Role of surgical treatments in high-grade or advanced gastroenteropancreatic neuroendocrine neoplasms

surgery in hgGEP-NENs or advanced GEP-NENs

Qing-yang Que, Lin-cheng Zhang, Jia-qi Bao, Sun-bin Ling, Xiao Xu
Abstract

Over the last 40 years, the incidence and prevalence of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) continue to increase. Compared to other epithelial neoplasms in the same organ, GEP-NENs exhibit indolent biological behavior, which means more chances to get surgery. However, the role of surgery in high-grade or advanced GEP-NENs is still controversial. Surgery is associated with survival improvement of well-differentiated high-grade GEP-NENs, whereas poorly differentiated GEP-NENs who may benefit from resection required a careful selection based on Ki67 and other tissue biomarkers. Additionally, surgery also plays an important role in locally advanced and metastatic disease. For locally advanced GEP-NENs, isolated major vascular involvement is no longer an absolute contraindication. In the setting of metastatic GEP-NENs, radical intended surgery is recommended for patients with low-grade and resectable metastases. For unresectable metastatic disease, a variety of surgical approaches including cytoreduction of liver metastasis, liver transplantation, and surgery after neoadjuvant treatment show survival benefits. Primary tumor resection in GEP-NENs with unresectable metastatic disease is associated with symptom control, prolonged survival, and improved sensitivity towards systemic therapies. Although there is no established neoadjuvant or adjuvant strategy, increasing attention has been paid to this emerging research area. Some studies have reported that neoadjuvant effectively reduces tumor burden, improves the effectiveness of followed surgery, and decreases surgical complications.

Key Words: Gastroenteropancreatic neuroendocrine neoplasms; Neuroendocrine carcinomas; Surgery; Hepatic debulking; Liver transplant; Transplant oncology

Que QY, Zhang LC, Bao JQ, Ling SB, Xu X. Role of surgical treatments in high-grade or advanced gastroenteropancreatic neuroendocrine neoplasms. World J Gastrointest Surg 2022; In press
Core Tip: Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) encompass a heterogeneous group of tumors with unique indolent biological behavior. The role of surgery in high-grade or advanced GEP-NENs is still controversial. There are several highlights of this review. First, we address the surgical benefits of selected high-grade GEP-NENs and summarize the tumor biological marker correlated to prognosis. Second, we review various surgical strategies including curative resection, debulking, resection after neoadjuvant for metastatic GEP-NENs and the latest clinical evidences. Last, liver transplantation presents a curative therapeutic option for GEP-NEN patients with liver metastasis. We summarize the new findings and propose directions for future development.

INTRODUCTION
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare lesions arising from the neuroendocrine cells scattered throughout the body. Although GEP-NENs are still regarded as uncommon neoplasms, both their incidence and prevalence continue to increase over the last 40 years \[1,2\]. As GEP-NENs are morphologically and biologically heterogeneous, \[3-5\] the World Health Organization (WHO) has classified them into three grades based on the proliferation index (Ki67) and differentiation \[6\]. G3 NENs, showing a Ki67 value (>20%) and/or mitotic index (MI>20 mitoses/10 HPF), are further subdivided into two subgroups as follows: well-differentiated neuroendocrine tumors (G3 NET) and poorly differentiated neuroendocrine carcinomas (G3 NEC) (Table 1) \[7\]. The incidence of liver metastasis (LM) in GEP-NENs is high and the median overall survival (OS) for patients with metastatic GEP-NENs is 2-4 years\[8\].

Given the associated high risk of developing distant metastases, the role of surgery in the treatment regimen for high-grade GEP-NEN (hgGEP-NEN) remains controversial. Since treatment strategies for hgGEP-NEN have generally been extrapolated from the findings for small-cell lung cancer,\[9,10\] surgery is not included in the primary therapeutic regimen.\[11,12\] Given the differences in prognoses and therapeutic responses between pulmonary and digestive neuroendocrine carcinomas, it is necessary to
evaluate the role of surgery in GEP-NENs. Moreover, surgery is generally considered non-beneficial for patients with metastatic diseases. However, as a large proportion of GEP-NEN patients exhibit relatively indolent biology, some studies also report the survival benefits of surgery\cite{13,14}. Therefore, the purpose of this review was to summarize and discuss surgical management strategies for high-grade or advanced GEP-NENs.

