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Abstract
Enzymes 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play 
a significant role in the regulation of glycolysis in can-
cer cells as well as its proliferation and survival. The 
expression of these mRNAs is increased in malignant 
tumors and strongly induced in different cancer cell 
lines by hypoxia inducible factor (HIF) through active 
HIF binding sites in promoter region of PFKFB-4 and 
PFKFB-3 genes. Moreover, the expression and hypoxia 
responsibility of PFKFB-4 and PFKFB-3 was also shown 
for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well 
as gastric (MKN45 and NUGC3) cancer cells. At the 
same time, their basal expression level and hypoxia 

responsiveness vary in the different cells studied: 
the highest level of PFKFB-4 protein expression was 
found in NUGC3 gastric cancer cell line and lowest in 
Panc1 cells, with a stronger response to hypoxia in the 
pancreatic cancer cell line. Overexpression of differ-
ent PFKFB in pancreatic and gastric cancer cells under 
hypoxic condition is correlated with enhanced expres-
sion of vascular endothelial growth factor (VEGF) and 
Glut1 mRNA as well as with increased level of HIF-
1α protein. Increased expression of different PFKFB 
genes was also demonstrated in gastric, lung, breast, 
and colon cancers as compared to corresponding non-
malignant tissue counterparts from the same patients, 
being more robust in the breast and lung tumors. 
Moreover, induction of PFKFB-4 mRNA expression in 
the breast and lung cancers is stronger than PFKFB-3 
mRNA. The levels of both PFKFB-4 and PFKFB-3 pro-
teins in non-malignant gastric and colon tissues were 
more pronounced than in the non-malignant breast 
and lung tissues. It is interesting to note that Panc1 
and PSN-1 cells transfected with dominant/negative 
PFKFB-3 (dnPFKFB-3) showed a lower level of endog-
enous PFKFB-3, PFKFB-4, and VEGF mRNA expres-
sions as well as a decreased proliferation rate of these 
cells. Moreover, a similar effect had dnPFKFB-4. In 
conclusion, there is strong evidence that PFKFB-4 and 
PFKFB-3 isoenzymes are induced under hypoxia in pan-
creatic and other cancer cell lines, are overexpressed in 
gastric, colon, lung, and breast malignant tumors and 
undergo changes in their metabolism that contribute to 
the proliferation and survival of cancer cells. Thus, tar-
geting these PFKFB may therefore present new thera-
peutic opportunities.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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caused by a combination of  hypoxia inducible transcrip-
tion factors, activation of  oncogenic proteins and the loss 
of  tumor suppressor function. Over-expression of  HIF-
1α or HIF-2α and MYC, activation of  RAS and loss of  
TP53 and/or other tumor suppressor functions each 
have been found to stimulate glycolysis in part by activat-
ing a family of  regulatory bifunctional 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatases (PFKFB) and 
hexokinases[16-18].

PFKFB AS AN IMPORTANT FACTOR OF 
TUMOR GROWTH
Enzyme PFKFB controls of  glycolysis through main-
taining the cellular levels of  fructose-2,6-bisphosphate, 
which is considered to be the major allosteric activator of  
6-phosphofructo-1-kinase, a rate-limiting enzyme of  gly-
colysis[19,20]. Thus, the PFKFB enzymes control glycolysis 
through fructose-2,6-bisphosphate level[20-23]. There are 4 
different genes encode variable isoforms of  this enzyme. 
Importantly, most cells and tissues express more than 
one isoform[23-25]. PFKFB enzyme also plays an important 
role in the Warburg effect and cancer growth[16,17,26-28]. 
Overexpression of  PFKFB-3 as well as other variants 
of  PFKFB is observed in various human cancers [29-33]. 
Moreover, enhanced expression of  PFKFB as well as 
hexokinase 2 is an obligatory factor of  activated tumor 
cell glycolysis and increased its proliferation[18,24,32-35].

The expression of  different PFKFBs (PFKFB-1, 
PFKFB-2, PFKFB-3 and PFKFB-4) is induced by hy-
poxia in vivo in organ-specific manner[21]. At the same 
time, in vitro experiments clearly demonstrated that 
hypoxia affects the expression only two variants of  
PFKFB (3 and 4) mRNA in different cell lines[26,29,31-33]. 
In promoter region of  PFKFB-4 and PFKFB-3 genes was 
identified HIF responsive element which bind transcrip-
tion factor HIF and mediate hypoxic regulation, because 
deletion or point mutation of  this HIF responsive ele-
ment eliminates the hypoxic regulation both PFKFB-4 
and PFKFB-3 genes[25,31,36,37]. Moreover, the phosphory-
lation - dephosphorylation of  PFKFB isoenzymes is 
important for enhancing of  glycolysis by hypoxia as well 
as by fructose-2,6-bisphosphate in monocytes upon acti-
vation[17,38,39]. There is also data supporting an important 
role for PFKFB-3 protein phosphorylation in the in-
creased glycolysis, angiogenesis and tumor progression[40]. 
Thus, highly phosphorylated variant of  PFKFB-3 was 
found in cancer cells as well as in other cells, including 
vascular endothelial cells[40].

