OPINION REVIEW
2363 eHealth, telehealth, and telemedicine in the management of the COVID-19 pandemic and beyond: Lessons learned and future perspectives
 Giacalone A, Marin L, Febbi M, Franchi T, Tovani-Palone MR

MINIREVIEWS
2369 Developing natural marine products for treating liver diseases
 Wei Q, Guo JS

ORIGINAL ARTICLE
Case Control Study
2382 Analysis of bacterial spectrum, activin A, and CD64 in chronic obstructive pulmonary disease patients complicated with pulmonary infections
 Fei ZY, Wang J, Liang J, Zhou X, Guo M

Retrospective Cohort Study
2393 Computed tomography perfusion imaging evaluation of angiogenesis in patients with pancreatic adenocarcinoma
 Liu W, Yin B, Liang ZH, Yu Y, Lu N

Retrospective Study
2404 Epidemiological features and dynamic changes in blood biochemical indices for COVID-19 patients in Hebi
 Nie XB, Shi BS, Zhang L, Niu WL, Xue T, Li LQ, Wei XY, Wang YD, Chen WD, Hou RF

Clinical Trials Study
2420 Identification and predictive analysis for participants at ultra-high risk of psychosis: A comparison of three psychometric diagnostic interviews
 Wang P, Yan CD, Dong XJ, Geng L, Xu C, Nie Y, Zhang S

2429 Prognostic significance of peritoneal metastasis from colorectal cancer treated with first-line triplet chemotherapy

Observational Study
2439 Effect of intraoperative cell rescue on bleeding related indexes after cesarean section
 Yu YF, Cao YD
Prospective Study

2447 Effectiveness of the combination of workshops and flipped classroom model to improve tube fixation training for nursing students
Wang YC, Cheng HL, Deng YM, Li BQ, Zhou XZ

META-ANALYSIS

2457 Mortality in patients with COVID-19 requiring extracorporeal membrane oxygenation: A meta-analysis
Zhang Y, Wang L, Fang ZX, Chen J, Zheng JL, Yao M, Chen WY

CASE REPORT

2468 Escitalopram-induced hepatitis: A case report
Wabont G, Ferret L, Houdre N, Lepied A, Bene J, Cousein E

2474 Fatal community-acquired bloodstream infection caused by Klebsiella variicola: A case report

2484 Endoscopic extraction of a submucosal esophageal foreign body piercing into the thoracic aorta: A case report
Chen ZC, Chen GQ, Chen XC, Zheng CY, Cao WD, Deng GH

2491 Severe tinnitus and migraine headache in a 37-year-old woman treated with trastuzumab for breast cancer: A case report

2497 Metastatic urothelial carcinoma harboring ERBB2/3 mutations dramatically respond to chemotherapy plus anti-PD-1 antibody: A case report
Yan FF, Jiang Q, Ru B, Fei XJ, Ruan J, Zhang XC

2504 Retroperitoneal congenital epidermoid cyst misdiagnosed as a solid pseudopapillary tumor of the pancreas: A case report
Ma J, Zhang YM, Zhou CP, Zhu L

2510 Immunoglobulin G4-related kidney disease involving the renal pelvis and perirenal fat: A case report
He JW, Zou QM, Pan J, Wang SS, Xiang ST

2516 Fluoroscopic removal of fractured, retained, embedded Z self-expanding metal stent using a guidewire lasso technique: A case report
Bi YH, Ren JZ, Li JD, Han XW