SURGERY FOR LOCALIZED HGGEPP-NEN

Platinum-based chemotherapy is considered as the standard treatment for hgGEP-NEN\cite{15,16}, whereas the role of surgery has not been fully assessed. In this setting, Merola et al investigated the survival outcomes in 60 patients with localized hgGEP-NEN who underwent radical surgical procedures. The two-year overall survival (OS) rate was 64.5\% and the two-year recurrence-free survival (RFS) rate was 44.9\%\cite{17}. Moreover, in a Nordic multicenter retrospective cohort study, the median OS in 201-G3 GEP-NEN patients upon surgical resection was 32 mo\cite{18}. In a large retrospective study consisting of 1,517-G3 GEP-NEC patients, surgery was significantly associated with improved OS (HR: 0.41)\cite{19}. Despite the lack of high-quality long-term prospective trials, there is sufficient evidence to suggest that careful patient selection for surgical resection can increase clinical benefits in G3 GEP-NENs. Many factors can predict the prognosis of GEP-NENs and may help in the selection of suitable patients for surgery; among them, differentiation and Ki67 value are the two most important prognostic factors\cite{20-22}. Since hgGEP-NENs are highly heterogeneous, comprising of both G3 NETs and G3 NECs, the G3 NENs could not be considered as a single entity\cite{23}. In contrast to well-differentiated NENs, G3 NEC are highly aggressive, and metastasize early, resulting in a poor prognosis\cite{5}. Tumor differentiation is associated with surgical prognosis. In a retrospective study consisting of 67 patients, including 21 with pancreatic G3 NETs and 46 with pancreatic G3 NECs, those with G3 NETs were found to benefit from surgical resection, unlike those with G3 NENs who did not show any significant improvements\cite{24}. Consistently, Merola et al drew a similar conclusion from their study.
involving 60 hgGEP-NENs patients.[17] The OS of patients with G3 NET was significantly better than that in G3 NEC patients; G3 NEC was a poor prognostic factor (NEC G3 vs. NET G3: HR 4.24, P = 0.05). However, in another study, no significant difference was observed in post-surgical survival between G3 NETs and G3 NECs in patients with pancreatic hgGEP-NENs.[25] In a large-scale retrospective study consisting of 2245 patients with GEP NECs, median survival after surgery was 31 mo (n = 1549) vs nine months after non-operative therapy (n = 696, p<0.001). [26] The five-year OSs were 39% and 10%, respectively. Omar et al performed a propensity score matching between 233 G3 GEP NEC patients who did not undergo surgery and 233 G3 GEP NEC surgical patients. They reported that radical surgery was significantly associated with improved survival (P<0.001). [19] GEP G3 NECs were further distinguished based on poorly differentiated histology and undifferentiated histology; poorly differentiated histology was significantly associated with improved OS as compared to undifferentiated histology (HR:0.83), which could explain the discrepancy in the results of the above-mentioned studies. Additionally, heterogeneity within hgGEP-NENs could lead to differences in surgical outcomes, which may be observed in a small sample size. Moreover, the heterogeneity is not only derived from hgGEP-NENs themselves but also the difficulty associated with the morphological diagnoses by the pathologists.[10,27] A high percentage of inconclusive diagnoses are reported (61%), which may be attributed to the limited pathological resources, lack of well-defined histological criteria, and the complexity underlying GEP-NENs origins.[28]