Recently, a novel mechanism by which MK2, MAPK 
(mitogen-activated protein kinase)-activated protein 
kinase 2, a key component of  the MAPK pathway, up-
regulates glycolysis in response to stress in cancer cells 
was described[41]. By phosphorylating specific PFKFB3 
residues, MK2 promotes both increased its gene tran-
scription and allosteric activation. 

It was also shown a significant increase of  PFKFB-3 
in the nuclei, which associates with enhanced cell prolif-
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Core tip: Enzymes 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) 
play a significant role in the regulation of glycolysis and 
cancer growth by inducing cell proliferation and surviv-
ing. The expression of these PFKFB is increased in ma-
lignant tumors and strongly induced in various cancer 
cell lines under hypoxia, including pancreatic and gas-
tric cells. The high expression level of PFKFB-4 protein 
was found in NUGC3 gastric adenocarcinoma cells and 
much lower in pancreatic Panc1 cells, with the highest 
response to hypoxia in the pancreatic cancer cells. Both 
PFKFB-4 and PFKFB-3 are overexpressed in gastric, co-
lon, lung, and breast cancers being more pronounced 
for PFKFB-4. Blocking both PFKFB-4 and PFKFB-3 may 
present new therapeutic opportunities.
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INTRODUCTION
Pancreatic adenocarcinoma is an aggressive disease with 
a high mortality rate. Despite intensive efforts, pancreatic 
cancer remains a formidable challenge for oncologists[1]. 
Investigation of  the molecular and genetic bases of  
pancreatic as well as other cancers is very important for 
understanding tumor formation and growth as well as for 
development of  anticancer strategies. Hypoxia has been 
recognized as one of  the fundamentally important fea-
tures of  solid tumors and plays a critical role in various 
cellular and physiologic events, including cell prolifera-
tion, survival, angiogenesis, metabolism, as well as tumor 
growth, invasion and metastasis[2-6]. Moreover, hypoxia 
has the multifaceted role in the hallmarks of  human can-
cers, including pancreatic cancer. Hypoxia-inducible fac-
tor 1 (HIF-1), represent key features in cell biochemistry, 
physiology and molecular biology. 

Tumors are usually exposed to a hypoxic microenvi-
ronment due to their irregular growth and insufficient 
blood supply while pancreatic tumors have enhanced 
vascular supply[3,7,8]. Moreover, there is heterogeneity and 
genomic complexity between pancreatic tumors as well 
as hierarchy of  cancer cells with different properties, in-
cluding a subpopulation of  cancer stem cells that are in-
herently resistant to traditional therapies[8]. Activation of  
genes that ameliorate or compensate for the oxygen defi-
cit, especially of  mRNAs involved in glycolysis and facili-
tate proliferation is important in adaptations to hypox-
ia[9-15]. A high rate of  glycolytic flux, even in the presence 
of  oxygen, is a central metabolic hallmark of  neoplastic 
tumors. The high glucose metabolism of  cancer cells is 



eration through cyclin-dependent protein kinase[34]. More-
over, PFKFB-3 isoenzyme is degraded by the E3 ubiqui-
tin ligase APC/C-CDH1, which also degrades cell-cycle 
proteins[42]. Thus, this ubiquitin ligase is linking glycolysis 
to cell proliferation mainly through PFKFB-3 enzyme, 
which promote glycolysis. It was shown that both aerobic 
glycolysis and proliferation are prevented by overexpres-
sion of  this ubiquitin ligase and enhanced by its silencing. 
Furthermore, activation of  glycolysis, as essential factor 
of  cell proliferation, in the presence of  active ubiquitin 
ligase APC/C-CDH1 does not change the rate of  cell 
proliferation[42]. Recently was also shown that PTEN 
(phosphatase and tensin homolog) enhances interaction 
between PFKFB3 and E3 ligase APC/C-CDH1, and 
overexpression of  CDH1 down-regulates the PFKFB3 
protein level in wild-type, but not in PTEN-deficient 
cells[43]. Moreover, PTEN knockout cells were found to 
have high protein levels of  PFKFB3 that has important 
consequences for cell proliferation.

There is data that ubiquitin ligase SKP1-CUL1-
F(SCF)-beta-TrCP also participate in glycolysis regulation 
during the cell cycle through PFKFB because this enzyme 
or activation the glycolytic enzyme 6-phosphofructo-1-
kinase is needed for glycolysis up-regulation[44]. Besides 
that, the induction of  de novo lipid synthesis from glucose 
in prostate adenocarcinoma cells by androgen requires 
transcriptional up-regulation of  PFKFB-2 and phosphor-
ylation of  PFKFB-2 generated by the PI3K/AKT signal 
pathway to supply the source for lipogenesis[45]. The in-
creased glycolytic flux through the enhanced expression 
of  PFKFB3 gene was also observed after interaction of  
adenosine with macrophage TLR4 receptor agonists[46]. 
Thus, the enzymes of  PFKFB family participate in the 
regulation of  glucose metabolism through glycolysis as 
well as in the control of  the cell cycle, apoptosis, tumor 
growth, and invasiveness.

