### REVIEW

142 **Abnormal DNA methylation as a cell-free circulating DNA biomarker for colorectal cancer detection: A review of literature**

*Galanopoulos M, Tsoukalas N, Papanikolaou IS, Tolia M, Gazouli M, Mantzaris GJ*

### ORIGINAL ARTICLE

**Basic Study**

153 **Effect of *Clostridium perfringens* enterotoxin on gastric cancer cells SGC7901 which highly expressed claudin-4 protein**

*Liang ZY, Kang X, Chen H, Wang M, Guan WX*

**Observational Study**

160 **Bayesian adjustment of gastric cancer mortality rate in the presence of misclassification**

*Hajizadeh N, Pourhoseingholi MA, Baghestani AR, Abadi A, Zali MR*

166 **Macroscopic appearance of Type IV and giant Type III is a high risk for a poor prognosis in pathological stage II/III advanced gastric cancer with postoperative adjuvant chemotherapy**

*Yamashita K, Ema A, Hosoda K, Mieno H, Moriya H, Katada N, Watanabe M*

**Prospective Study**

176 **Incidence of venous thromboembolism and the role of D-dimer as predictive marker in patients with advanced gastric cancer receiving chemotherapy: A prospective study**


### META-ANALYSIS

184 **Helicobacter pylori recurrence after eradication in Latin America: Implications for gastric cancer prevention**

*Corral JE, Mera R, Dye CW, Morgan DR*
ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Oncology, Shen-Hong Wu, MD, PhD, Assistant Professor, Division of Medical Oncology, Department of Medicine, Stony Brook University Cancer Center, New York, NY 11733, United States

AIM AND SCOPE

World Journal of Gastrointestinal Oncology (World J Gastrointest Oncol, WJGO, online ISSN 1948-5204, DOI: 10.4251) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

If WJGO covers topics concerning carcinogenesis, tumorigenesis, metastasis, diagnosis, prevention, prognosis, clinical manifestations, nutritional support, molecular mechanisms, and therapy of benign and malignant tumors of the digestive tract. The current columns of WJGO include editorial, frontier, diagnostic advances, therapies advances, field of vision, mini-reviews, review, topic highlight, medical ethics, original articles, case report, clinical case conference (Clinicopathological conference), and autobiography. Priority publication will be given to articles concerning diagnosis and treatment of gastrointestinal oncology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJGO. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

INDEXING/ABSTRACTING

World Journal of Gastrointestinal Oncology is now indexed in Science Citation Index Expanded (also known as SciSearch™), PubMed, and PubMed Central.

FLYLEAF

I-IV  Editorial Board

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Fang-Fang Ji
Responsible Electronic Editor: Ya-Jing Lu
Proofing Editor-in-Chief: Lian-Sheng Ma
Proofing Editorial Office Director: Xiu-Xia Song

NAME OF JOURNAL

World Journal of Gastrointestinal Oncology

ISSN

ISSN 1948-5204 (online)

LAUNCH DATE

February 15, 2009

FREQUENCY

Monthly

EDITORS-IN-CHIEF

Hsin-Chen Lee, PhD, Professor, Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

Dimitrios H Roukos, MD, PhD, Professor, Personalized Cancer Genomic Medicine, Human Cancer Biobank Center, Ioannina University, Metabatiko Ktirio Panepistimiou Ioanninon, Office 229, Ioannina, TK 45110, Greece

EDITORIAL BOARD MEMBERS

All editorial board members resources online at http://www.wjgnet.com/1948-5204/editorialboard.htm

EDITORIAL OFFICE

Xiu-Xia Song, Director
World Journal of Gastrointestinal Oncology
Baishideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238624
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER

Baishideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238624
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE

April 15, 2017

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

http://www.wjgnet.com/bpg/geminfo/204

ONLINE SUBMISSION

http://www.f6publishing.com
Incidence of venous thromboembolism and the role of D-dimer as predictive marker in patients with advanced gastric cancer receiving chemotherapy: A prospective study

Kwonoh Park, Baek-Yeol Ryoo, Min-Hee Ryu, Sook Ryun Park, Myoung Joo Kang, Jeong Hye Kim, Seungbong Han, Yoon-Koo Kang

Aims
To investigate the incidence and risk factors of venous thromboembolism (VTE) in patients with advanced gastric cancer (AGC) receiving chemotherapy.

