Contents

REVIEW

1761 Cardiac rehabilitation and its essential role in the secondary prevention of cardiovascular diseases

Winnige P, Vysoky R, Dosbaba F, Batalik L

ORIGINAL ARTICLE

Case Control Study

1785 Association between homeobox protein transcript antisense intergenic ribonucleic acid genetic polymorphisms and cholangiocarcinoma

Retrospective Study

1793 Risk factors for post-hepatectomy liver failure in 80 patients

Xing Y, Liu ZR, Yu W, Zhang HY, Song MM

1803 Outcomes of laparoscopic bile duct exploration for choledocholithiasis with small common bile duct

Huang XX, Wu JY, Bai YN, Wu JY, Lv JH, Chen WZ, Huang LM, Huang BF, Yan ML

Observational Study

1814 Three-dimensional finite element analysis with different internal fixation methods through the anterior approach

Xie XJ, Cao SL, Tong K, Zhong ZY, Wang G

1827 Bedside cardiopulmonary ultrasonography evaluates lung water content in very low-weight preterm neonates with patent ductus arteriosus

Yu LF, Xu CK, Zhao M, Niu L, Huang XM, Zhang ZQ

CASE REPORT

1835 Conservative endodontic management using a calcium silicate bioceramic sealer for delayed root fracture: A case report and review of the literature

Zheng P, Shen ZY, Fu BP

1844 Brain magnetic resonance imaging findings and radiologic review of maple syrup urine disease: Report of three cases

Li Y, Liu X, Duan CF, Song XF, Zhuang XH

1853 A three-year clinical investigation of a Chinese child with craniometaphyseal dysplasia caused by a mutated ANKH gene

Wu JL, Li XL, Chen SM, Lan XP, Chen JJ, Li XY, Wang W

1863 Intradural osteomas: Report of two cases

Li L, Ying GY, Tang YJ, Wu H
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1877</td>
<td>Chest pain showing precordial ST-segment elevation in a 96-year-old woman with right coronary artery occlusion: A case report</td>
<td>Wu HY, Cheng G, Cao YW</td>
</tr>
<tr>
<td>1885</td>
<td>Subcutaneous panniculitis-like T-cell lymphoma invading central nervous system in long-term clinical remission with lenalidomide: A case report</td>
<td>Sun J, Ma XS, Qu LM, Song XS</td>
</tr>
<tr>
<td>1893</td>
<td>Imaging findings of primary pulmonary synovial sarcoma with secondary distant metastases: A case report</td>
<td>Li R, Teng X, Han WH, Li Y, Liu QW</td>
</tr>
<tr>
<td>1909</td>
<td>Bilateral common peroneal neuropathy due to rapid and marked weight loss after biliary surgery: A case report</td>
<td>Oh MW, Gu MS, Kong HH</td>
</tr>
<tr>
<td>1940</td>
<td>Computed tomography imaging features for amyloid dacryolith in the nasolacrimal excretory system: A case report</td>
<td>Che ZG, Ni T, Wang ZC, Wang DW</td>
</tr>
<tr>
<td>1946</td>
<td>Epidural analgesia followed by epidural hydroxyethyl starch prevented post-dural puncture headache: Twenty case reports and a review of the literature</td>
<td>Song LL, Zhou Y, Geng ZY</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 9 Number 8 March 16, 2021

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Diabetes insipidus with impaired vision caused by germinoma and perioptic meningeal seeding: A case report</td>
<td>Yang N, Zhu HJ, Yao Y, He LY, Li YX, You H, Zhang HB</td>
</tr>
<tr>
<td>1983</td>
<td>Madelung disease: A case report</td>
<td>Chen KK, Ni LS, Yu WH</td>
</tr>
<tr>
<td>2001</td>
<td>Inadvertent globe penetration during retrobulbar anesthesia: A case report</td>
<td>Dai Y, Sun T, Gong JF</td>
</tr>
<tr>
<td>2015</td>
<td>Interstitial lung disease induced by the roots of Achyranthes japonica Nakai: Three case reports</td>
<td>Moon DS, Yoon SH, Lee SI, Park SG, Na YS</td>
</tr>
</tbody>
</table>
ABOUT COVER
Gokul Sridharan, MD, PhD, Associate Professor, Oral Pathology and Microbiology, YMT Dental College and Hospital, Navi Mumbai, Mumbai 400018, Maharashtra, India. drgokuls@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.
Systemic lupus erythematosus combined with primary hyperfibrinolysis and protein C and protein S deficiency: A case report

Yi-Xuan Liao, Yan-Fei Guo, Yu-Xia Wang, Ai-Hua Liu, Chun-Li Zhang

Abstract

BACKGROUND
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by systemic involvement and multiple autoantibodies in the serum. Patients with protein C (PC) and protein S (PS) deficiency are prone to thrombosis. In contrast, patients with primary hyperfibrino-lysis tend to bleed.