It is interesting to note that the transcriptional co-re-
pressor myeloid translocation gene 16 (MTG16) is found 
in multiple transcription factor-containing complexes as 
a regulator of  gene expression implicated in develop-
ment and tumorigenesis. MTG16 can serve as a brake on 
glycolysis, a stimulator of  mitochondrial respiration and 
an inhibitor of  cell proliferation through suppression of  
PFKFB-3, PFKFB-4 and pyruvate dehydrogenase kinase 
isoenzyme 1 (PDK1)[47]. Furthermore, hypoxia-stimulated 
production of  PFKFB3, PFKFB4 and PDK1 was inhib-
ited by MTG16 expression.

Several alternative splice variants for PFKFB-3 were 
identified in normal and cancer cells which possibly are 
important for malignant tumor growth[35,48-51]. All these 
splice variants have similar N-terminus and catalytic both 
6-phosphofructo-2-kinase and fructose-2,6-bisphospha-
tase domains, but differ in C-terminal regulatory region. It 
is possible that a variable C-terminus provide not only for 
differ regulatory properties and for a variable surviving 
of  PFKFB-3 splice variants. Moreover, the expression of  
PFKFB-3 alternative splice variants in vivo differs in vari-
ous organs and spectrum of  these splice variants changes 
in rat model of  diabetes in organ-specific manner[51].

Recent data[52-54] showed that PFKFB-4, which ex-
pression at mRNA and protein levels is strongly induced 
in the lung and breast cancers, has also pleiotropic func-
tions. This variant of  PFKFB together with other mem-
bers of  PFKFB family participates in the regulation of  
glycolysis and also promotes tumor growth and survival 
of  cancer cells[30,33,52-56]. It was shown that PFKFB4 is 
required to balance glycolytic activity and antioxidant 
production to maintain cellular redox balance in prostate 
cancer cells[52]. Moreover, depletion of  PFKFB4 inhibited 
tumor growth in a xenograft model, indicating that it is 
required under physiologic nutrient levels[52]. PFKFB4 
mRNA expression was also found to be greater in meta-
static prostate cancer compared with primary tumors[52]. 
Moreover, induction of  apoptosis by sulforaphane in 
human hepatic cancer cells mediated by hypoxia induc-
ible factor-1-dependent pathway through inhibition of  
PFKFB4[53]. Thus, PFKFB4, a glycolytic enzyme that 
shunts glucose into the pentose phosphate pathway for 
NADPH production, as a critical node for the survival of  
cancer cells[52-54,56].

Aerobic glycolysis links the high rate of  glucose fer-
mentation to cancer[57]. It was found that the regulatory 
glycolytic enzyme PFKFB4 is essential for prostate can-
cer cell survival by maintaining the balance between the 
use of  glucose for energy generation and the synthesis 
of  antioxidants. Cancer cells undergo several changes in 
their metabolism that contributes to the proliferation and 
survival of  cancer cells. Blocking PFKFB4 induces reac-
tive oxygen species and cancer cell death. Thus, targeting 
PFKFB4 may therefore present new therapeutic oppor-
tunities. 

It is interesting to note that non-malignant gastric and 
colon tissues in contrast to lung and breast tissues have 
higher level of  PFKFB-4 protein; at the same time, no 
significant differences in mRNA levels[30,32,33]. It is pos-
sible that there is some specific mechanism of  PFKFB-4 
protein stabilization as well as some additional functions 
of  this enzyme in non-malignant gastric and colon tis-
sues. These aspects of  PFKFB biochemistry warrants 
further investigation.

Several alternative splice variants were identified for 
human, mouse and rat PFKFB-4[58-60]. Alternative splice 
variant with modified N-terminus was identified for 
PFKFB-4 in melanoma DB-1 cells[58]. Its expression was 
very high in these cells and is possibly related to melano-
ma growth. Other alternative splice variants of  PFKFB-4 
mRNA with modified C-terminus were founded in rat 
tissues[59]. One of  them with a modified C-terminal part 
was observed only in the liver of  rats treated by methyl 
tertial butyl ether, ecologically dangerous chemical 
compound[59]. It was not present in normal rat liver and 
lungs. Second alternative splice variant with deletion in 
fructose-2,6-bisphosphatase region is expressed in nor-
mal liver and lung tissues and its expression is affected 
by methyl tertial butyl ether[59]. Results of  this investiga-
tion demonstrate the sensitivity of  PFKFB-4 alternative 
splicing to the action of  toxic chemical compounds, in 
particular methyl tretbutyl ether. Several unique alterna-
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which suppress prolyl hydroxylase enzymes, significantly 
enhanced the expression of  PFKFB4 as well as PFKFB3 
genes (P < 0.001; Figures 1 and 2). At the same time, the 
expression of  PFKFB-3 mRNA in Panc1 pancreatic can-
cer cell line (P < 0.01) growing under normal condition 
was lower as compared to gastric cancer cell lines, but for 
PFKFB-4-slightly higher[32]. Moreover, the basal level of  
PFKFB-4 mRNA expression as well as its hypoxia re-
sponsiveness was more robust as compared to PFKFB-3 
mRNA[32]. Thus, there is a difference in the basal level 
of  these two variants of  PFKFB mRNA between gastric 
and pancreatic cancer cells as well as in its sensitivity to 
hypoxia and dimethyloxalylglycine.

