REVIEW

11122 Diet and microbiome in the beginning of the sequence of gut inflammation
 Ceballos D, Hernández-Camba A, Ramos I

MINIREVIEWS

11148 Stem cell therapy: A promising treatment for COVID-19
 Zheng ZX

ORIGINAL ARTICLE

Case Control Study

11156 Association between serum Sestrin2 level and diabetic peripheral neuropathy in type 2 diabetic patients
 Mao EW, Cheng XB, Li WC, Kan CX, Huang N, Wang HS, Hou NN, Sun XD

11165 Plasma brain natriuretic peptide, platelet parameters, and cardiopulmonary function in chronic obstructive pulmonary disease
 Guo HJ, Jiang F, Chen C, Shi JY, Zhao YW

Retrospective Cohort Study

11173 Analysis of the incidence and influencing factors of hyponatremia before ¹³¹I treatment of differentiated thyroid carcinoma
 Cao JJ, Yun CH, Xiao J, Liu Y, Wei W, Zhang W

Retrospective Study

11183 Cognitive magnetic resonance imaging-ultrasound fusion transperineal targeted biopsy combined with randomized biopsy in detection of prostate cancer

11193 Nomogram based on inflammation-related markers for predicting survival of patients undergoing hepatectomy for hepatocellular carcinoma
 Pu T, Li ZH, Jiang D, Chen JM, Guo Q, Cai M, Chen ZX, Xie K, Zhao YJ, Liu FB

11208 Association of frailty with in-hospital outcomes in elderly patients with heart failure
 Kang YP, Chen LY, Zhu JJ, Liu WX, Ma CS

11220 COVID-19 pandemic and exacerbation of ulcerative colitis
 Suda T, Takahashi M, Katayama Y, Tamano M

11228 Surgical perspectives of symptomatic omphalomesenteric duct remnants: Differences between infancy and beyond
Clustering cases of *Chlamydia psittaci* pneumonia mimicking COVID-19 pneumonia

Sodium nitroprusside injection immediately before balloon inflation during percutaneous coronary intervention
Yu Y, Yang BP

Machine learning approach to predict acute kidney injury after liver surgery
Dong JF, Xue Q, Chen T, Zhao YY, Fu H, Guo WY, Ji JS

Application effect for a care bundle in optimizing nursing of patients with severe craniocerebral injury

Clinical Trials Study

Influence of pontic design of anterior fixed dental prosthesis on speech: A clinical case study
Wan J, Cai H, Wang T, Chen JY

Observational Study

Real-world data on the infliximab biosimilar CT-P13 (Remsima®) in inflammatory bowel disease
Huguet JM, Cortés X, Bosca-Watts MM, Aguas M, Maroto N, Martí L, Amorós C, Paredes JM

Correlation of periodontal inflamed surface area with glycemic status in controlled and uncontrolled type 2 diabetes mellitus
Anil K, Vadukkekuttil RJ, Radhakrishnan C, Parambath FC

Audiological characteristics and exploratory treatment of a rare condition of acute-otitis-media-associated sudden sensorineural hearing loss
Cao X, Yi HJ

Yield of testing for micronutrient deficiencies associated with pancreatic exocrine insufficiency in a clinical setting: An observational study
Jalal M, Campbell JA, Tesfaye S, Al-Mukhtar A, Hopper AD

Prospective Study

Birthing ball on promoting cervical ripening and its influence on the labor process and the neonatal blood gas index
Shen HC, Wang H, Sun B, Jiang LZ, Meng Q

CASE REPORT

Mucormycosis – resurgence of a deadly opportunist during COVID-19 pandemic: Four case reports
Upadhyay S, Bharara T, Khandait M, Chawdhry A, Sharma BB