CASE SUMMARY
A 52-year-old female patient with bilateral pleural effusion was diagnosed with "tuberculous pleurisy" and treated with anti-tuberculosis drugs and prednisone. The coagulation-related laboratory results showed decreased fibrinogen, PC activity, PS activity, and antithrombin III activity. The immune-related laboratory results showed positive antinuclear antibody, anti-Smith antibody, anticardiolipin antibody (ACL), anti-β2-glycoprotein I antibody (aβ2GPI) and direct Coomb’s test and decreased complement 3 and complement 4. Thoracoscopy was performed and bloody pleural fluid was drained. Pathology of the pleural biopsy showed lymphocytes, plasma cells, and a few eosinophils in adipose and fibrous connective tissue. Results of whole exome sequencing of blood showed no genetic mutations suggesting the presence of hereditary hematological diseases. The patient was finally diagnosed with SLE and primary hyperfibrinolysis, and was treated with prednisolone, hydroxychloroquine, and compound
CONCLUSION
PC and PS deficiency in SLE might be related to ACL and aβ2GPI. SLE and primary hyperfibrinolysis can coexist in one patient, with both a risk of thrombosis and a risk of bleeding.

Key Words: Systemic lupus erythematosus; Primary hyperfibrinolysis; Antiphospholipid antibody; Protein C deficiency; Protein S deficiency; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with variable clinical features and multiple autoantibodies. Acute respiratory involvement (ARI) was present in 40% of SLE patients undergoing chest computed tomography (CT)\(^1\). The most frequent ARI was pleural effusion (33%)\(^1\). When patients with SLE have antiphospholipid antibodies (APL), they are prone to recurrent arteriovenous thrombosis and pathological pregnancy. Patients with protein C (PC) and protein S (PS) deficiency are prone to thrombosis\(^2-4\), while patients with primary hyperfibrinolysis tend to bleed\(^5\). We report a patient with pleural effusion and a diagnosis of SLE with primary hyperfibrinolysis and PC and PS deficiency.

CASE PRESENTATION
Chief complaints
A 52-year-old female patient presented with a history of chest tightness and shortness of breath for six months.

History of present illness
Six months ago, the patient was admitted to a local hospital with bilateral pleural effusion. A left thoracic drainage tube was placed to drain approximately 6000 mL of yellow colored pleural effusion. Investigations of the pleural fluid showed exudative fluid and no acid-fast bacilli. The results of the purified protein derivative of tuberculin test, interferon-γ release assay, autoimmunity antibodies, positron emission tomography-CT, and bronchoscopy were negative. The patient was diagnosed with “tuberculous pleurisy” and was treated with anti-tuberculosis drugs (isoniazid, rifampicin, pyrazinamide), prednisone, and pleurocentesis. Anti-tuberculosis treatment was stopped due to abnormal liver function tests and liver protection treatment was administered.

History of past illness
The patient had no previous medical history.
Personal and family history
No smoking and drinking history, and no hereditary family history were noted.

Physical examination
Breath sounds were weak and percussion sound was dull in both lower lungs.

Laboratory examinations
The coagulation-related laboratory results showed: fibrinogen (Fib), 1.2 g/L (normal range: 2.00-4.00 g/L); D-dimer, 263 ng/mL (< 255 ng/mL); thrombin time (PT), 16.1 s (8.8-13.4 s); activated partial thrombin time (APTT), 47.6 s (23.3-38.1 s); PC activity, 30% (70%-140%); PS activity, 43.2% (76%-135%), and antithrombin (AT) III activity, 10% (83%-128%). The immune-related laboratory results were as follows: antinuclear antibody (ANA), 1:160; anti-Smith (Sm) antibody, (+); IgG anticardiolipin antibody (ACL), 58.5 U/mL (< 20 U/mL); anti-β2-glycoprotein I antibody (aβ2GPI), 62.04 RU/mL (< 20 RU/mL); complement 3 (C3), 45 mg/dL (79-152 mg/dL); complement 4 (C4), 5 mg/dL (16-38 mg/dL), and direct Coomb’s test (++).