At the same time, the protein level of  PFKFB-4 
isoenzyme in non-treated gastric adenocarcinoma cells 
was much higher as compared to pancreatic cancer cells 
(Figure 3). Moreover, the protein level of  PFKFB-4 in 
NUGC3 gastric cancer cells is significantly higher than 
in MKN45 cells. Hypoxia and dimethyloxalylglycine 
strongly enhances the expression of  PFKFB-4 at protein 
level in pancreatic and gastric cancer cell lines. This in-
crease of  PFKFB-4 protein expression varies in different 
cancer cell lines possibly because these gastric and pan-
creatic cells have significantly different constitutive level 
of  PFKFB-4 protein. Moreover, no strong correlation is 
present between mRNA and protein of  PFKFB-4 in the 
pancreatic and gastric malignant cells in normoxic as well 
as in hypoxic condition[32]. This data agrees with results 
of  previous investigations[31]. 

It is interesting to note that the level of  PFKFB-4 
mRNA and protein differs in different mammary gland 
adenocarcinoma cell lines both in normal condition and 
after hypoxic exposure[31]. Thus, the level of  PFKFB-4 
mRNA is more pronounced in the T47D malignant cell 
line as compared to MCF7 cells both in normal condition 
and after hypoxia. At the same time, the protein level of  
PFKFB-4 is much higher in the MCF7 cells vs T47D cell 
line in normal condition as well as after hypoxic expo-
sure. Other cell lines (SKBR3 and MDA-MB-468) have 
similar level of  PFKFB-4 mRNA expression both in nor-
mal condition and upon hypoxia. Unexpectedly, in MDA-
MB-468 mammary gland adenocarcinoma cells PFKFB4 
protein was detected at negligible level at the same ex-

tive splice variants were identified in mouse brain and 
other tissues[60]. One of  them has two ORFs (for 6-phos-
phofructo-2-kinase and fructose-2,6-bisphosphatase) as a 
result of  insert after the 7th exon. Other alternative splice 
variants have inserts in kinase domain or a deletion in 
bisphosphatase domain[60]. Its functional significance is 
not elucidated as of  yet. 

At the same time, the analysis of  PFKFB-3 and 
PFKFB-4 expression as well as its regulation by hypoxia 
in pancreatic and gastric cancer cells, which significantly 
differ from many other malignant cells, is needed for 
further advance our knowledge on the mechanisms of  
different tumors progression. Recently, it was shown that 
excess glucose induces hypoxia-inducible factor-1α in 
pancreatic cancer cells and stimulates glucose metabolism 
possibly through PFKFB as well as the migration of  
these cancer cells and that hypoxia strongly up-regulates 
the expression of  PFKFB-4 and PFKFB-3[32,61].

PFKFB-4 AND PFKFB-3 GENE 
EXPRESSIONS IN PANCREATIC AND 
GASTRIC CANCER CELL LINES AND 
MOLECULAR MECHANISMS OF ITS 
REGULATION 
It was shown that different PFKFB genes are expressed 
in human pancreatic and gastric cancer cells and are up-
regulated in hypoxic condition[32]. Hypoxia induces the 
expression of  these genes through transcription factor 
HIF binding sites to hypoxia responsible element (HRE) 
of  PFKFB-4 and PFKFB-3 genes, because deletion or 
point mutation in these HRE eliminates the hypoxic 
regulation of  PFKFB-4 and PFKFB-3 genes[25,31,36,37]. As 
shown in Figure 1, the expression of  PFKFB-4 mRNA is 
detectable at very low level in both MKN45 and NUGC3 
gastric cancer cell lines growing under normal condition. 
The expression of  PFKFB-3 mRNA in these cell lines 
was significantly higher as compared to the PFKFB-4 
mRNA[32]. 

Exposure of  MKN45 and NUGC3 gastric adeno-
carcinoma cells to hypoxia or dimethyloxalylglycine, 
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Figure 1  Effect of hypoxia (H) and hypoxia mimic dimethyloxalylglycine (I) on the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 
and -4 mRNA in human gastric cancer cell lines MKN45 and NUGC3 and pancreatic cancer cell line Panc1. Measured by ribonuclease protection assay, N: 
Control (normoxic) cells[32]. PFKFB: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
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perimental conditions, which were used for SKBR3 and 
other mammary gland adenocarcinoma cell lines[31]. In 
contrast, the level of  PFKFB-4 mRNA is correlated with 
corresponding protein level both in SKBR3 and BT549 
cell lines. 