Methods
All consecutive chemotherapy-naïve patients with AGC who would receive palliative chemotherapy between November 2009 and April 2012 in our hospital were recruited. Their pretreatment clinical and laboratory variables, including D-dimer, were recorded. The frequency of VTE development and survival rates during each chemotherapy cycle and regularly thereafter were assessed.

Results
A total of 241 patients enrolled between November 2009

Abstract

AIM
To investigated the incidence and risk factors of venous thromboembolism (VTE) in patients with advanced gastric cancer (AGC) receiving chemotherapy.

METHODS
All consecutive chemotherapy-naïve patients with AGC who would receive palliative chemotherapy between November 2009 and April 2012 in our hospital were recruited. Their pretreatment clinical and laboratory variables, including D-dimer, were recorded. The frequency of VTE development and survival rates during each chemotherapy cycle and regularly thereafter were assessed.

RESULTS
A total of 241 patients enrolled between November 2009
and April 2012 were analyzed. During a median follow-up duration of 10.8 mo (95%CI: 9.9-11.7), 27 patients developed VTE and the incidence of VTE was 17.5% (95%CI: 10.5-24.0, 12.0 events/100 person-years). The 6-mo and 1-year cumulative incidences were 7.8% (95%CI: 4.2%-11.4%) and 12.4% (95%CI: 7.3-17.2), respectively. Thirteen (48.1%) patients were symptomatic and the other 14 (51.9%) patients were asymptomatic. In multivariate analysis, pretreatment D-dimer level was the only marginally significant risk factor associated with VTE development (hazard ratio = 1.32; 95%CI: 1.00-1.75, \( P = 0.051 \)).

**CONCLUSION**

The incidence of VTE is relatively high in patients with AGC receiving chemotherapy, and pretreatment D-dimer level might be a biomarker for risk stratification of VTE.

**Key words:** Advanced gastric cancer; D-dimer; Venous thromboembolism

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

**Core tip:** The incidence of venous thromboembolism (VTE) is relatively high in patients with advanced gastric cancer receiving chemotherapy, and pretreatment D-dimer level is a risk factor for VTE. Considering the usefulness of D-dimer as a biomarker given its ease of use and low cost, pretreatment D-dimer might be a risk stratification factor for VTE development and patient selection for thromboprophylaxis.
All participants provided written informed consent before enrollment.

Treatment and work-up
The chemotherapy regimens mainly included fluoropyrimidine plus platinum-based for the 1st-line, taxane-based for the 2nd-line, and irinotecan-based for the 3rd-line chemotherapy. Each chemotherapy line was continued until disease progression, intolerable toxicity, patient demand, or the attending physician’s decision. Routine erythropoiesis-stimulating agent was not applied during the study period.

Within one week before starting palliative chemotherapy, we checked the clinicopathological factors and laboratory tests including D-dimer. Close history taking, a physical examination, CBC, and chemistry analyses were performed at every chemotherapy cycle and regularly during the follow-up period. The response of each patient to the treatment was assessed every 6 wk. When VTE was suspected due to a constellation of new clinical symptoms or signs, imaging analyses were performed. Doppler sonography and/or CT venography were used to detect DVT, while chest CT and/or pulmonary artery CT angiography were employed to detect pulmonary embolism (PE). Incidentally detected VTE was also counted as an event.