2522 Treatment and five-year follow-up of type A insulin resistance syndrome: A case report
Chen YH, Chen QQ, Wang CL

2529 Effective response to crizotinib of concurrent KIF5B-MET and MET-CDR2-rearranged non-small cell lung cancer: A case report
Liu LF, Deng JY, Lizaso A, Lin J, Sun S
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2543</td>
<td>Immunoglobulin G4-related disease involving multiple systems: A case report</td>
<td>An YQ, Ma N, Liu Y</td>
</tr>
<tr>
<td>2550</td>
<td>Daptomycin and linezolid for severe methicillin-resistant Staphylococcus aureus psoas abscess and bacteremia: A case report and review of the literature</td>
<td>Hong XB, Yu ZL, Fu HB, Cai ZH, Chen J</td>
</tr>
<tr>
<td>2559</td>
<td>Isolated scaphoid dislocation: A case report and review of literature</td>
<td>Liu SD, Yin BS, Han F, Jiang HJ, Qu W</td>
</tr>
<tr>
<td>2577</td>
<td>Cardiac rehabilitation in a heart failure patient after left ventricular assist device insertion and subsequent heart transplantation: A case report</td>
<td>Yang TW, Song S, Lee HW, Lee BJ</td>
</tr>
<tr>
<td>2584</td>
<td>Large retroperitoneal atypical spindle cell lipomatous tumor, an extremely rare neoplasm: A case report</td>
<td>Bae JM, Jung CY, Yun WS, Choi JH</td>
</tr>
<tr>
<td>2591</td>
<td>Hepatocellular carcinoma effective stereotactic body radiotherapy using Gold Anchor and the Synchrony system: Two case reports and review of literature</td>
<td>Masuda S, Tsukiyama T, Minagawa Y, Koizumi K, Kako M, Kinbara T, Haruki U</td>
</tr>
<tr>
<td>2604</td>
<td>Mantle cell lymphoma with endobronchial involvement: A case report</td>
<td>Ding YZ, Tang DQ, Zhao XJ</td>
</tr>
<tr>
<td>2616</td>
<td>Takotsubo cardiomyopathy misdiagnosed as acute myocardial infarction under the Chest Pain Center model: A case report</td>
<td>Meng LP, Zhang P</td>
</tr>
<tr>
<td>2629</td>
<td>Silver dressing in the management of an infant's urachal anomaly infected with methicillin-resistant Staphylococcus aureus: A case report</td>
<td>Shi ZY, Hou SL, Li XW</td>
</tr>
<tr>
<td>2637</td>
<td>Drain-site hernia after laparoscopic rectal resection: A case report and review of literature</td>
<td>Su J, Deng C, Yin HM</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 10 Number 8 March 16, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2644</td>
<td>Synchronized early gastric cancer occurred in a patient with serrated polyposis syndrome: A case report</td>
<td>Ning YZ, Liu GY, Rao XL, Ma YC, Rong L</td>
</tr>
<tr>
<td>2650</td>
<td>Large cystic-solid pulmonary hamartoma: A case report</td>
<td>Guo XW, Jia XD, Ji AD, Zhang DQ, Jia DZ, Zhang Q, Shao Q, Liu Y</td>
</tr>
</tbody>
</table>

World Journal of Clinical Cases
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Nicolae Gica, Doctor, PhD, Assistant Professor, Chief Doctor, Surgeon, Department of Obstetrics and Gynecology Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest 063377, Romania. gica.nicolae@umfcd.ro

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 16, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.ffipublishing.com
Mortality in patients with COVID-19 requiring extracorporeal membrane oxygenation: A meta-analysis

Ye Zhang, Lei Wang, Zhi-Xian Fang, Jing Chen, Jia-Lian Zheng, Ming Yao, Wen-Yu Chen

Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Arumugam VA

Received: July 27, 2021
Peer-review started: July 27, 2021
First decision: October 22, 2021
Revised: November 4, 2021
Accepted: January 29, 2022
Article in press: January 29, 2022
Published online: March 16, 2022

Ye Zhang, Lei Wang, Department of General Practice, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
Zhi-Xian Fang, Wen-Yu Chen, Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
Jing Chen, Jia-Lian Zheng, Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
Ming Yao, Department of Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China

Corresponding author: Wen-Yu Chen, PhD, Department of Respiration, Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing 314000, Zhejiang Province, China. 00135116@zjxu.edu.cn

Abstract

BACKGROUND
Coronavirus disease 2019 (COVID-19) has become a worldwide pandemic and significant public health issue. The effectiveness of extracorporeal membrane oxygenation (ECMO) in treating COVID-19 patients has been called into question.

AIM
To conduct a meta-analysis on the mortality of COVID-19 patients who require ECMO.

METHODS
This analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes 2020 (PRISMA) and has been registered at the International Prospective Register of Systematic Reviews (number CRD42020227414). A quality assessment for all the included articles was performed by the Newcastle-Ottawa Scale (NOS). Studies with tenor more COVID-19 patients undergoing ECMO were included. The random-effects model was used to obtain the pooled incidence of mortality in COVID-19 patients receiving ECMO. The source of heterogeneity was investigated using subgroup and sensitivity analyses.

RESULTS
We identified 18 articles with 1494 COVID-19 patients who were receiving ECMO. The score of the quality assessment ranged from 5 to 8 on the NOS. The majority
of patients received veno-venous ECMO (93.7%). Overall mortality was estimated to be 0.31 [95% confidence interval (CI): 0.24-0.39; \(F = 84.8\% \)] based on random-effect pooled estimates. There were significant differences in mortality between location groups (33.0% vs 55.0% vs 37.0% vs 18.0%, \(P < 0.001 \)), setting groups (28.0% vs 34.0%, \(P < 0.001 \)), sample size (37.0% vs 31.0%, \(P < 0.001 \)), and NOS groups (39.0% vs 19.0%, \(P < 0.001 \)). However, both subgroup analyses based on location, setting, and sample size, and sensitivity analysis failed to identify the source of heterogeneity. The funnel plot indicated no evident asymmetry, and the Egger's (\(P = 0.95 \)) and Begg's (\(P = 0.14 \)) tests also revealed no significant publication bias.