Liver function tests showed: alanine transaminase, 44 U/L and aspartate aminotransferase, 46 U/L. Blood gas analysis (in room air) showed PaO$_2$ of 62.4 mmHg. The results of complete blood count, renal function, and thyroid function tests were normal. Thoracoscopy was performed, and 2050 mL of bloody pleural fluid was drained. Pathology of the pleural biopsy showed lymphocytes, plasma cells, and a few eosinophils in adipose and fibrous connective tissue (Figure 1).

Results of whole exome sequencing (WES) of blood showed a FCGR2A gene mutation which is related to susceptibility to lupus nephritis and no genetic mutations suggesting the presence of hereditary hematological diseases.

Imaging examinations
CT pulmonary angiogram, pulmonary ventilation/perfusion scan, and deep venous ultrasound of both lower extremities were normal.

MULTIDISCIPLINARY EXPERT CONSULTATION
Ai-Hua Liu, MD, Department of Rheumatology and Immunology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China: The patient met the revised classification criteria for SLE. Decreased PC and PS might be related to ACL and aβ2GPI. SLE combined with primary hyperfibrinolysis is rare. The patient should be treated with prednisolone 30 mg once a day, hydroxychloroquine 0.2 g twice a day, and compound cyclophosphamide 50 mg every other day.

Chun-Li Zhang, MD, Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China: The patient could be diagnosed with primary hyperfibrinolysis. Whole exome sequencing of blood should be tested to find if she had a hereditary hematological disease.

FINAL DIAGNOSIS
The final diagnosis of the presented case was SLE and primary hyperfibrinolysis.

TREATMENT
The patient was treated with prednisolone 30 mg once a day, hydroxychloroquine 0.2 g twice a day, and compound cyclophosphamide 50 mg every other day.

OUTCOME AND FOLLOW-UP
Following systemic treatment of SLE for 3 mo, the amount of pleural effusion decreased, but Fib did not improve and no bleeding events were observed. PS, PC, AT-III, dsDNA, ACL and aβ2GPI returned to normal with ANA 1:100 and C3 and C4
Figure 1 Pathology of the pleura. Lymphocytes, plasma cells, and a few eosinophils were found in adipose and fibrous connective tissue. A: Hematoxylin and eosin (HE) stain, × 100; B: HE stain, × 200.

The patient in this report had bilateral pleural effusion for 6 mo and her condition was misdiagnosed as tuberculous pleurisy. Anti-tuberculous and prednisolone treatment did not improve her condition, and pleural biopsy showed no evidence of tuberculosis. The patient had pleuritis, ANA levels of 1:160, tested positive for anti-Sm antibody, ACL, αβ2GPI, and Coomb’s test, and had reduced C3 and C4 levels; these criteria met the European League Against Rheumatism/American College of Rheumatology revised classification criteria for SLE. A diagnosis of SLE was considered. Although the patient was positive for ACL and αβ2GPI, she had no history of recurrent arteriovenous thrombosis or pathological pregnancy. Therefore, anti-phospholipid antibody syndrome (APS) was not diagnosed. In this patient, Fib was decreased, PT and APTT were prolonged, and D-dimer was normal. Bloody pleural fluid was drained after video-assisted pleural biopsy, coagulation function was abnormal and liver function was normal. Primary fibrinolysis was considered. Due to the presence of PC, PS, and AT III deficiency, combined with primary hyperfibrinolysis, WES of blood was performed which did not indicate hereditary hematological diseases.

Primary hyperfibrinolysis results from an abnormal increase in fibrinolytic activity that leads to premature, excessive destruction of fibrin and/or degradation of fibrinogen or other coagulation factors which cause bleeding. Primary hyperfibrinolysis is classified as congenital (caused by e.g., α2-plasmin inhibitor deficiency, plasminogen activator inhibitor type 1 deficiency, increased plasminogen activator) or acquired (caused by e.g., severe liver disease, tumor, surgery and trauma, post-partum hemorrhage). Secondary hyperfibrinolysis following coagulation in the blood vessels is mainly seen in disseminated intravascular coagulation. SLE patients with positive APL are prone to thromboembolism. The rheological parameters of clots were significantly increased in active SLE patients along with enhanced fibrin crosslinking and hyperfibrinogenemia. Impaired fibrinolysis has been reported in patients with SLE and may contribute to both the development of hypercoagulability and an increased risk of thrombosis. However, this patient had primary hyperfibrinolysis characterized by hemorrhage at the same time, which is very rare.