Statistical analysis
The primary endpoint of this study was the incidence of VTE in patients with AGC receiving chemotherapy, and the secondary endpoints were to identify risk factors of VTE and to evaluate the impact of VTE on survival in this cohort. For risk factor analysis of VTE, we used time to VTE to discriminate early vs delayed development considering the different clinical significance. The baseline characteristics such as baseline biomarkers levels, clinical parameter, cancer diagnosis information, medication and therapy are expressed as the median value with a range (continuous variables) or frequency with proportion (%) (categorical variables). The incidence of VTE was calculated as both cumulative incidence and person-time (events/100 person-years). The statistical significance of the difference in characteristic between symptomatic and incidental VTE was assessed using the χ² test or Fisher’s exact test. The time to VTE or overall survival (OS) were measured from the date of first chemotherapy to the date of diagnosis of VTE or death or were censored at the last follow-up date. The time to event data were summarized using the Kaplan-Meier method. Uni- and multivariate Cox regression models were used to detect the association between clinical or pretreatment factors and time to VTE or OS. In the multivariate regression model, all potential factors with a P value ≤ 0.15 on univariate analyses were employed to detect adjustment factors. The final models were determined by backward elimination. In the regression modeling, log-transformation for severely skewed variables was used to obtain more stable regression coefficients. All statistical analyses were performed by using SPSS software, version 21.0 (SPSS Inc., Chicago, IL, United States) and R software 2.10.1. All reported P values are two-sided and P values < 0.05 are considered to be statistically significant.

RESULTS
Patient characteristics and anticancer treatment
Between November 2009 and April 2012, a total of 261 consecutive patients were enrolled in this study. Of these patients, 20 (7.7%) did not receive chemotherapy or were lost to follow-up during the first 2 wk without evidence of disease progression or DVT, so they were excluded from the analysis. The remaining 241 patients had a median age of 56 years (range, 24-83 years) and 169 patients (70.1%) were male. The pretreatment clinicopathological and laboratory characteristics of all patients and those who developed VTE during palliative chemotherapy are summarized in Table 1. All patients received one or more cycles of chemotherapy; the median numbers of 9 cycles (range, 1-42) and 2 lines (range, 1-4).

Frequency and treatment of VTE
During a median follow-up duration of 10.8 mo (95%CI: 9.9-11.7), 27 patients developed VTE and the VTE incidence was 17.5% (95%CI: 10.5%-24.0%; 12.0 events/100 person-years). The 6-mo and 1-year cumulative incidences of VTE were 7.8% (95%CI: 4.2%-11.4%) and 12.4% (95%CI: 7.3-17.2%), respectively (Figure 1). Regarding VTE type, 19 of 27 patients (70.4%) developed deep vein thrombosis (DVT) only, 4 patients (14.8%) developed PE only, and 4 patients (14.8%) had both DVT and PE. The median time to VTE in these patients who developed VTE during palliative chemotherapy was 3.9 mo (95%CI: 2.8-5.1). VTE was detected within 3 mo in 10 patients (37.0%), from 3 to 6 mo in 6 patients (22.2%), from 6 mo to 1 year in 7 patients (25.9%), and after 1 year in the remaining 4 patients (14.8%). Thirteen patients (48.1%) had symptomatic VTE and the other 14 (51.9%) had incidentally detected VTE. A total of 25 patients received treatments for VTE, 22 took warfarin or
low-molecular-weight heparin, and the other three were treated with an inferior vena cava filter. The remaining two patients were treated conservatively. VTE-associated delay or discontinuation of chemotherapy occurred in 10 patients and was significantly more common in patients with symptomatic VTE than in patients with incidental VTE ($P = 0.018$). There were no cases of VTE-induced death (Table 2).