CONCLUSION

With more resource assessment and risk-benefit analysis, our data reveal that ECMO might be a feasible and effective treatment for COVID-19 patients.

Key Words: COVID-19; Extracorporeal membrane oxygenation; SARS-CoV-2; Meta-analysis; Veno-venous extracorporeal membrane oxygenation; Mortality

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) has become a worldwide pandemic and significant public health issue. The effectiveness of extracorporeal membrane oxygenation (ECMO) in treating COVID-19 patients has been called into question. Therefore, we conducted this meta-analysis on the mortality of COVID-19 patients who require ECMO. We identified 18 articles with 1494 COVID-19 patients who were receiving ECMO. With more resource assessment and risk-benefit analysis, our data reveal that ECMO might be a feasible and effective treatment for COVID-19 patients.

URL: https://www.wjgnet.com/2307-8960/full/v10/i8/2457.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i8.2457

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global pandemic. As of October 25, 2021, there have been over 243 million infections and approximately 4.9 million deaths[1]. It was characterized by rapid disease progression and a high risk of acute respiratory distress syndrome (ARDS) due to severe or fatal pneumonia[2]. Although the majority of COVID-19 patients have very moderate disease, current studies suggest that approximately 18% of them have serious disease[3] with a mortality rate of up to 53%-67%[4,5].

Extracorporeal membrane oxygenation (ECMO), which can support gas exchange in patients failing conventional mechanical ventilation[6], has been proven to be effective in the treatment of severe respiratory failure and cardiovascular compromise caused by ARDS, based on the experience of previous viral outbreaks, such as Middle East Respiratory Syndrome and H1N1 influenza[7-9]. There are two primary ECMO therapy methods: Veno-venous ECMO (VV-ECMO) and veno-arterial ECMO (VA-ECMO). For the vast majority of COVID-19 patients who need ECMO treatment, we adopted VV-ECMO. The World Health Organization (WHO) and Chinese experts have recommended that ECMO can be used as a salvage therapy for severe COVID-19 patients who are not responding to conventional ARDS treatments[10-14]. Although there are still numerous complications, research has revealed that 63% of patients recovered from ARDS and were weaned from ECMO.

Despite such optimism for a possible role for ECMO in COVID-19, concerns have been raised due to the high mortality rate observed in studies[15]. Venerable age, late ECMO initiation time, and multiple complications (diabetes, heart disease, obesity, etc.) are all independent risk factors that increase the 90-d mortality rate. The role of ECMO in the treatment of diseases caused by this new virus is still uncertain and controversial. Currently, there is insufficient worldwide evidence to assess the effectiveness of ECMO. The majority of prior studies were based on retrospective cohort studies and case reports in a specific population, making it difficult to analyze the impact of ECMO on COVID-19 patients in a systematic manner[6]. Therefore, we conducted a meta-analysis focusing on the mortality of COVID-19 patients requiring ECMO in order to guide current clinical practice and future research efforts.
MATERIALS AND METHODS

Search strategy
To identify articles concerning ECMO and COVID-19, a comprehensive literature search was undertaken utilizing the PubMed, EMBASE, Web of Science, Cochrane Library, and Clinical Trials databases. On December 9, 2020, all searches were updated, and the search strategy was divided into two categories: (1) COVID-19; and (2) ECMO. The following keywords were used: “COVID-19”, “2019 novel coronavirus disease”, “2019-nCoV”, and “Extracorporeal membrane oxygenation.” The articles were limited to English literature. To prevent missing relevant records, reference lists from the selected...
studies and systematic reviews were thoroughly searched. Furthermore, this systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines, and it was registered at the International Prospective Register of Systematic Reviews (number CRD42020227414) prior to submission.

Inclusion and exclusion criteria
Original studies that matched the following criteria were included in the meta-analysis: (1) Studies with ten or more patients; (2) Patients with laboratory-confirmed COVID-19 receiving ECMO; (3) Studies with primary data; and (4) Studies with more than 5 points on the Newcastle-Ottawa scale (NOS). The exclusion criteria were: (1) Duplicate publication or dataset; and (2) Animal and in vitro experiments, case reports, letters, editorials, comments, conference summaries, meta-analyses, and reviews were excluded.