Really, the protein level of  PFKFB-4, which in Panc1 
pancreatic cancer cells is much lower as compared to gas-
tric cancer cells and correlates with stronger induction of  
both PFKFB-4 mRNA and protein expressions upon hy-
poxia. At the same time, the hypoxia-induced PFKFB-4 
protein level in Panc1 cells is in fact lower when com-
pared to the level of  this protein in NUGC3 cells. 
Moreover, the high PFKFB-4 protein level in NUGC3 
gastric cancer cells is correlated with the lower induction 
of  PFKFB-4 mRNA and protein expressions upon hy-
poxia; on the other hand, the level of  PFKFB-4 protein 
in hypoxia-treated cells is very high as compared to the 
levels of  PFKFB-4 protein in both Panc1 and MKN45 
control or hypoxia-treated cells[32]. This difference be-
tween mRNA and protein levels of  PFKFB-4 which in 
the different pancreatic and gastric cancer cells is possibly 
related to the mechanisms controlling PFKFB4 protein 
stability. However, the precise molecular mechanism for 
these discrepancies is complex and possibly includes 
PFKFB-4 enzyme posttranslational modification or its 
stability in a cell-specific manner and warranties further 
detailed investigation. 

The induction of  PFKFB-3 mRNA expression in 
the NUGC3 gastric cancer cell line by hypoxia and di-
methyloxalylglycine is more pronounced as compared 
to PFKFB-4 mRNA expression. It is important to note 

that the expression PFKFB-3 mRNA in the Panc1 pan-
creatic cancer cells has the lowest hypoxia responsive-
ness as compared to both gastric cancer cell lines. We 
have previously shown that the hypoxic induction of  
PFKFB-3 mRNA expression in mammary gland cancer 
cells is more robust in MCF7 and T47D breast cancer 
cells (estrogen receptor-positive cell lines) as compared 
to SKBR-3 and MDA-MB-468 cells (estrogen receptor-
negative cell lines)[31]. The dissimilar sensitivity of  the 
PFKFB-3 gene expression to induction by hypoxia was 
also shown for other cell lines, like HeLa, Hep3B, RPE, 
and fibroblasts, while induction of  Glut1 mRNA by hy-
poxia was similar in all these cell lines[25]. 

It is interesting to note that the induction of  
PFKFB-4 mRNA expression by hypoxia was simulated 
by dimethyloxalylglycine in different pancreatic and 
gastric as well as in many other cancer cell lines[25,27,31,32]. 
Dimethyloxalylglycine, a specific inhibitor of  prolyl 
hydroxylases, is an oxoglutarate analog, which protects 
the HIF-1α protein from proteasomal degradation and 
significantly increases its level[59]. Suppression of  prolyl 
hydroxylase enzymes can induce the level and functional 
activity of  HIF-1α under normoxia and mimics hypoxic 
condition[62]. Induction of  PFKFB-4 mRNA synthesis by 
hypoxia is mediated by the hypoxia responsive element 
located in the promoter region of  this gene which is simi-
lar to the same elements, described in different hypoxia 
responsive genes, including PFKFB-3 gene[25,36,63,64]. 

As shown in Figure 4A, hypoxia increases the expres-
sion level of  PFKFB-3 and PFKFB-4 as well as VEGF 
and Glut1 genes in both gastric and pancreatic cancer 
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Figure 2  Quantification of ribonuclease protec-
tion assay of the effect of hypoxia (H) on the 
expression level of 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase-4 and -3 mRNAs in 
human gastric (MKN45 and NUGC3) and pancre-
atic (Panc1) cancer cell lines. bP < 0.01 vs control 
cells; dP < 0.01 vs control cells[32]. N: Normoxic 
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Figure 3  Western blot analysis of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 protein in human gastric (MKN45 and NUGC3) and pancreatic 
(Panc1) cancer cell lines: Effect of hypoxia (H) and dimethyloxalylglycine (I)[32]. PFKFB: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
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cell lines and these changes are correlated with enhanced 
level of  HIF-1α protein[32]. This data argues with HIF-
1α-dependent mechanism of  the induction of  these 
genes under hypoxia. At the same time, the constitutive 
level of  HIF-1α as well as HIF-2α mRNA expression 
and their induction by hypoxia (Figure 4B) is dissimilar 
in the MKN45 and NUGC3 gastric adenocarcinoma 
cells[32]. Thus, the level of  HIF-1α mRNA expression 
is decreased in both gastric cancer cell lines treated by 
hypoxia or dimethyloxalylglycine, but no significant 
changes of  HIF-2α mRNA expression were found in the 
NUGC3 gastric cancer cell line under hypoxia. However, 
the expression of  HIF-2α mRNA in the MKN45 gastric 
cancer cells was slightly induced by dimethyloxalylglycine 
as well as hypoxia. A similar pattern of  the expression of  
HIF-1α and HIF-2α mRNAs in the A549 lung adenocar-
cinoma cell line and many other cancer cell lines treated 
by hypoxia was shown[25,64-66]. 

It is important to note that there is an inverse correla-
tion between induction of  HIF-1α mRNA and protein 
expressions upon hypoxic exposure. These observations 
suggest that the increase in HIF-1α protein expression 
was not reflected at the mRNA level. Moreover, the ex-

pression of  HIF-1α mRNA is significantly decreased 
both under hypoxia and dimethyloxalylglycine action. It 
is possible that this discrepancy between HIF-1α mRNA 
and protein levels, which was found in different gastric, 
pancreatic and many other cancer cell lines, is related to 
the divergence in mechanisms which control the stability 
of  HIF-1α mRNA and protein. Thus, the hypoxic induc-
tion of  HIF-1α protein expression is a result of  its stabi-
lization, possibly mediated by specific prolyl hydroxylase 
enzymes, oxygen- and iron-dependent, which utilize 
oxoglutarate as a co-substrate[62,67,68]. At the same time, 
the decreased expression of  HIF-1α mRNA both under 
hypoxia and dimethyloxalylglycine action is possibly me-
diated by suppression of  transcription or by its increased 
degradation[65].