Ductal breast carcinoma metastasized to the rectum: A case report and review of the literature
Ban B, Zhang K, Li JN, Liu TJ, Shi J
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11355</td>
<td>De Garengeot hernia with avascular necrosis of the appendix: A case report</td>
<td>Yao MQ, Yi BH, Yang Y, Weng XQ, Fan JX, Jiang YP</td>
</tr>
<tr>
<td>11392</td>
<td>Acute myocardial infarction in a young man with ankylosing spondylitis: A case report</td>
<td>Wan ZH, Wang J, Zhao Q</td>
</tr>
<tr>
<td>11400</td>
<td>Acute appendicitis complicated by mesenteric vein thrombosis: A case report</td>
<td>Yang F, Guo XC, Rao XL, Sun L, Xu L</td>
</tr>
<tr>
<td>11406</td>
<td>Inguinal endometriosis: Ten case reports and review of literature</td>
<td>Li SH, Sun HZ, Li WH, Wang SZ</td>
</tr>
<tr>
<td>11437</td>
<td>Ectopic pregnancy implanted under the diaphragm: A rare case report</td>
<td>Wu QL, Wang XM, Tang D</td>
</tr>
<tr>
<td>11443</td>
<td>Ear ischemia induced by endovascular therapy for arteriovenous fistula of the sigmoid sinus: A case report</td>
<td>Li W, Zhang SS, Gao XR, Li YX, Ge HJ</td>
</tr>
<tr>
<td>11467</td>
<td>Rare spontaneous extensive annular intramural esophageal dissection with endoscopic treatment: A case report</td>
<td>Hu JW, Zhao Q, Hu CY, Wu J, Lv XY, Jin XH</td>
</tr>
</tbody>
</table>
Contents

Mucinous cystic neoplasm of the liver: A case report
Yu TY, Zhang JS, Chen K, Yu AJ

11475

Retroperitoneal parasitic fetus: A case report
Xia B, Li DD, Wei HX, Zhang XX, Li RM, Chen J

11482

De novo mutation loci and clinical analysis in a child with sodium taurocholate cotransport polypeptide deficiency: A case report
Liu HY, Li M, Li Q

11487

Surgery for hepatocellular carcinoma with tumor thrombosis in inferior vena cava: A case report
Zhang ZY, Zhang EL, Zhang BX, Zhang W

11495

LETTER TO THE EDITOR

Advantages and issues of concern regarding approaches to peripheral nerve block for total hip arthroplasty
Crisci M, Cuomo A, Forte CA, Bimonte S, Esposito G, Tracey MC, Cascella M

11504
ABOUT COVER

Editorial Board Member of *World Journal of Clinical Cases*, Moises Rodriguez-Gonzalez, MD, Adjunct Professor, Senior Researcher, Department of Pediatric Cardiology, Hospital Universitario Puerta del Mar, Cadiz 11009, Spain. doctormoisesrodriguez@gmail.com

AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xu Cun; Editorial Office Director: Jin-Lei Wang.
De novo mutation loci and clinical analysis in a child with sodium taurocholate cotransport polypeptide deficiency: A case report

Hui-Yan Liu, Meng Li, Qi Li

BACKGROUND
Sodium taurocholate cotransport polypeptide (NTCP) deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transport protein NTCP in hepatocytes. A variety of clinical manifestations and genetic mutation loci have been reported for this disease. However, specific therapeutic measures are lacking, and the long-term effects are unknown.

CASE SUMMARY
An infant with elevated bile acids and behavioral neurodevelopmental delay failed to respond to bile acid-lowering therapy. Genetic testing for metabolic liver disease revealed that the child had NTCP deficiency due to the SLC10A1 mutation: c.422dupA (p.Y141X), which is a novel mutation site. The current follow-up revealed a gradual decrease in bile acid levels after 1 year of age, but the child still had behavioral neurodevelopmental delays.

CONCLUSION
The clinical manifestations, genetic characteristics, treatment and long-term prognosis due to NTCP deficiency remain poorly defined and need to be further confirmed by more studies and reports.