Data extraction
Data from the included articles were extracted, including authors' names, publication year, study location, study design, sample size, patient baseline characteristics, clinical parameters, management, primary outcome, and complications. The article search, selection, data extractions, and quality assessment were all conducted independently by two reviewers (ZY and CWY), and any disagreements were resolved after consensus.

Quality assessment
The NOS was applied for a quality assessment on all of the included papers. All included papers were classified as poor (scores 0–3), moderate (scores 4–6), or high (scores 7–9) quality studies, with papers with more than 5 points being considered for further analysis.

Statistical analysis
The pooled estimates of the event rate were obtained using the random-effects model. Each study had its own underlying effect size. The random-effects model assumes that there is a mean population effect size that varies depending on the study. We used the inconsistency statistic (I^2) to evaluate the extent of heterogeneity. An I^2 value greater than 50% was considered to indicate substantial heterogeneity. The Egger’s and Begg’s tests were used to assess publication bias and a visual funnel plot for asymmetry was presented. Sensitivity analysis and subgroup analysis were also utilized to investigate the source of heterogeneity and a two-sided test at the 5% level was considered statistically significant. Moreover, Stata 15.1 (Stata Corporation, College Station, TX, United States) was utilized to conduct the meta-analysis.

RESULTS
In the initial search, 1821 potentially relevant articles were identified. After eliminating duplicates, 1153 studies were assessed based on title and abstract. Following a full-text review of the remaining 56 studies, 38 studies were excluded. Finally, the meta-analysis comprised 18 articles representing 1494 verified COVID-19 patients treated with ECMO (Figure 1). Since EuroELSO was a subset of centers participating in the international ELSO registry, we eliminated the previous study on EuroELSO to avoid data duplication[16,17].

Studies characteristics and quality assessment
The characteristics of these studies are summarized in Table 1. All of the studies were observational in design, with the majority of them being retrospective (94.2%). The score of the quality assessment ranged from 5 to 8 on the NOS. All studies were rated as “moderate to high quality.” In the majority of cases, VV-ECMO was utilized (93.8%). Table 2 summarizes the sample characteristics of the included studies.

The in-hospital or short-term mortality ranged between 0.04 and 0.57. Overall pooled mortality was estimated to be 0.31 [95% confidence interval (CI): 0.24-0.39; $I^2 = 84.8\%$] using random-effect pooled estimates (Figure 2). Two studies found that the mortality rate in the ECMO group was lower than that in the mechanical ventilator group (57.1% vs 63.2% and 46.2% vs 47.8%).

Subgroup analysis
Figure 3 depicts the outcomes of the random effects model and subgroup analysis. There were significant differences in mortality between location groups (Figure 3A; 33.0% vs 55.0% vs 37.0% vs 18.0%, $P < 0.001$), setting groups (Figure 3B; 28.0% vs 34.0%, $P < 0.001$), sample size group (Figure 3C; 37.0% vs 31.0%, $P < 0.001$), and NOS groups (Figure 3D; 39.0% vs 19.0%, $P < 0.001$). There was no source of heterogeneity in any of the subgroups.
Table 1 Characteristics of included studies