Risk factors of VTE

The pretreatment characteristics and laboratory data were assessed to determine the association with time to VTE development. In univariate analyses, log-transformed

### Table 1 Patients' pretreatment characteristics and risk of venous thromboembolism on univariate analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total patients</th>
<th>Patients with VTE</th>
<th>Risk of time to VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>241 (100.0)</td>
<td>27 (11.2)</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>&lt; 65</td>
<td>178 (73.9)</td>
<td>18 (10.1)</td>
</tr>
<tr>
<td></td>
<td>≥ 65</td>
<td>63 (26.1)</td>
<td>9 (14.3)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>169 (70.1)</td>
<td>18 (10.7)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>72 (29.9)</td>
<td>9 (12.5)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td>0-1</td>
<td>229 (95.0%)</td>
<td>27 (11.8)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12 (5.0%)</td>
<td>0</td>
</tr>
<tr>
<td>BMI</td>
<td>&lt; 25</td>
<td>202 (83.8)</td>
<td>23 (11.4)</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>39 (16.2)</td>
<td>4 (10.3)</td>
</tr>
<tr>
<td>Previous CVC</td>
<td>No</td>
<td>233 (96.2)</td>
<td>25 (10.7)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8 (3.3)</td>
<td>2 (25.0)</td>
</tr>
<tr>
<td>Previous gastrectomy</td>
<td>No</td>
<td>209 (86.7)</td>
<td>26 (12.4)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>32 (13.3)</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>Primary tumor site</td>
<td>Antrum/pylorus</td>
<td>94 (39.0)</td>
<td>10 (10.6)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>32 (13.3)</td>
<td>9 (11.0)</td>
</tr>
<tr>
<td></td>
<td>Cardia/fundus</td>
<td>28 (11.6)</td>
<td>3 (10.7)</td>
</tr>
<tr>
<td></td>
<td>Diffuse</td>
<td>25 (10.4)</td>
<td>5 (20.0)</td>
</tr>
<tr>
<td>Histology</td>
<td>W/D or M/D</td>
<td>84 (34.9)</td>
<td>6 (7.1)</td>
</tr>
<tr>
<td></td>
<td>P/D or SRC</td>
<td>154 (63.9)</td>
<td>21 (13.6)</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
<td>3 (1.2)</td>
<td>0</td>
</tr>
<tr>
<td>Peritoneal seeding</td>
<td>No</td>
<td>137 (56.8)</td>
<td>11 (8.0)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>104 (43.2)</td>
<td>16 (15.4)</td>
</tr>
<tr>
<td>Liver metastasis</td>
<td>No</td>
<td>156 (64.7)</td>
<td>20 (12.8)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>85 (35.3)</td>
<td>7 (8.2)</td>
</tr>
<tr>
<td>Lung metastasis</td>
<td>No</td>
<td>220 (91.3)</td>
<td>26 (11.8)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>21 (8.7)</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Bone metastasis</td>
<td>No</td>
<td>225 (93.4)</td>
<td>24 (10.7)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>16 (6.6)</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Number of metastatic sites</td>
<td>0-1</td>
<td>109 (45.2)</td>
<td>9 (8.3)</td>
</tr>
<tr>
<td></td>
<td>≥ 2</td>
<td>132 (54.8)</td>
<td>18 (13.6)</td>
</tr>
<tr>
<td>CEA (log) median (range, ng/mL)</td>
<td>2.5 (0.3-8070)</td>
<td>1.133</td>
<td>0.947-1.355</td>
</tr>
<tr>
<td>CA19-9 (log) median (range, U/mL)</td>
<td>19.3 (1.4-30800)</td>
<td>0.882</td>
<td>0.726-1.073</td>
</tr>
<tr>
<td>CA72-4 (log) median (range, U/mL)</td>
<td>5.1 (1.7-6490)</td>
<td>1.099</td>
<td>0.885-1.364</td>
</tr>
<tr>
<td>HB median (range, g/dL)</td>
<td>12.0 (7.0-17.6)</td>
<td>0.956</td>
<td>0.786-1.163</td>
</tr>
<tr>
<td>WBC median (range, × 10^9/L)</td>
<td>7100 (2600-19300)</td>
<td>1</td>
<td>1.000-1.000</td>
</tr>
<tr>
<td>Platelet median (range, × 10^12/L)</td>
<td>274 (107-731)</td>
<td>1.001</td>
<td>0.998-1.005</td>
</tr>
<tr>
<td>CRP median (range, mg/dL)</td>
<td>2.01 (0.10-19.22)</td>
<td>1.056</td>
<td>0.952-1.053</td>
</tr>
<tr>
<td>Fibrinogen (log) median (range, × 10^9/L)</td>
<td>360 (66-897)</td>
<td>1.132</td>
<td>0.337-3.796</td>
</tr>
<tr>
<td>PAI-1 (log) median (range, × 10^9/L)</td>
<td>35.0 (2.0-112.0)</td>
<td>1.197</td>
<td>0.662-2.165</td>
</tr>
<tr>
<td>D-dimer (log) median (range, × 10^9/L)</td>
<td>1.02 (0.06-82.3)</td>
<td>1.401</td>
<td>1.069-1.856</td>
</tr>
</tbody>
</table>