Ki67 value is easier to examine and provides a more objective basis for evaluation. Ki67 can reflect the heterogeneity of hgGEP-NENs and predict responsiveness to treatment.[5,29,30] Sorbye et al evaluated 305 hgGEP-NEN cases and obtained a cut-off value (55% Ki67) by ROC analysis.[31] Patients with Ki67 <55% showed better OS than those with Ki67≥55% but exhibited a lower response rate to platinum-based chemotherapy. The differences in treatment responses were also observed for surgical resection. Merola et al reported that median OS for Ki67≤55% OS was not achieved vs 26 mo in patients with Ki67>55% after surgical operations.[17] Similarly, in a study from
Tokyo, 63 hgGEP-NEN patients who underwent surgical resections between 2005 and 2018 were reviewed. [32] Patients were divided into low-Ki67 (Ki67 < 52%) and high-Ki67 (Ki67 ≥ 52%) groups according to the median Ki67 value (52%). In the low Ki67 group, the median survival time was 82.7, 16.3, and 27.7 mo for patients in R0/1, R2, and chemotherapy groups, respectively. Surgery (P = 0.013, HR=0.46) and low-Ki67 (P = 0.007, HR=0.43) were independent prognostic factors related to improved OS. Recently, the National Comprehensive Cancer Network (NCCN) guideline has recommended hgGEP-NENs with Ki67<55%, slow-growing, and positive somatostatin-receptor (SSR) as the criteria for surgery, although caution for heterogeneity remains.[33] In addition to the Ki67 value, other tissue biomarkers are also correlated with differentiation, including the neuroendocrine markers, synaptophysin, chromogranin-A (CgA), death domain-associated protein (DAXX), p53 and, Rb1. At present, a conclusive decision for the prognostic value remains lacking for all of these biomarkers. Therefore, there is a need for large, long-term studies using GEP-NENs cohorts and assessment of effects of tissue and blood biomarkers.

Surgery for Locally Advanced GEP-NEN
Recently, the experts of the European Neuroendocrine Tumor Society (ENETS) have acknowledged that the surgical strategy for locally advanced pancreatic NENs (pNENs) is an important unanswered query.[34] Birnbaum et al evaluated 43 cases of advanced pNENs and 91 of isolated pNENs.[14] In the advanced pNENs group, the median survival time for 16 patients who underwent resections of adjacent organs was 90 mo and the five-year OS (84%) was not significantly different from that in the isolated pNENs group (P = 0.175), which indicated that non-metastatic locally advanced pNENs showed favorable prognosis after surgery. A case series study reviewed 99 Locally advanced pNEN patients who underwent surgical resection between 2003 and 2018, including 84 G1/G2, 1-G3, and 14 ‘tumor grade not available’ patients.[35] The five-year disease-free survival (DFS) was 61% and the five-year OS was 91%. Although there was no control group in this study, the excellent prognosis suggested that surgery could be
beneficial in patients with locally advanced pNEN. In another study, 25% of patients showed major vascular involvement on preoperative imaging, however, only 17% required resection and reconstruction. Similar to previous studies, major vascular invasion implicated by preoperative imaging may not be fully consistent with intraoperative situations, as the tumors were only abutting or distorting the vein rather than invading in most cases.36,37 Even as 17% of patients underwent venous resection/reconstruction, none of them died postoperatively. Based on these impressive results, the latest guideline of the North American Neuroendocrine Tumor Society (NANETS) also recommends that isolated major vascular involvement should not be an absolute contraindication to surgery for patients with advanced pNEN.38 However, it should be noted that these conclusions were drawn for advanced pNEN only. The outcome for patients with different primary tumor sites may vary correspondingly. Future studies should examine the role of surgery in GEP-NENs for different primary tumor sites.

Retrospective studies suggest that neoadjuvant PRRT can effectively reduce tumor burden and improve surgical safety.39-41 Parghane \textit{et al} evaluated 57 patients with locally advanced GEP-NENs who had received peptide receptor radionuclide therapy (PRRT).41 They found that 48 (84\%) patients exhibited symptomatic responses and 15 patients were eligible for resection according to the National Comprehensive Cancer Network (NCCN) criteria for pancreatic ductal adenocarcinoma (PDAC). Although long-term survival following the surgery has not been reported, regression of primary tumors following PRRT was observed, and no hematological or renal side effects were encountered. Therefore, neoadjuvant PRRT may be a potential therapeutic option for locally advanced GEP-NENs.