The expression mRNA level of  PFKFB variant 3 and 
4 was also investigated in two other pancreatic cancer cell 
lines: PSN-1 and MIA PaCa-2 (Figures 5 and 6). Hypoxia 
strongly induces (P < 0.001) the expression of  both 
PFKFB4 and PFKFB3 genes in PSN-1 and MIA PaCa-2 
cancer cells being more robust for PFKFB4 gene. More-
over, hypoxic induction of  PFKFB4 and PFKFB3 gene 
expressions in both these pancreatic cancer cell lines cor-
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Figure 4  Expression of hypoxia inducible factor-1α protein (Western blotting; A) and hypoxia inducible factor-1α and hypoxia inducible factor-2α mRNA 
(ribonuclease protection assay; B) in human gastric (MKN45 and NUGC3) and pancreatic (Panc1) cancer cell lines: effect of hypoxia (H) and dimethyloxa-
lylglycine (I)[32]. HIF: Hypoxia inducible factor.

Figure 5  Effect of hypoxia (H) and hypoxia mimic dimethyloxalylglycine 
(I) on the expression level of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase-3, -4, and GLUT1 mRNAs (measured by qPCR) in human 
pancreatic (PSN-1) cancer cells. n = 4; bP < 0.01 vs control cells. N: Normoxic 
(control) cells; PFKFB: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
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relates with a strong increase of  GLUT1 gene expression 
(P < 0.001).

In conclusion, this chapter provides evidence that 
PFKFB-4 and PFKFB-3 mRNA are expressed in dif-
ferent cancer cell lines, including pancreatic and gastric 
adenocarcinoma cells, and strongly respond to hypoxia 
possibly through a HIF- dependent mechanism using 
active HIF-binding sites in PFKFB4 and PFKFB3 genes. 
At the same time, no clear correlation is existent between 
different variants of  PFKFB mRNA expressions and its 
protein levels in different cancer cell lines both in nor-
moxic and hypoxic conditions. Moreover, hypoxic induc-
tion of  HIF-1α protein level correlates with a reduction 
of  HIF-1α mRNA expression in these cell lines. Thus, 
there is an opposite correlation between hypoxic regula-
tion of  PFKFB-4 mRNA and protein levels in different 
hypoxia-treated adenocarcinoma cells in vitro[31,32,65]. It is 
possible that permanent degradation of  HIF-1α protein 
in normoxic condition support high level expression of  
corresponding mRNA needed for synthesis of  this pro-
tein. At the same time, stabilization of  HIF-1α protein 
under hypoxia suppresses transcription of  this gene or/
and initiates the degradation of  HIF-1α mRNA.

EXPRESSION OF DIFFERENT PFKFB IN 
HUMAN GASTRIC, COLON, LUNG, AND 
BREAST MALIGNANT TUMORS 
There is data that PFKFB-4 and PFKFB-3 mRNA and 
protein expressions are significantly increased (P < 0.001) 
in gastric cancers as compared to corresponding non-ma-
lignant tissue counterparts from the same patients (Fig-
ures 7 and 8)[32]. This increase in the expression of  these 
PFKFB genes in gastric malignant tumors correlates with 
the up-regulation of  HIF-1α and known HIF-dependent 

genes GLUT1 and VEGF (P < 0.001). Moreover, the 
expression of  PFKFB-1 and PFKFB-2 mRNA is also 
increased in gastric cancer tissue. It is interesting to note 
that the expression level of  different PFKFB mRNAs in 
non-malignant stomach tissue was highest for PFKFB-2, 
much less for PFKFB-3 and slight for PFKFB-4 and 
PFKFB-1[32]. 

As shown in Figure 9, PFKFB-4 and PFKFB-3 
mRNA are also overexpressed (P < 0.001) in lung, colon, 
and breast cancers as compared to corresponding non-
malignant tissue counterparts from the same patients 
being more pronounced for PFKFB-4 in lung and breast 
tumors[30,33,69]. Up-regulation of  PFKFB-2 mRNA is also 
shown for lung cancers[30]. Moreover, the level of  GLUT1 
and VEGF mRNA expressions is also significantly in-
creased (P < 0.001) in all these cancer tissues, especially 
GLUT1 in lung and colon tumors (Figure 10)[30,33]. West-
ern analysis of  PFKFB-4 and PFKFB-3 proteins as well 
as HIF-1α protein clearly demonstrated its up-regulation 
in all analysed tumors with more pronounced changes 
in PFKFB-4 protein in lung and breast cancers (Figure 
11)[30,32,33]. Thus, overexpression of  PFKFB-3, PFKFB-4 
and PFKFB-2 is observed in various human cancers 
through various mechanisms: by a combination of  hy-
poxia inducible transcription factors (for PFKFB-4 and 
PFKFB-3), activation of  oncogenic proteins and the loss 
of  tumor suppressor function[29-33,37].