BMI: Body mass index; CI: Confidence interval; CRP: C-reactive protein; CVC: Central venous catheter; log: Log-transformation; M/D: Moderate differentiation; P/D: Poor differentiation; SRC: Signet ring cell; VTE: Venous thromboembolism; W/D: Well-differentiated.
D-dimer levels and WBC count had a statistically significant association with time to VTE (Table 1). Prior history of central venous catheter, differentiation, prior history of gastrectomy, peritoneal seeding, and number of metastatic sites trended toward a potential risk factor for VTE ($P \leq 0.15$). In multivariate analysis, any prognostic factors were not statistically significant, but the log transformed D-dimer level was only a marginally significant risk factor in the final model ($HR = 1.32, 95\%CI: 1.00-1.75, P = 0.051$) (Table 3).

In case of patients with VTE, the mean levels of D-dimer were $4.19 \times 10^{9}/L$ (baseline) and $11.18 \times 10^{9}/L$ (at the time of VTE development), respectively, with a significant increase of D-dimer levels at the time of VTE development ($P = 0.004$). Additionally, according to symptom development of VTE, D-dimer levels were increased significantly in patients with symptomatic VTE ($P = 0.004$), on the other hand, those in patients with incidental VTE showed only numerical increase ($P = 0.198$) (Table 4).

There was no significant difference in the time to VTE according to fluoropyrimidine or different platinum use as the 1st-line treatment or the addition of targeted agents or angiogenesis inhibitors (Table 5).

VTE as a prognostic factor

During a median observational duration of 13.8 mo (95%CI: 11.6-14.8), the median OS was 14.2 mo (95%CI: 11.8-16.6). There was no significant difference in OS between patients with and those without VTE (13.8 mo, 95%CI: 9.3-18.3; 14.2 mo, 95%CI: 11.7-16.7, $P = 0.559$) (Figure 2). According to symptom development of VTE, patients with symptomatic VTE was not also noted statistically significant difference in OS compared with patients without VTE ($P = 0.337$). According to VTE type, there was no significant difference in OS between patients with DVT alone and with PE alone or PE/DVT ($P = 0.597$). In the analysis that excluded four patients who developed VTE after 12 mo, there was no significant difference in OS between patients with or without VTE ($P = 0.609$). On the contrary, in the analysis that excluded 10 patients who developed VTE before 3 mo, there was no significant difference in OS between patients with or without VTE ($P = 0.337$).

DISCUSSION

The current study assessed the incidence and risk factors of VTE as well as the influence of VTE on survival in AGC patients undergoing palliative chemotherapy. To our knowledge, this is the first prospective study to evaluate VTE in a homogeneous cohort. This study showed a relatively high cumulative incidence of VTE and the role...
of pretreatment D-dimer as a risk factor for development of VTE. Although the development of VTE was not correlated with poor survival, patients with symptomatic VTE had more interruptions or delays of chemotherapy than those with incidental VTE.