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Year</th>
<th>Location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Type of ECMO (VV%)</th>
<th>Follow-up</th>
<th>NOS score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al[31]</td>
<td>2020</td>
<td>United Kingdom</td>
<td>Retrospective/Single center</td>
<td>43</td>
<td>100%</td>
<td>In-hospital</td>
<td>7</td>
</tr>
<tr>
<td>Yang et al[21]</td>
<td>2020</td>
<td>China</td>
<td>Retrospective/Multicenter</td>
<td>21</td>
<td>NA</td>
<td>In-hospital</td>
<td>8</td>
</tr>
<tr>
<td>Barbaro et al[16]</td>
<td>2020</td>
<td>ELSO</td>
<td>Retrospective/Multicenter</td>
<td>1035</td>
<td>94.49%</td>
<td>3 mo</td>
<td>7</td>
</tr>
<tr>
<td>Alnababteh et al[32]</td>
<td>2021</td>
<td>United States</td>
<td>Retrospective/Single center</td>
<td>13</td>
<td>100%</td>
<td>In-hospital</td>
<td>8</td>
</tr>
<tr>
<td>Le Breton et al[27]</td>
<td>2020</td>
<td>France</td>
<td>Retrospective/Single center</td>
<td>13</td>
<td>100%</td>
<td>In-hospital</td>
<td>5</td>
</tr>
<tr>
<td>Guilhaire et al[33]</td>
<td>2020</td>
<td>France</td>
<td>Retrospective/Single center</td>
<td>24</td>
<td>100%</td>
<td>In-hospital</td>
<td>5</td>
</tr>
<tr>
<td>Jäckel et al[34]</td>
<td>2020</td>
<td>Germany</td>
<td>Retrospective/Single center</td>
<td>15</td>
<td>100%</td>
<td>1 mo</td>
<td>8</td>
</tr>
<tr>
<td>Jang et al[19]</td>
<td>2020</td>
<td>Korea</td>
<td>Retrospective/Multicenter</td>
<td>19</td>
<td>84.21%</td>
<td>In-hospital</td>
<td>7</td>
</tr>
<tr>
<td>Schmidt et al[35]</td>
<td>2020</td>
<td>France</td>
<td>Retrospective/Multicenter</td>
<td>83</td>
<td>97.59%</td>
<td>3 mo</td>
<td>7</td>
</tr>
<tr>
<td>Riera et al[36]</td>
<td>2020</td>
<td>Spain</td>
<td>Retrospective/Single center</td>
<td>19</td>
<td>100%</td>
<td>In-hospital</td>
<td>5</td>
</tr>
<tr>
<td>Jacobs et al[24]</td>
<td>2020</td>
<td>United States</td>
<td>Retrospective/Multicenter</td>
<td>32</td>
<td>78.13%</td>
<td>In-hospital</td>
<td>6</td>
</tr>
<tr>
<td>Bemtgen et al[37]</td>
<td>2021</td>
<td>Germany</td>
<td>Prospective/ Single center</td>
<td>11</td>
<td>100%</td>
<td>28 d</td>
<td>8</td>
</tr>
<tr>
<td>Cousin et al[20]</td>
<td>2021</td>
<td>France</td>
<td>Retrospective/Multicenter</td>
<td>30</td>
<td>100%</td>
<td>3 mo</td>
<td>8</td>
</tr>
<tr>
<td>Sultan et al[28]</td>
<td>2020</td>
<td>United States</td>
<td>Retrospective/Multicenter</td>
<td>10</td>
<td>100%</td>
<td>26 d</td>
<td>5</td>
</tr>
<tr>
<td>Yankah et al[38]</td>
<td>2021</td>
<td>Germany</td>
<td>Retrospective/Multicenter</td>
<td>42</td>
<td>100%</td>
<td>1 mo</td>
<td>5</td>
</tr>
<tr>
<td>Kon et al[29]</td>
<td>2021</td>
<td>United States</td>
<td>Retrospective/Single center</td>
<td>27</td>
<td>100%</td>
<td>In-hospital</td>
<td>6</td>
</tr>
<tr>
<td>Zayat et al[39]</td>
<td>2021</td>
<td>Germany</td>
<td>Retrospective/Single center</td>
<td>17</td>
<td>94.12%</td>
<td>In-hospital</td>
<td>7</td>
</tr>
<tr>
<td>Mustafa et al[40]</td>
<td>2020</td>
<td>United States</td>
<td>Retrospective/Multicenter</td>
<td>40</td>
<td>100%</td>
<td>In-hospital</td>
<td>7</td>
</tr>
</tbody>
</table>

ECMO: Extracorporeal membrane oxygenation; NOS: Newcastle-Ottawa Scale; NA: Not available.

Publication bias and sensitivity analysis

Funnel plots showed no obvious asymmetry. The Egger’s ($P = 0.95$) and Begg’s tests ($P = 0.14$) further revealed no significant publication bias. The recalculated pooled results did not change significantly after removing each study sequentially, showing that there was no outlier study that influenced the overall result.

DISCUSSION

ECMO is an essential instrument for treating severe respiratory and heart failure, and it was widely employed in the treatment of critically ill patients during the COVID-19 pandemic. However, previous research found that the impact of ECMO in critically ill COVID-19 patients was controversial due to the high mortality rate. Therefore, we conducted this meta-analysis that included 18 original independent studies to examine the effectiveness of ECMO in the treatment of COVID-19. The mortality rate of COVID-19 patients treated with ECMO in our investigation was 31%, which was lower than the mortality rate of severe COVID-19 patients in the prior study. These data imply that ECMO treatment may decrease the mortality rate of COVID-19 patients who are severely ill.