APL is a heterogeneous group of autoantibodies targeting phospholipid binding proteins, including ACL, αβ2GPI, and lupus anticoagulant (LA). In addition to APS, APL is positive in autoimmune diseases, infections, drugs, and malignant tumors. SLE is the most common rheumatic disease associated with APL. It was found in approximately 30%-40% of patients with SLE; LA was present in approximately 34% of patients with SLE; ACL was positive in 36% of SLE patients, and αβ2GPI was present in 37% of SLE patients.

The PC system is composed of PC, PS, and thrombomodulin (TM). TM is a thrombin receptor on the surface of endothelial cells. Thrombin forms a 1:1 complex with TM, cracks PC, and forms activated PC (APC). APC uses PS as a cofactor and exerts an anticoagulant effect by inactivating FV and FⅧ. Inherited PC deficiency is an autosomal dominant disorder with a prevalence of 0.2%-0.5% in the general population.
population and 3% in patients with venous thrombus embolism (VTE)23. Inherited PS deficiency is an autosomal dominant disorder with an estimated prevalence of 0.1%-0.7% in the general population and 2% in patients with VTE23. Acquired PC and PS deficiency may be caused by decreased synthesis, increased loss, or increased consumption of PC and PS, drugs, or autoimmune antibodies. The patient had no history of familial inheritance, or thromboembolic events. We considered a diagnosis of acquired PC and PS deficiency, and the decline of PC and PS might be related to ACL and α2GPI as PC, PS, ACL and α2GPI all returned to normal after 3 mo of systemic immunosuppressive treatment of SLE.

Most APL does not bind directly to phospholipids but to phospholipid-binding proteins in the plasma. The main phospholipid-binding proteins in plasma are α2GPI, prothrombin, PS, and PC. The effects of APL on PC and PS pathways include19: (1) APL induced acquired APC resistance (APCA)24; (2) Antibodies against PC, PS, or endothelial cells. APL has affinity for PC and PS24. PC and PS levels are decreased in APS patients24. Anti-endothelial antibodies may also be associated with APS25. Anti-endothelial antibodies may interfere with the localization of PC on the endothelial PC receptor or have an affinity for TM, thereby preventing the TM binding of thrombin to activate PC. Anti-TM antibodies that interfere with the activation of PC were found in patients with SLE14; (3) Low prothrombin levels. Antiprothrombin antibodies have been found in patients with APS and cause phospholipid-dependent coagulation time lengthening. As activation of the PC pathway requires thrombin, low levels of prothrombin may lead to impaired activation of PC24. In the study by Belfeki et al24, APL were positive in 32.1% patients with SLE (LA 16.9%, ACL 13.2%, α2GPI 7.5%) and PS deficiency was noted in 32.1% patients with SLE. PC deficiency and acquired APCA showed no significant difference between the SLE patients and controls. A case of SLE presenting with positive APL, acquired APCR and autoimmune hemolytic anemia was reported26. However, in the study by Ramirez et al26, anti-PC was associated with APCR in patients with SLE, independently of APL. Studies showed an association between reduced PS levels and APL in patients with SLE22; however, another study found no association between decreased PS levels and ACL23. Two cases of PS deficiency in patients with SLE with no APL were reported24,25. The PS deficiency was possibly aggravated by the presence of C4b-binding protein which may increase in SLE and resulted in a decrease in free PS levels in one case24, and was caused by oral anticoagulant therapy or deep vein thrombosis in the other case24. The results of studies of associations of deficiencies in PC, PS and APL in patients with SLE were conflicting23. More clinical and basic trials are needed to verify the association between PC, PS and APL, and explore more mechanisms of PC and PS deficiency in patients with SLE without the influence of APL.

AT, the most important anticoagulant substance, accounts for approximately 75% of the plasma physiologic anticoagulant activity. Its main functions are inactivation of FXa and thrombin, and inactivation of other serine proteases such as FIXa, FXa, and FXIIa whose anticoagulant activity is closely related to heparin. Inherited AT deficiency is a rare autosomal dominant disorder. The prevalence is approximately 0.02% in the population and 1% in the VTE population. More than 50% of the patients had a history of thromboembolic disease before 50 years old26. The causes of acquired antithrombin deficiency include decreased antithrombin synthesis, increased loss, increased consumption, and drugs. AT III deficiency in this patient may be related to abnormal liver function and consumption due to bleeding after thoracoscopy.

CONCLUSION

For patients with SLE who have positive APL, we should test for PC, PS, and AT levels to assess the risk of thrombosis. SLE combined with primary hyperfibrinolysis is rare, with both a risk of thrombosis and a risk of bleeding. The balance between the two aspects should be taken into consideration.

REFERENCES