Recently, it was shown that amino acid activates AKT-
dependent PFKFB2 phosphorylation at Ser-483 and that 
this activation was mediated by the PI3K and p38 signal-
ing pathways[70]. Furthermore, AKT inactivation blocked 
PFKFB2 phosphorylation and fructose-2,6-bisphosphate 
production, thereby suggesting that the above signaling 
pathways converge at AKT kinase. Moreover, MACC1 
(MUC1, mucin 1, cell surface associated) may affect 
tumor metabolism partly through expression and phos-
phorylation of  PFKFB2[71]. 

At the same time, the protein level of  both PFKFB-4 
and PFKFB-3 is significantly different in non-malignant 
lung, breast, colon, and gastric tissues being more pro-
nounced for colon and gastric tissues. It is interesting 
to note that the level of  PFKFB-4 protein in all studied 
cancers (lung, breast, colon, and gastric) was also higher 
as compared to the PFKFB-3 isozyme (Figure 11). Thus, 
the main protein isoform of  PFKFB enzyme family 
expressed in lung, breast, colon, and gastric malignant 
tumors is PFKFB-4. 

Moreover, there is data that hypoxia is needed for tu-
mor progression and initiates the endoplasmic reticulum 
stress for induction of  neovascularization and apoptosis 
inhibition[72-76]. It is known that some PFKFB enzymes 
are components of  the endoplasmic reticulum stress 
and participate in proliferation processes[77]. Recently, it 
was shown that PFKFB-3-driven glycolysis participates 
in vessel sprouting process which strongly depends 
upon endoplasmic reticulum stress[73,78,79]. Thus, endo-
thelial cells relied on glycolysis rather than on oxidative 
phosphorylation for ATP production and loss of  the 
glycolytic activator PFKFB3 in endothelial cells impaired 
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Figure 7  Representative polyacrylamide gel autoradiograph employed in 
a typical ribonuclease protection assay of different 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase genes (PFKFB-1, PFKFB-2, PFKFB-3, 
and PFKFB-4), GLUT1, hypoxia inducible factor-1α, and different alterna-
tive splice variants of VEGF-A in gastric malignant tumors (T) and non-
malignant tissue counterparts (N) from same patients. The 18S rRNA 
expressions were used as control of RNA quantity used for analysis[32]. HIF: 
Hypoxia inducible factor; PFKFB: 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase.
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vessel formation[78,80]. Moreover, the glycolytic activator 
PFKFB3 regulates stalk cell proliferation and renders en-
dothelial cells more competitive to reach the tip[81].

The induction of  different PFKFB as well as tumor 
angiogenesis and growth is realized not only through 
activation of  transcription factor HIF[7,14,34,73,74,82-86]. For 
PFKFB3 it was shown that its transcription as well as 
allosteric activation is promoted by MAPK pathway[87]. 
Many growth factors may contribute to cancer progres-
sion, including pancreatic cancer, through induction of  
the expression of  genes without hypoxia responsive ele-
ments[88]. Moreover, hypoxia-inducible mir-210 regulates 
normoxic gene expression involved in tumor initiation 
and growth[89]. Recently, it was shown that clathrin heavy 
chain promotes growth and angiogenesis of  pancreatic 

adenocarcinoma, which is an aggressive disease with a 
high mortality rate, through the regulation of  HIF-1α 
and VEGF signaling and that hypoxia-induced pancreatic 
cancer cells invasion is also mediated by transcription fac-
tor HIF[85,90]. One of  the key functions of  clathrin heavy 
chain protein is to bind with the HIF-1α protein, increas-
ing the stability of  this protein and facilitating its nuclear 
translocation, thereby regulating the expression of  
VEGF. Thus, suppression of  clathrin heavy chain either 
by shRNA or by specific antibody inhibited pancreatic 
adenocarcinoma growth and angiogenesis[85].

A better understanding of  the impact of  PFKFB gene 
networks regulation on glycolysis as well as cell cycle con-
trol, apoptosis and cell survival promises to shed light on 
the emerging association between PFKFB-3, PFKFB-4, 
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cell proliferation and cancer. These provide rationale for 
the development of  agents that selectively inhibit the 
PFKFB3 and PFKFB-4 enzymes as antineoplastic agents. 
Recently was shown that inhibition of  PFKFB-3 activ-
ity suppresses glycolytic flux and tumor growth by rapid 
induction of  apoptosis in transformed cells[91,92]. It is pos-
sible, that the stimulation of  glycolysis in cancer cells re-
sults by multimodal mechanism of  stress stimuli affecting 
PFKFB3 transcriptional regulation and kinase activation 
by protein phosphorylation[41]. Moreover, the glycolytic 
enzyme PFKFB3 regulates autophagy and inhibition of  
PFKFB3 in tumor cells would induce autophagy as a pro-
survival mechanism and inhibitors of  autophagy could 
increase the anti-tumor effects of  PFKFB3 inhibitors[93,94].