Although some studies reported that the mortality rate of COVID-19 patients treated with ECMO is as high as $39\%-83.3\%$[18-22], which is substantially higher than the results of this study, we believe such high mortality may be due to other reasons rather than the ECMO treatment being ineffective. For example, many previous studies conducted in the early stage of the COVID-19 outbreak used a small sample size with a high proportion of patients having pre-existing comorbidities, which may be an important factor contributing to the high mortality[23]. Additionally, due to a lack of experience in treating COVID-19 at the beginning of the outbreak, ECMO treatment may have been initiated too late. The secondary infection and other complications may also lead to high mortality. These possible reasons of increased mortality are consistent with prior results obtained by certain researchers who discovered that variables such as advanced age (> 65 years old), gender (male), pre-existing diseases, and acute or chronic organ failure may contribute to a poor prognosis[24-26]. Considering these factors, our findings may provide evidence for the future application of ECOM in treating severe COVID-19 patients.
Table 2 Patient characteristics, clinical parameters, management, and primary complications of the included studies

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Age (yr)</th>
<th>Proportion of male (%)</th>
<th>Smoke</th>
<th>SOFA</th>
<th>PH</th>
<th>PaO₂/FiO₂ (mmHg)</th>
<th>Comorbidities</th>
<th>ECMO duration (d)</th>
<th>Pre-ECMO MV (d)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al</td>
<td>46 (35.5-52.5)</td>
<td>76.7%</td>
<td>NA</td>
<td>7 (4-10)</td>
<td>7.30 (7.19-7.36)</td>
<td>67.5 (58.9-77.8)</td>
<td>(1), (2), (3), (4), (5)</td>
<td>13 (8-20)</td>
<td>5 (2-6)</td>
<td>1, 2, 4, 5</td>
</tr>
<tr>
<td>Yang et al</td>
<td>45.2 ± 14.5</td>
<td>57.1%</td>
<td>NA</td>
<td>6.5 (4.8-8.0)</td>
<td>7.30 (7.19-7.41)</td>
<td>60 (55.6-72.0)</td>
<td>(3), (4), (6)</td>
<td>9.1 (5.9-24.8)</td>
<td>1.5 (0.5-3.5)</td>
<td>1, 2, 6</td>
</tr>
<tr>
<td>Barboro et al</td>
<td>49 (41-57)</td>
<td>73.8%</td>
<td>NA</td>
<td>NA</td>
<td>72 (59-94)</td>
<td>(2), (3), (4), (5), (6)</td>
<td>13.9 (7.8-23.3)</td>
<td>4 (1.8-6.4)</td>
<td>1, 3, 7, 8</td>
<td></td>
</tr>
<tr>
<td>Alnababteh et al</td>
<td>44.5 ± 9.5</td>
<td>61.5%</td>
<td>1</td>
<td>9.3 ± 4.5</td>
<td>7.32 (7.23-7.39)</td>
<td>81.3 ± 20.3</td>
<td>(1), (2)</td>
<td>12 (10.4-16.2)</td>
<td>NA</td>
<td>1, 2, 6</td>
</tr>
<tr>
<td>Le Breton et al</td>
<td>49.3</td>
<td>69.2%</td>
<td>4</td>
<td>9.9</td>
<td>7.28</td>
<td>59</td>
<td>(1)</td>
<td>13 (3-34)</td>
<td>6</td>
<td>1, 2</td>
</tr>
<tr>
<td>Guilhaire et al</td>
<td>48.8 ± 8.9</td>
<td>83.3%</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>67 (52-78)</td>
<td>(1), (2)</td>
<td>19 ± 10.1</td>
<td>6.3 (1-11)</td>
<td>1, 3</td>
</tr>
<tr>
<td>Jäckel et al</td>
<td>60.8 (54.1-67.0)</td>
<td>26.7%</td>
<td>3</td>
<td>10 (8-11)</td>
<td>7.30 (7.23-7.40)</td>
<td>NA</td>
<td>(1), (2), (3), (4)</td>
<td>11.3 (7.8-23.8)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Jang et al</td>
<td>63 (60-66)</td>
<td>79.0%</td>
<td>3</td>
<td>NA</td>
<td>7.30 (7.20-7.40)</td>
<td>92 (62.4-138.7)</td>
<td>(1), (2), (3), (4), (5), (6)</td>
<td>15.9 (7.7-28.2)</td>
<td>3.1 (0.8-5.5)</td>
<td>1, 4, 5, 6, 8</td>
</tr>
<tr>
<td>Schmidt et al</td>
<td>49 (41-56)</td>
<td>73.5%</td>
<td>2</td>
<td>12 (9-13)</td>
<td>7.32 (7.24-7.38)</td>
<td>60 (54-68)</td>
<td>(1), (3), (4), (5), (6), (7)</td>
<td>NA</td>
<td>4 (3-6)</td>
<td>1, 2, 3, 5, 8</td>
</tr>
<tr>
<td>Riera et al</td>
<td>50.5 (31-64)</td>
<td>84.2%</td>
<td>NA</td>
<td>NA</td>
<td>7.2 (6.9-7.4)</td>
<td>70.8 (57-118)</td>
<td>(1), (3)</td>
<td>10.7 (2-33)</td>
<td>NA</td>
<td>1, 3</td>
</tr>
<tr>
<td>Jacobs et al</td>
<td>52.4 ± 12.5</td>
<td>68.8%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(2), (3), (4), (5)</td>
<td>7.3 ± 3.3</td>
<td>4.3 ± 2.4</td>
<td>NA</td>
</tr>
<tr>
<td>Bemtgen et al</td>
<td>59.4 (49.8-61.3)</td>
<td>63.6%</td>
<td>NA</td>
<td>14 (13-16)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>17.9 (7.8-23.8)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cousin et al</td>
<td>57 (47-62)</td>
<td>80.0%</td>
<td>1</td>
<td>10 (7-12)</td>
<td>7.37 (7.32-7.41)</td>
<td>69 (63-75)</td>
<td>(1), (3), (4), (5), (7)</td>
<td>11 (7-14)</td>
<td>6 (4-9)</td>
<td>1, 2, 3, 6, 8</td>
</tr>
<tr>
<td>Sultan et al</td>
<td>NA</td>
<td>70.0%</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(3), (4)</td>
<td>11 (4-14)</td>
<td>NA</td>
<td>6</td>
</tr>
<tr>
<td>Yankah et al</td>
<td>51 (25-73)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10.6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kom et al</td>
<td>40 (30.5-47)</td>
<td>85.2%</td>
<td>NA</td>
<td>NA</td>
<td>7.28 (7.22-7.39)</td>
<td>84 (70-118)</td>
<td>(1), (3), (4), (5), (6), (7)</td>
<td>11 (10-14)</td>
<td>2 (1-4)</td>
<td>3, 4, 6</td>
</tr>
<tr>
<td>Zayat et al</td>
<td>57 (39-52)</td>
<td>64.7%</td>
<td>4</td>
<td>11.9 ± 9.4</td>
<td>7.3 (7.2-7.4)</td>
<td>53-75</td>
<td>(1), (3), (5), (6), (7)</td>
<td>16 (11-21)</td>
<td>3 (3-15)</td>
<td>1, 3, 5, 8</td>
</tr>
<tr>
<td>Mustafa et al</td>
<td>48.4 (22-62)</td>
<td>75%</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(1), (2), (3), (4), (5), (6)</td>
<td>13.0 ± 2.6</td>
<td>4.0 ± 0.5</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA: Not available; SOFA: Sequential Organ Failure Assessment score; MV: Mechanical ventilation; CNS: Central nervous system.

