resistance, CRP, and improves lipid 
profile

Lactobacillus acidophilus

Bifidobacterium bifidum

Lactobacillus casei

Mohseni et al[37], 2018 Iran

Lactobacillus fementum

Decreased FG, insulin resistance, inflammatory markers, and 
improves lipid profile
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14 probiotic strains of Lactobacillus

Lactococcus

Bifidobacterium spp.

Propionibacterium

Kobyliak et al[61], 2018 Ukraine

Acetobacter

Decreased HbA1C and insulin resistance

Lactobacillus acidophilus

Bifidobacterium lactis

Bifidobacterium bifidum

Kassaian et al[69], 2018 Iran

Bifidobacterium longum

Decreased FG, HbA1C, and insulin resistance

Bifidobacterium bifidum

Lactobacillus casei

Mohseni et al[37], 2018 Iran

Lactobacillus acidophilus

Decrease FG, insulin resistance, total cholesterol, and increased 
GSH level

Lactobacillus casei

Lactobacillus rhamnosus

Streptococcus thermophilus

Bifidobacterium breve

Lactobacillus acidophilus

Bifidobacterium longum

Mofidi et al[35], 2017 Iran

Lactobacillus bulgaricus

Decreased FG and triglycerides

Lactobacillus acidophilus

Lactobacillus casei

Lactobacillus lactis

Bifidobacterium bifidum

Bifidobacterium longum

Firouzi et al[36], 2017 Malaysia

Bifidobacterium infantis

Decreased HbA1C and does not affect lipid profile

Lactobacillus acidophilus

Lactobacillus casei

Tajabadi-Ebrahimi et al
[33], 2017

Iran

Bifidobacterium bifidum

Decreased FG, increased insulin sensitivity, and does not affect 
lipid profile

Lactobacillus spp.

Bifidobacterium spp.

Ebrahimi et al[70], 2017 Iran

Streptococcus thermophilus and fructo-
oligosaccharide

Decreased FG, HbA1C, and no effect on lipid profile

Probiotic: Lactobacillus sporogenesAsemi et al[71], 2016 Iran

Prebiotic: Inulin, beta-carotene

Decreased in serum insulin, insulin resistance, triglycerides and 
increased GSH levels

Lactobacillus acidophilus LA5Madjd et al[72], 2016 Iran

Bifidobacterium lactis BB12

Decreased HbA1C, 2-h postprandial glucose, insulin resistance, 
total cholesterol, and LDL levels

Lactobacillus acidophilus

Lactobacillus casei

Karamali et al[73], 2016 Iran

Bifidobacterium bifidum

Decreased fasting glucose, insulin resistance, triglycerides, 
VLDL, and increased insulin sensitivity

Lactobacillus acidophilus

Lactobacillus casei

Ostadrahimi et al[74], 2015 Iran

Bifidobacterium lactis

Decreased HbA1C, and FG and does not affect lipid profile

Lactobacillus casei

Lactobacillus rhamnosus

Eslamparast et al[75], 2014 Iran Decreased FG, insulin resistance and has no effect on lipid 
profile
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Streptococcus thermophilus

Bifidobacterium breve

Lactobacillus acidophilus

Bifidobacterium longum

Lactobacillus bulgaricus

Bifidobacterium longum

Bifidobacterium infantis

Bifidobacterium breve

Lactobacillus acidophilus

Lactobacillus paracasei

Lactobacillus bulgaricus

Lactobacillus plantarum

Rajkumar et al[76], 2014 India

Streptococcus thermophilus

Decreased FG, insulin resistance, total cholesterol, triglycerides, 
LDL, VLDL, and increased HDL levels

Lactobacillus acidophilus La5Ivey et al[77], 2014 Australia

Bifidobacterium lactis Bb12

Increased FG and insulin resistance

Bifidobacterium lactis Bb12Mohamadshahi et al[78], 
2014

Iran

Lactobacillus acidophilus

Decreased HbA1C

Probiotic: Viable & heat-resistant 
Lactobacillus sporogenes

Asemi et al[79], 2014 Iran

Prebiotic: Inulin

Decreased FG, HbA1C, insulin resistance, and inflammatory 
markers

Lactobacillus spp.

Bifidobacterium spp.