SURGERY FOR METASTATIC GEP-NEN

Metastasis is the main feature of GEP-NENs and its most common location is to the liver. The incidence of LM is 40-95\%,42-44 which varies based on the origin of primary NEN, with extremely low rates in gastric, appendiceal, and rectal NENs, 28-78\%
incidence rate in pNENs, and 67-91% in small intestinal NENs.[45] LM represents a major risk factor for cancer-related death in GEP-NENs and the only potentially curative option is surgery. However, the strategies for surgery and selection of the appropriate patients, remain controversial.

\textit{Surgery for primary GEP-NEN}

According to the NANETS guidelines, primary tumor resection (PTR) is recommended for small bowel (SB) NEN in unresectable disease, but for pNEN in an unresectable disease, there is no consensus.[38,46] Possible benefits for PTR include the reduction of tumor burden, which controls functional symptoms or prevents obstructive complications, and improvement in survival by decreasing the likelihood of distant metastasis, and increasing sensitivity towards systemic therapies. A substantial number of studies based on the Surveillance, Epidemiology, and End Results (SEER) database demonstrate that PTR is significantly associated with prolonged survival in metastatic GEP-NEN patients.[47-49] Zheng \textit{et al} evaluated a large cohort of 1547 GEP-NEN cases with unresectable LM, including 897 cases with PTR and 650 non-resection patients using the SEER database.[48] They found that the five-year OS rate for PTR patients was 57% vs 15.4% in those who did not undergo PTR; a significant difference in median OS between the groups was observed (not reached vs 14 mo, \(P<0.001\)). When the two groups were further stratified into four groups according to their primary tumor locations (gastric, small intestinal, colorectal, and pancreatic NENs), the five-year OS rates were significantly prolonged in all groups as compared to the non-PTR patients. However, there were some differences among the groups, as PTR groups patients were younger, had many small tumors, and presented well-differentiated and a few poorly differentiated neoplasms. All these factors were significantly associated with survival, in both the univariate and multivariate analyses. Another large study evaluating PTR in a total of 854 IV stage GEP-NEN cases with unresectable or resectable LM from the California Cancer Registry (CCR) showed similar results.[50] To reduce selection bias,
Hutter et al used propensity matching to 442 stage IV pNEN patients who did not receive surgery for metastasis. After propensity score adjustment, significant differences in the five-year OS rates were found between the two groups (52.5% of the PTR group vs 20.6% for the non-PTR group). Daskalakis et al performed a similar study with 363 asymptomatic stage IV SBNEN cases, including 161 patients undergoing PTR. After propensity matching, no substantial differences were found in the median OS and cancer-specific survival between the surgical and non-surgical groups. This study suggested that surgery for asymptomatic patients is a topic of further discussion. The survival benefits in the overall GEP-NEN cases may arise from the survival improvement in functional GEP-NENs. Some studies show that systemic agents can effectively improve the prognosis in GEP-NENs. The use of systemic agents as an adjuvant treatment cannot be controlled in retrospective studies, which leads to an inevitable bias. A lower tumor burden further increases the responsiveness of GEP-NENs towards PRRT. A retrospective study reviewed 889 GEP-NEN cases; among them, 483 patients underwent PTR before PRRT and 403 patients did not undergo PTR before PRRT. In this study, 56 patients of the 617 showed G3 tumors (based on the available grading data). In the prior PTR group, the median OS was 134 mo and the five-year OS rate was 70.8%, while in the non-resected group, the median OS was 67 mo and the five-year OS rate was 41.7% (p<0.001). Additionally, in patients with pNENs or SBNENs, accounting for 70% of total patients, these remarkable differences were detected.