The 6-mo, 1-year, and 2-year cumulative incidences of VTE were 7.8%, 12.3%, and 17.3%, respectively. Our results showed a relatively high incidence of VTE despite AGC being are presentative frequent site in cancer-associated VTE\(^\text{[13]}\). In our previous report of retrospective analysis of a similar patient population, the 1- and 2-year cumulative incidences of venous VTE were 3.5% and 4.9%, respectively\(^\text{[8]}\). Other prior studies also reported VTE incidences of 5.3%-11.4%\(^\text{[14-16]}\), which was somewhat lower than our results. The reason for this discrepancy should be preferentially presumed that this study was conducted for homogeneous patients who were high tumor burden of advanced state and receiving palliative chemotherapy. Regarding tumor burden in cancer patients, we can give careful consideration to our results that a history of previous gastrectomy and multiple metastases were slightly related with the development of VTE, but the correlation was not statistically significant. Regarding chemotherapy of cancer-associated VTE, prior studies reported that chemotherapy is another important risk factor for VTE development in cancer patients\(^\text{[1,17]}\). In the current study, 13 (46.4%) and 20 (71.4%) patients developed VTE within 3 and 6 mo, respectively, which suggests that starting chemotherapy is an important risk factor for VTE development. Blom\(^\text{[1]}\) also reported that the risk of thrombosis was the highest in the first 3 mo after the diagnosis of cancer and declined thereafter, which supports the finding of the current study.

In multivariate analysis, pretreatment D-dimer level was the only marginally significant risk factor for VTE development. D-dimer, a general biomarker that globally indicates hemostasis and fibrinolysis activation, is a well-studied biomarker in the diagnosis and management of VTE in non-cancer patients\(^\text{[18]}\). Khorana\(^\text{[17]}\) proposed a predictive model for chemotherapy-associated VTE that included the primary cancer site, pretreatment platelet count, hemoglobin, leukocyte count, and body mass index. However, D-dimer level was not included in this model, which might be because the pretreatment D-dimer level was not routinely checked in the target population. In the subsequent studies, Ay\(^\text{[19]}\) reported that a high D-dimer level predicted occurrence of VTE in a variety of cancer patients, and Arpaia\(^\text{[20]}\) demonstrated that pretreatment D-dimer was correlated with chemotherapy-associated VTE. However, these studies only included a small number of gastric cancer patients, 35 of 821 (4.3%) and 10 of 124 (8.1%). Moreover, subcohorts of these patients were heterogeneous since the patients were treated variably with surgery or radiotherapy (or even untreated). Thus, the role of D-dimer as a risk factor of VTE in AGC patients receiving chemotherapy remains to be clarified. We demonstrated here that pretreatment D-dimer was indeed an independent risk factor of VTE in cancer patients.

### Table 5  Time to venous thromboembolism according to chemotherapeutic agent used for 1st-line chemotherapy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients (n)</th>
<th>Patients with VTE n (%)</th>
<th>Risk of time to VTE</th>
<th>HR</th>
<th>95%CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoropyrimidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>96</td>
<td>11 (11.5)</td>
<td></td>
<td>1.67</td>
<td>0.47-6.18</td>
<td>0.422</td>
</tr>
<tr>
<td>XP</td>
<td>22</td>
<td>3 (13.6)</td>
<td></td>
<td>0.94</td>
<td>0.21-4.25</td>
<td>0.94</td>
</tr>
<tr>
<td>Platinum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP</td>
<td>22</td>
<td>3 (13.6)</td>
<td></td>
<td>1.21</td>
<td>0.56-2.65</td>
<td>0.627</td>
</tr>
<tr>
<td>XELOX</td>
<td>27</td>
<td>4 (14.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addition of targeted agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional chemotherapy</td>
<td>158</td>
<td>17 (10.8)</td>
<td></td>
<td>0.04</td>
<td>0.00-12.13</td>
<td>0.227</td>
</tr>
<tr>
<td>+ targeted agents</td>
<td>83</td>
<td>10 (12.0)</td>
<td></td>
<td>0.94</td>
<td>0.21-4.25</td>
<td>0.94</td>
</tr>
<tr>
<td>Addition of VEGFR inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional chemotherapy</td>
<td>217</td>
<td>27 (12.4)</td>
<td></td>
<td>0.04</td>
<td>0.00-12.13</td>
<td>0.227</td>
</tr>
<tr>
<td>+ VEGFR inhibitors</td>
<td>24</td>
<td>0</td>
<td></td>
<td>1.21</td>
<td>0.56-2.65</td>
<td>0.627</td>
</tr>
</tbody>
</table>