Mean ± SD or median (interquartile range).

Comorbidities: (1)-Hypertension; (2)-Diabetes; (3)-Lung disease; (4)-Obesity; (5)-Heart disease; (6)-Kidney disease; (7)-Immunosuppression.

Complications: 1-Hemorrhage; 2-Infection; 3-Thrombosis; 4-Pneumothorax; 5-Cardiovascular complications; 6-Renal complications; 7-Respiratory failures; 8-Neurological complications.

According to the studies with a low mortality rate among patients who received ECMO treatment, we recommend that ECMO should be combined with the use of other therapies, such as antiviral, immunosuppressive, anticoagulant, and supportive therapies, as well as the collaboration of professional multidisciplinary teams and professional nursing[27-29]. Additionally, the timing of ECMO intervention may also be a critical factor affecting the prognosis. Previous studies have confirmed that early ECMO intervention after mechanical ventilation can enhance the survival rate of patients with HINI pneumonia and ARDS[26]. The majority of patients with severe ARDS and severe SARS-CoV-2 pneumonia received delayed treatment and rapidly worsened. Yang et al[21] showed that among COVID-19 patients treated with ECMO, the average time from mechanical ventilation to ECMO in the survival group was shorter than that in the death group. The use of early ECMO may be associated with
Figure 3 Subgroup forest plot of in-hospital or short-term mortality in patients with coronavirus disease 2019 requiring extracorporeal membrane oxygenation. There were significant differences in mortality between location, study setting, sample size, and Newcastle-Ottawa scale (NOS) score groups. A: Location; B: Study setting; C: Sample size; D: NOS score groups. COVID-19: Coronavirus disease 2019; ECMO: Extracorporeal membrane oxygenation; NOS: Newcastle-Ottawa Scale.

a better prognosis[18]. Despite the fact that the PaO$_2$/FiO$_2$ ratio is less than 80 mm Hg and the MV treatment has been administered, we believe that ECMO should be initiated as soon as possible. Moreover, research has shown that prolonged ECMO treatment may be associated with an increased risk of death and multiple organ failure[30]. Therefore, both the timing and duration of ECMO treatment are critical to consider when treating critically ill patients with COVID-19.