Taken together, although several retrospective studies report a potential benefit of PTR in metastatic GEP-NENs, the selection bias may be inadvertent. Some factors may help in the identification and distinction of GEP-NENs from PTR, including functional metastatic GEP-NENs, young age, small tumor size, and well-differentiated tumor characteristics. The excellent clinical benefits of postoperative PRRT have been previously reported. Based on these encouraging results, a large-scale multicenter prospective study is warranted to further confirm and obtain novel definitive prognostic factors.
Surgery for liver metastasis

Current guidelines propose that G1/G2 NEN LM patients without extrahepatic disease should undergo surgical interventions, while for those with G3 NET LM, resection is not recommended, as the prognoses and survival outcomes in G3 NEN LM are suboptimal (median OS range: 4.6-29 mo). However, several studies in G3 GEP-NEN patients with resectable LMs have yielded encouraging results in recent years. Galleberg et al reviewed the central Nordic GEP-NEC database and reported that the OS in 32 G3 NEN LM cases (8 NETs and 24 NECs) after resection/RFA was 35.9 mo and RFS was 8.4 mo. Ki67 < 55% along with adjuvant chemotherapy were independent significant prognostic factors for favorable outcomes. Consistently, in a retrospective study for stage IV G3 GEP-NEN cohort, Merola et al analyzed 15 patients who underwent radical resection (R0/R1), among them, seven had G3 NET, six had G3 NECs, and two had MiNENs. The median OS was 59 mo and the median RFS was 8 mo. Unfortunately, there were no comparison groups in these two trials. A direct comparison of different results from the literature is unreliable, especially, due to the heterogeneity in G3 GEP-NENs as discussed above, varying range of metastases, and selection biases. However, these findings suggest that highly advanced G3 GEP-NEN cases might benefit from radical resection procedures. Thus far, the lack of studies and small sample sizes, limit the identification of subgroups suitable for surgical interventions.

As NEN LMs are seldom isolated or few and most of them cannot be removed completely, debulking also referred to as “cytoreductive resection” or “R2 resection”, is used to treat unresectable NEN LMs. Several retrospective studies suggested that cytoreduction of NEN LMs improves both the symptoms and survival. 40 years ago, Foster et al reported good symptom control in 44 cases with at least 95% surgical cytoreduction. Likewise, three subsequent studies from the Mayo Clinic report that at least 90% of hepatic cytoreduction provides effective symptomatic palliation and
prolongs the survival. However 90% as the debulking threshold was not carefully calculated using an algorithm but chosen with an intent to select a suitable threshold, which may result in loss of potential operation and curative opportunities for numerous patients. Additionally, the development of new adjuvant therapies (such as the availability of somatostatin analog (SSA)) may further enhance the efficacy of cytoreduction and expand the beneficiary population. Recently, studies have attempted to propose a lower threshold and some have demonstrated that cytoreduction >70% provides survival benefits. Maxwell et al estimated the threshold level by dividing 28 pNEN LM cases and 80 small bowel (SB) NEN LM cases into <50%, ≥50%, ≥70%, and ≥90% categories. The five-year PFS of all patients was 30.2% and the five-year OS was 76.1%. Patients with cytoreduction ≥70% showed better OS and PFS as compared to those with cytoreduction<50%. In this study, only 38.9% showed debulking ≥90%, while 63.9% of patients exhibited cytoreduction with a lower threshold of >70%. Scott et al reviewed 188 NEN LM patients who underwent cytoreductive procedures and stratified them into three groups according to the number of treated metastases (1-5, 6-10, and >10). The median OS was 89 mo and the PFS was 23 mo; there were no significant differences in OS or PFS among the three groups. In both univariate and multivariate analyses, age, grade, Ki67 index, percent liver replacement, and debulking>70% were significantly associated with OS. When the study population was grouped by percent cytoreduction, debulking>70% group showed improved OS as compared to debulking<70% group (median 134.3 mo vs 37.6 mo, p < 0.01); debulking>90% was not significantly associated with the better outcome as compared to the 70%-90% or <90% groups. This study provided further evidence for adopting a debulking threshold>70% and also indicated that NEN LM patients who underwent cytoreduction for >10 Lesions had acceptable OS. Moreover, the grade was associated with poor OS and PFS, with HRs of 2.12 for G2 (97 cases) and 11.69 for G3 (15 cases) groups. The 23 mo median OS and no five-year OS of G3 did not improve after debulking, unlike the previously reported results. However, whether G3 GEP-NEN LM patients may benefit from cytoreduction remains difficult to address based on the
current data and the evidence of heterogeneity between primary tumor and LMs are scarce. NANETS recommends that G2 primary or LM is not a contraindication for hepatic cytoreduction.[38]