SP: TS-1 + cisplatin; XP: Capecitabine + cisplatin; XELOX: Capecitabine + oxaliplatin, targeted agents, Vorinostat, sorafenib, Bevacizumab, or trastuzumab +/- pertuzumab; VEGFR: Inhibitors, sorafenib or bevacizumab; VTE: Venous thromboembolism.

\[ P = 0.559 \]

\[ \text{VTE (-)} \]

\[ \text{VTE (+)} \]

\[ \ldots \text{VTE (+)} \]

\[ \text{VTE (+)} \]
this homogeneous cohort. This means that pretreatment D-dimer might be used to more precisely target patients for thromboprophylaxis and lead to enhanced use of thromboprophylaxis in AGC patients treated with palliative chemotherapy. On the other hand, prior established risk factors including the aforementioned Khorana score were not associated with VTE in this study (data not shown). A possible explanation might be the small sample size; however, the unique characteristics of stomach cancer or even ethical characteristics might also contribute.

The occurrence of VTE has been reported to have a significant adverse effect on survival in many studies. However, we found no statistical difference in survival according to VTE development. The results did not change after adjustment for the presence of symptoms and signs, VTE type, or detection time. The reason for the negative result in the current study may be too small a sample size to detect a difference. On the other hand, due to the short survival of patients with advanced-stage disease, VTE may have a greatly reduced impact on survival. Previous studies reported that an impact of VTE on survival might be somewhat different from that in our study because they mainly included localized stage of cancer or showed a prominent impact of VTE on survival in subgroups of patients with localized cancer or in those with breast cancer, which has a characteristic longer survival duration. Our previous retrospective study with a larger cohort of similar patients also reported that VTE was not a statistically significant factor for survival. As such, whether VTE really has adverse effect on survival in this cohort should be further clarified. Meanwhile, more patients with symptomatic VTE than asymptomatic VTE had chemotherapy interruptions or delays. Although symptomatic VTE did not show poor survival in the subgroup analysis, we should make an effort to detect VTE before symptoms develop.

This study has several limitations. First, we did not evaluate serial measurements of D-dimer; thus, we could not identify the usefulness of the serial changes as a predictive marker for VTE. Considering that the current study showed that D-dimer level at the time of VTE development is significantly increased compared with that at baseline in patients with VTE, serial measurements of D-dimer might detect early changes and predict the development of VTE. Another issue is that the current study did not calculate the proper number of patients, so it might not have been adequately powered to detect statistically significant differences in other characteristics such as risk factors or survival. For these reasons, it is obvious that the present study might not be a confirmative, rather preliminary study for hypothesis generation. Despite these limitations, the current study showed the incidence of VTE and role of pretreatment D-dimer as risk factors in a homogeneous group of AGC patients receiving palliative chemotherapy. Considering the usefulness of D-dimer as a biomarker such as its ease of use and low cost, pretreatment D-dimer might be used as a risk stratification factor for VTE and in patient selection for thromboprophylaxis.

In conclusion, the incidence of VTE is relatively high in patients with AGC receiving chemotherapy, and pretreatment D-dimer level is a risk factor for VTE. Considering the usefulness of D-dimer as a biomarker given its ease of use and low cost, pretreatment D-dimer might be a risk stratification factor for VTE development and patient selection for thromboprophylaxis.

COMMENTS

Background

Patients with cancer, especially gastric cancer, are higher risk of venous thromboembolism (VTE). Among cancer, advanced status such as recurrent, metastatic, or locally advanced, is high risk factor and treatment with chemotherapy is also risk factor of VTE. So, information about the VTE in patients with advanced gastric cancer (AGC) receiving chemotherapy is important. However, there has been no report about this homogeneous group, so they planned this study.