Previously, we have shown that suppression of  
PFKFB-3 and PFKFB-4 expression (P < 0.05-0.01) in 
pancreatic Panc1 and PSN-1 cancer cells by dominant/
negative technology also decreases VEGF expression (P 
< 0.05) and proliferation rate (P < 0.05) of  these cells 
(Figures 12-14)[95]. For this aim we introduced point mu-

tation in ATP-binding domain of  6-phosphofructo-2-
kinase part of  PFKFB-3 as well as PFKFB-4 cDNA and 
cloned in pcDNA3.1 vector. Pancreatic Panc1 and PSN-1 
cancer cells were stable transfected with dnPFKFB-3 and 
dnPFKFB-4 constructs and studied the expression of  
endogenous PFKFB-3, PFKFB-4, and VEGF-A mRNAs 
in these cells as well as its proliferation rate. It was shown 
that both dnPFKFB-3 and dnPFKFB-4 suppress the 
expression of  endogenous PFKFB-3, PFKFB-4, and 
VEGF-A mRNAs as well as cell proliferation in pan-
creatic cancer cells[95]. Results of  this investigation agree 
with the role of  PFKFB3-driven glycolysis in vessel 
sprouting[78,80,81] and demonstrate possibility to apply the 
dominant-negative strategy for suppression of  tumor 
cells glycolysis and proliferation through reduction of  the 
expression of  PFKFB-3 and PFKFB-4 enzymes. 
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2-kinase/fructose-2,6-bisphosphatase-3 mRNA in pancreatic carcinoma 
cell line Panc1, stable transfected by pcDNA3.1(+) vector (Panc1 cells) or 
by dominant/negative 6-phosphofructo-2-kinase/fructose-2,6-bisphospha-
tase-3 (Panc1 + dnPFKFB-3) in normoxic (N) condition and after treatment 
of Panc1 cells with dimethyloxalylglycine, inhibitor of prolyl hydroxylase 
(I; 1 mmol/L for 6 h). The 18S rRNA antisense probe was used as control 
of analyzed RNA quantity[89]. PFKFB: 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase.
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Thus, PFKFB-4 as well as PFKFB-3 participates in 
the regulation of  glycolysis and promotes tumor growth 
and survival of  cancer cells[34,52-54,91]. Moreover, targeting 
PFKFB3 by specific inhibitors is a perspective therapeu-
tic strategy against cancer[91,92]. It was also shown that 
blocking of  PFKFB4 induces reactive oxygen species and 
cancer cell death and that targeting PFKFB4 may also, 
therefore, present new therapeutic opportunities[52,53].

CONCLUSION
PFKFB-3 and PFKFB-4 play a significant role in the reg-
ulation of  glycolysis and cancer growth by inducing cell 
proliferation and survival. The PFKFB-4 and PFKFB-3 
genes have active HIF-responsible elements and its ex-
pression is increased in different malignant tumors and 
strongly induced in various cancer cell lines under hy-
poxia. The expression of  PFKFB-4 and PFKFB-3 genes 
as well as its hypoxia responsibility was also shown for 
pancreatic (Panc1, PSN-1 and MIA Paca-2) and gastric 
(MKN45 and NUGC3) cancer cell lines. The highest 
constitutive expression level of  PFKFB-4 protein was 
found in the NUGC3 adenocarcinoma cells and lowest in 
the Panc1 cells, with the maximum response to hypoxia 
in the pancreatic adenocarcinoma cells. Moreover, the hy-
poxia responsiveness of  PFKFB-3 and PFKFB-4 mRNA 
expressions in pancreatic and gastric cancer cell lines is 
correlated with the increased level of  HIF-1α protein 
and enhanced expression of  VEGF and GLUT1 genes. 
At the same time, the basal expression level of  HIF-1α 
as well as HIF-2α mRNA and their hypoxia responsive-
ness are variable in these cancer cells as well as in many 
other cancer cell lines. The overexpression of different 

PFKFB was also shown in gastric, colon, lung, and breast 
cancer tissues. It is interesting to note that the protein 
level of  PFKFB-4 in colon and gastric malignant tumors 
as well as non-malignant tissue counterparts was greater 
as compared to the variant 3 of  PFKFB. Both PFKFB-4 
and PFKFB-3 isoenzymes are overexpressed in different 
malignant tumors and undergo changes in their metabo-
lism that contribute to the proliferation and survival of  
cancer cells. A better understanding of  the impact of  
PFKFB gene networks regulation on cell cycle control 
and glycolysis as well as nutrient balance at the molecu-
lar, cellular and system levels promises to shed light on 
the emerging association between PFKFB-3, PFKFB-4, 
cell proliferation and cancer. These provide rationale for 
the development of  agents that selectively inhibit the 
PFKFB3 and PFKFB-4 enzymes as antineoplastic agents. 
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Figure 14  Endogenous 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase-3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4, and 
vascular endothelial growth factor mRNA expressions in pancreatic carci-
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bisphosphatase-4, measured by ribonuclease protection assay. n = 5; aP 
< 0.05 vs control; bP < 0.01 vs control[89]. PFKFB: 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase; VEGF: Vascular endothelial growth factor.
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