Neoadjuvant may convert unresectable GEP-NEN LMs to resectable form, reduce the difficulty of surgery, and decrease postoperative complications. To date, various systemic treatments prove their efficacy in controlling tumor progression and reducing tumor burden.[84-86] However, whether the treatments such as with neoadjuvant can improve the surgical prognoses in GEP-NEN LM remains unclear. Murase et al analyzed 106 pNEN cases with LM or locally advanced tumors.[87] All patients received sunitinib and among them, 31 underwent surgery after sunitinib treatment. The median OS was not achieved in the surgical group \textit{vs} 36.7 mo in the nonsurgical group. Poor predictive factors included the absence of surgical resection (HR, 13.1, \textit{P} = 0.001), poor differentiation, and bilateral liver metastases. Thus, surgery after sunitinib treatment could improve OS for distant metastases or in locally advanced pNEN.

\emph{Liver transplantation for hepatic Metastases}

Compared to debulking, liver transplantation (LT) offers a long-term curative solution to expand the conventional margin in surgical oncology and LT for LMs[88], an important component of transplant oncology. Mazzaferro, the world-renowned LT expert, proposed the Milan NEN criteria in 1995. (Table 2)[89,90] In their recent report, Mazzaferro et al prospectively analyzed 280 GEP-NEN LM cases during a 15-years follow-up.[91] Ultimately, 88 unresectable GEP-NEN LM patients who met the predetermined criteria were included and 42 of them underwent LT. The five-year and 10-year OS rates for LT patients were 97.2\% and 88.8\%, respectively, \textit{vs} 50.9\% and 22.4\% in the non-LT group, eligible according to the Milan-NEN criteria (\textit{n} = 46). Moreover, they estimated that the five- and 10-year survival benefits associated with LT were 12.79 mo and 48.62 mo, respectively, which suggested that the survival benefits increased over time. However, there was an inherent selection bias between the LT and the non-
LT groups, including more advanced T-stage and older patients with less locoregional treatments included in the non-LT group. Considering the shortage of donated organs, it is necessary to carefully weigh the benefits against the risks. Moris et al performed a systematic review of GEP-NEN LM patients who underwent LT and reported that the five-year DFS rate ranged from 20% to 32%, worse as compared to HCC patients who underwent LT.\cite{92,93} Due to these high rates of recurrence, Sposito et al focused on the postrecurrence survival of GEP-NEN LT patients and observed excellent long-term survival (the five-year survival rate was 76.5% and the ten-year survival rate was 45.5%).\cite{94} In conclusion, despite the high recurrence rate, GEP-NEN LT patients still have promising long-term outcomes, which may be attributable to the indolent biological behaviors in GEP-NENs.

For resectable GEP-NEN LM patients within Milan criteria, surgical resection may still be the first option. Ruzzenente et al investigated the long-term survival of a multi-institutional cohort of GEP-NEN LM patients undergoing surgical resection and found that 28 of 238 patients met Milan criteria with the five-year OS of 83% which was comparable with that reported in GEP-NEN LM patients undergoing LT within Milan criteria.\cite{95}

Similar to findings for LT in hepatocellular carcinoma (HCC), patients conforming to the Milan criteria show excellent prognoses from LT, however, this does not imply that the Milan criteria cover all patients who may potentially benefit from LT.\cite{96,97} In a retrospective study, 15 NEN LMs who were up to 64 years of age with 12 of the 15 exceeding 50% hepatic involvement were included; the 5-year OS rate was 90%.\cite{98} Downstaging in HCC has been extensively discussed,\cite{96} while in GEP-NEN LMs, there is a lack of high-quality studies.