Research Frontiers

This study is the first prospective study focused to evaluate VTE and risk factor of VTE in this homogeneous cohort. They reported an incidence of VTE and role of pretreatment D-dimer as risk factor.

Innovations and Breakthroughs

The incidence of VTE is relatively high in patients with AGC receiving chemotherapy 17.5% (95%CI: 10.5%-24.0%; 12.0 events/100 person-years), and pretreatment D-dimer level is a risk factor for VTE.

Applications

Considering the usefulness of D-dimer as a biomarker given its ease of use and low cost, pretreatment D-dimer might be a risk stratification factor for VTE development and patient selection for thromboprophylaxis.

Terminology

AGC: Gastric cancer of advanced status such as initially metastatic, locally advanced, or in those with breast cancer, which has a characteristic longer survival duration. A previous retrospective study with a larger cohort of similar patients also reported that VTE was not a statistically significant factor for survival. As such, whether VTE really has adverse effect on survival in this cohort should be further clarified. Meanwhile, more patients with symptomatic VTE than asymptomatic VTE had chemotherapy interruptions or delays. Although symptomatic VTE did not show poor survival in the subgroup analysis, we should make an effort to detect VTE before symptoms develop.

This study has several limitations. First, we did not evaluate serial measurements of D-dimer; thus, we could not identify the usefulness of the serial changes as a predictive marker for VTE. Considering that the current study showed that D-dimer level at the time of VTE development is significantly increased compared with that at baseline in patients with VTE, serial measurements of D-dimer might detect early changes and predict the development of VTE. Another issue is that the current study did not calculate the proper number of patients, so it might not have been adequately powered to detect statistically significant differences in other characteristics such as risk factors or survival. For these reasons, it is obvious that the present study might not be a confirmative, rather preliminary study for hypothesis generation. Despite these limitations, the current study showed the incidence of VTE and role of pretreatment D-dimer as risk factors in a homogeneous group of AGC patients receiving palliative chemotherapy. Considering the usefulness of D-dimer as a biomarker such as its ease of use and low cost, pretreatment D-dimer might be used as a risk stratification factor for VTE and in patient selection for thromboprophylaxis.

In conclusion, the incidence of VTE is relatively high in patients with AGC receiving chemotherapy, and pretreatment D-dimer level is a risk factor for VTE. Considering the usefulness of D-dimer as a biomarker given its ease of use and low cost, pretreatment D-dimer might be a risk stratification factor for VTE development and patient selection for thromboprophylaxis.

COMMENTS

Background

Patients with cancer, especially gastric cancer, are higher risk of venous thromboembolism (VTE). Among cancer, advanced status such as recurrent, metastatic, or locally advanced, is high risk factor and treatment with chemotherapy is also risk factor of VTE. So, information about the VTE in patients with advanced gastric cancer (AGC) receiving chemotherapy is important. However, there has been no report about this homogeneous group, so they planned this study.

Research Frontiers

This study is the first prospective study focused to evaluate VTE and risk factor of VTE in this homogeneous cohort. They reported an incidence of VTE and role of pretreatment D-dimer as risk factor.

Innovations and Breakthroughs

The incidence of VTE is relatively high in patients with AGC receiving chemotherapy 17.5% (95%CI: 10.5%-24.0%; 12.0 events/100 person-years), and pretreatment D-dimer level is a risk factor for VTE.

Applications

Considering the usefulness of D-dimer as a biomarker given its ease of use and low cost, pretreatment D-dimer might be a risk stratification factor for VTE development and patient selection for thromboprophylaxis.

Terminology

AGC: Gastric cancer of advanced status such as initially metastatic, locally inoperable, or recurrent.

Peer-review

Naturally an increased level of circulating fibrin d-dimer may be a good parameter to control the evolution of gastric cancer venous originated metastasis.

REFERENCES


P- Reviewer: Amedei A, Ammendola M, Baeg MK, Ferreira Caboclo JL, Uno K  S- Editor: Qi Y  L- Editor: A  E- Editor: Lu YJ