We acknowledge that our study has several limitations. To begin with, the power of the study is limited by the small sample size. Biases in patient selection and indication may have existed due to the small sample size. Additionally, the majority of the included studies were observational with retrospective designs, and more than half of the studies were single-center ones, which may lead to selection and reporting bias. Finally, the survival analyses for mortality were based on a short-term follow-up and varied death observation time, which might have underestimated the reported prevalence of mortality and complications.
CONCLUSION

Despite the fact that ECMO is approved as a rescue treatment for severe COVID-19, its application during the COVID-19 pandemic is currently restricted due to high treatment costs and an unclear usage procedure. Our findings suggested that ECMO might be a feasible and effective treatment for COVID-19 patients with more resource evaluation and risk-benefit analysis. Further research with a large sample size and multi-center designs is needed to examine the effectiveness of ECMO in the treatment of COVID-19 patients.

ARTICLE HIGHLIGHTS

Research background

Patients with moderate to severe coronavirus disease 2019 (COVID-19) infection often have severe acute respiratory distress syndrome, with a poor prognosis, limited treatment options, and high mortality. Extracorporeal membrane oxygenation (ECMO) has been proven to have the advantages of improving symptoms and reducing mortality in previous studies. However, existing studies lack strong evidence and disagreement whether ECMO can reduce the mortality of patients with moderate to severe COVID-19 infection. This article intends to summarize the mortality of COVID-19 patients treated with ECMO in order to evaluate the efficacy of ECMO in COVID-19 patients.

Research motivation

To summarize the mortality and comorbidities of COVID-19 patients treated with ECMO, to evaluate the efficacy and adverse reactions of ECMO in COVID-19 patients, and to clarify the effectiveness of ECMO treatment, in order to provide a basis for future treatment options for patients with moderate to severe COVID-19.

Research objectives

To evaluate the efficacy and adverse reactions of ECMO in COVID-19 patients.

Research methods

This research was conducted through the method of meta-analysis. A random effects model was adopted to assess the mortality of COVID-19 patients treated with ECMO.

Research results

The mortality rate of COVID-19 patients treated with ECMO was 31%, which was lower than the mortality rates of severe COVID-19 patients in previous studies, suggesting that ECMO treatment can reduce the mortality rate of severe COVID-19 patients. Previous studies have not yet given clear answers to when ECMO should be used and the duration of ECMO treatment.

Research conclusions

ECMO may be a feasible and effective treatment for COVID-19 patients.

Research perspectives

Prospective, large-sample, multi-center studies are needed to have a more comprehensive understanding of the effectiveness and safety of ECMO treatment.

ACKNOWLEDGEMENTS

We would like to thank all authors of the included primary studies.

FOOTNOTES

Author contributions: Zhang Y, Wang L, and Fang ZX conceptualised and designed the protocol, drafted the initial manuscript, and reviewed the manuscript; Chen J and Zheng JL defined the concepts and search items, data extraction process, as well as methodological appraisal of the studies; Yao M planned the data extraction and statistical analysis; Chen WY provided critical insights; all authors have approved and contributed to the final written manuscript.

Supported by The Jiaxing Fight Novel Coronavirus Pneumonia Emergency Technology Attack Special Project in 2020, No. 2020GZ30001; the Key Discipline of Jiaxing Respiratory Medicine Construction Project, No. 2019-zc-04;
Scientific Technology Plan Program for Healthcare in Zhejiang Province, No. 2021KY1100; and A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department, No.Y202043573 and No. Y202043729.

Conflicts of interest statement: All the authors report no conflicts of interest for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Ye Zhang 0000-0001-9740-1502; Lei Wang 0000-0003-0434-5340; Zhi-Xian Fang 0000-0001-6164-6727; Jing Chen 0000-0001-8115-5896; Jia-Lian Zheng 0000-0002-7129-0696; Ming Yao 0000-0002-3014-0560; Wen-Yu Chen 0000-0003-0412-2913.

S-Editor: Fan JR
L-Editor: Wang TQ
P-Editor: Fan JR

REFERENCES

Zhang Y et al. ECMO for patients with COVID-19