Taken together, the survival benefits for resectable GEP-NEN LMs are limited, but for unresectable GEP-NEN LM patients who meet the Milan-NEN criteria, LT is recommended. There remain several outstanding questions to be addressed, including the following: (1) whether Milan-NEN criteria can be safely expanded and what is the
exact threshold; (2) what are the appropriate prognostic factors of GEP-NEN LM s, and (3) how to use neoadjuvant as downstaging/bridging therapy before LT.

NEOADJUVANT PRRT FOR GEP-NEN

Recently, neoadjuvant therapy has become a critical treatment of various tumors, which may potentially reduce tumor load, increase the likelihood that patients undergo surgical resection, enhance the safety of the surgery, monitor tumor response, and guide the subsequent treatment based on the response to neoadjuvant. Neoadjuvant for NENs primarily includes chemotherapy small molecule drugs and PRRT. At present, the effectiveness of chemotherapy for NENs is not clear.[99] However, neoadjuvant PRRT, particularly 90Y-DOTATATE and 177Lu-DOTATATE, has been used in NENs and shown good prospects.[40] In a randomized phase III trial (NETTER-1 Clinical Trial), PRRT for well-differentiated, metastatic GEP-NEN effectively reduced tumor burden, suppressed tumor progression, and prolonged survival.[100] Van Vliet et al. used PRRT as neoadjuvant therapy in 29 borderline or unresectable nonfunction pNEN.[39] 31% of these patients underwent the successful surgical operation and achieved better median PFS vs those not resected (69 mo vs 49 mo). In addition to primary tumor resection, neoadjuvant PRRT has been evaluated in unresectable NEN LM s and successfully aid down-staging.[101] Several clinical studies are currently underway including a phase II trial aimed to assess the safety and the efficacy of neoadjuvant PRRT on resectable pNENs with high recurrence risk (NCT04385992), which indicated that neoadjuvant PRRT for GEP-NEN is a promising field.

CONCLUSION

In conclusion, surgery plays a crucial role in the management of GEP-NENs and comprises curative resection, debulking, resection after neoadjuvant, and LT for LM s. Compared with the epithelial neoplasms of the same organs, GEP-NENs exhibit indolent biology and better outcomes, which increases the possibility of surgery for
patients with hgGEP-NENs or advanced GEP-NENs. HgGEP-NEN is correlated with poor prognosis. However, its heterogeneity is the major feature and after careful selection for tumor biology, hgGEP-NENs with low Ki67 show greater benefits from resection. In metastatic GEP-NENs, radical surgery represents a favorable outcome but is only limited to a few patients. For unresectable LMs, cytoreduction improves the prognoses of patients and the threshold for cytoreduction has reduced from 90% to 70%. LT for hgGEP-NEN LMs shows therapeutic advantages but several problems need to be addressed. Additionally, neoadjuvant and adjuvant therapies have been investigated in the setting of advanced GEP-NENs, which may further control the tumor recurrence. However, in cases of low prevalence and incidence, most of the evidence comes from retrospective studies which include less than 100 cases and the administration of systemic therapy is not well controlled. The heterogeneity in GEP-NENs further influences the accuracy of conclusions. Therefore, further multicenter collaborative prospective studies are needed to assess the effects of surgery and determine the prognostic factors.
<table>
<thead>
<tr>
<th>Source</th>
<th>Title and Authors</th>
<th>Words</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Daisuke Asano, Atsushi Kudo, Keiichi Akahoshi, Aya Maekawa et al.</td>
<td>16 words</td>
<td>< 1%</td>
</tr>
<tr>
<td>3.</td>
<td>lakehealthandwellbeing.com</td>
<td>13 words</td>
<td>< 1%</td>
</tr>
</tbody>
</table>