Asemi et al[34], 2013 Iran

Streptococcus spp. 
Fructo-oligosaccharide

Decreased FG and increased insulin levels, total GSH levels, and 
LDL levels

Lactobacillus acidophilus

Lactobacillus bulgaricus

Lactobacillus bifidum

Mazloom et al[80], 2013 Iran

Lactobacillus casei

Decreased FG, insulin resistance, and improves fasting insulin

Lactobacillus acidophilus

Lactobacillus casei

Lactobacillus rhamnosus

Lactobacillus bulgaricus

Bifidobacterium breve

Bifidobacterium longum

Shavakhi et al[81], 2013 Iran

Streptococcus thermophilus

Decreased FG, triglycerides, and total cholesterol

Lactobacillus acidophilus LA5Asemi et al[82], 2013 Iran

Bifidobacterium animalis BB12

Decreased insulin resistance

Lactobacillus acidophilus

Lactobacillus casei

Lactobacillus rhamnosus

Lactobacillus bulgaricus

Bifidobacterium breve

Bifidobacterium longum

Asemi et al[34], 2013 Iran

Streptococcus thermophiles

Decreased FG, increased insulin resistance, and LDL levels
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Lactobacillus acidophilusMoroti et al[31], 2012 Brazil

Bifidobacterium bifidum

Decreased FG and increased HDL levels

Lactobacillus acidophilus La5Ejtahed et al[83], 2012 Iran

Bifidobacterium lactis Bb12

Decreased FG and HbA1C and does not affect lipid profile

Lactobacillus rhamnosus GGLaitinen et al[84], 2009 Finland

Bifidobacterium lactis Bb12

Decreased FG, insulin resistance, and increased insulin 
sensitivity

CRP: C-reactive protein; FG: Fasting glucose; GSH: Glutathione; HbA1C: Hemoglobin A1c; HDL: High-density lipoprotein; IL: Interleukin; LDL: Low-
density lipoprotein; TNF: Tumor necrosis factor; VLDL: Very low-density lipoprotein.

Table 5 Limitations and future directions in gut microbiome research for type 2 diabetes mellitus

Limitations Description Future directions

Variability in microbial 
composition

Individual differences in microbiome 
composition complicate standard treatment 
outcomes

Personalized microbiome interventions: Develop treatments based on 
individual microbiome assessments to optimize efficacy

Lack of standardization Inconsistencies in probiotic formulations affect 
study comparability and clinical applicability

Standardization of products: Establish regulations and standards for 
probiotic formulations to ensure quality and consistency

Short-term focus Most studies have short duration and do not 
address long-term safety and effectiveness

Longitudinal studies: Conduct long-term studies to assess the sustained 
effects and safety of microbiome-based interventions

Incomplete mechanistic 
understanding

The pathways through which the microbiome 
influences diabetes are not fully elucidated

Mechanistic research: Deepen research into the biochemical interactions 
within the gut microbiome that affect diabetes pathogenesis and treatment

Drug-microbiome 
interactions

Potential interactions between probiotics and 
anti-diabetic medications are not well understood

Interaction studies: Explore how probiotics interact with common diabetic 
medications to refine treatment protocols

Regulatory hurdles The global regulatory landscape for probiotics 
and microbiome therapies varies significantly

Harmonize regulations: Work toward an international consensus on the 
regulation of microbiome therapies to facilitate global research and 
application

CONCLUSION
T2DM significantly impacts the gut microbiota, leading to dysbiosis, which in turn promotes inflammation and 
contributes to the development of insulin resistance. The evidence gathered from various trials and studies underscores 
the pivotal role of nutraceuticals in restoring a balanced gut flora, enhancing insulin sensitivity, and reducing insulin 
resistance. These beneficial effects have been consistently observed in animal models and, to a lesser extent, in human 
studies. Although the initial outcomes from human trials have not met all expectations, they lay a solid foundation for 
future research. Continued exploration and more targeted studies are essential to refine these interventions and fully 
assess their therapeutic potential. With ongoing advancements and deeper insights into gut microbiome interactions, 
nutraceuticals hold promise as a novel and effective treatment strategy to manage T2DM. As research progresses, these 
natural compounds will become an integral part of comprehensive diabetes management, potentially shifting current 
therapeutic paradigms.
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