Key Words: Sodium taurocholate cotransport polypeptide; SLC10A1 gene; Hypercholesterolemia; Behavioral neurodevelopmental delay; Children; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Sodium taurocholate cotransport polypeptide (NTCP) is a carrier protein encoded by solute carrier family 10 member 1 (SLC10A1), 23 kbp in length, located on chromosome 14q24.2 and containing five exons. The protein product, NTCP, consists of 349 amino acid residues and has a molecular weight of 38 kDa. NTCP is located in the basolateral membrane of hepatocytes and is a sodium-dependent transporter protein involved in the transport of bile acids from the blood to the hepatocytes to maintain the uninterrupted hepatic-intestinal circulation of bile salts, and its deficiency leads to elevated levels of bile acids in the blood (hypercholestasis)[1-3]. Several genetic mutation loci have been found to contribute to the disease, with hypercholestasis as the main manifestation and some cases accompanied by disorders of lipid metabolism and cholestatic liver disease. Here, we report a case of a newly identified mutated locus and suggest that behavioral neurodevelopmental delay may also be a clinical manifestation of the disease.

CASE PRESENTATION

Chief complaints
Elevated bile acids in an 11-mo-old patient.

History of present illness
The child was hospitalized in a local hospital after birth due to a “neonatal infection”. After improvement of liver function, she was found to have elevated bile acids and was discharged from the hospital after treatment with “anti-infective drugs and ursodeoxycholic acid” to promote bile acid excretion and continued to take “ursodeoxycholic acid (15 mg/kg per time, bid)” for more than 9 mo after discharge. The bile acid level did not improve significantly. There was no history of vomiting and diarrhea during the disease, no yellow staining of skin and sclera, no voluntary scratching and no white clay-like stools. Mental, diet and sleep condition were sound, and urine and stool were normal.

History of past illness
The child was hospitalized in a local hospital after birth due to a “neonatal infection”.

Personal and family history
The child was a gestation 3 production 3, gestational age 39 wk, born at full term, birth weight 2970 g, head held up at 3 mo after birth, could sit up on her own and recognize people at 7 mo, can crawl at present, cannot stand unassisted, can babble and combine vowels and consonants, like ‘ma ma ma ma’ and ‘da da da da,’ can wave goodbye and has other gestures. Her parents denied any history of trauma, surgery or blood transfusion, and there were no special circumstances with her family history. Both of her parents and two elder brothers had no elevated bile acids, and her motor-intellectual development was normal.
Physical examination

Body temperature 36.4 °C, respiration 32 times/min, heart rate 112 times/min, weight 9 kg (percentiles (P) 50-75), height 75 cm (P75) and head circumference 43 cm (P25-50). General condition: no yellowish staining of the skin; no pigmentation; no petechiae and hemorrhages; no enlargement of superficial lymph nodes; no deformity of skull and facial features; fontane 0.3 cm × 0.3 cm; the sclera was not yellowish; the lips and mouth were pink; the heart and lungs functioned properly; the abdomen was in proper condition; the liver and spleen were not enlarged; and the nervous system functioned properly.

Psychomotor development assessment: the development screen test, an intelligence development screening test for children aged 0-6 years in China, showed a developmental quotient of 73, which is equivalent to 8 mo of age for intellectual development, 8 mo of age for motor development and 10 mo of age for social adaptation, with suspected psychomotor developmental delay (test results of developmental quotient 70-84 are considered suspicious).

Laboratory examinations

Blood, urine and stool routine were in proper condition. Liver function was shown in Table 1. No abnormal laboratory results of renal function, cardiac enzymes, thyroid function, serum ion, anemia and blood lipids were found. Immunoglobulin and complement assay were in proper condition. Epstein-Barr virus DNA was negative. Cytomegalovirus DNA was negative. Hepatitis pathogenesis qualitative set were negative, and 25-hydroxy vitamin D level was mildly deficient (57 ng/mL, reference value less than 60 ng/mL is deficiency).

Further examination: in conjunction with the child’s medical history and clinical presentation, genetic testing for metabolic liver disease revealed a pure mutation in the SLC10A1 gene at c.422dupA, resulting in a nonsense mutation in amino acid p.Y141X (see Figure 1). According to the American College of Medical Genetics guidelines, this mutation was judged to be pathogenic, but there were no reports of mutations at this locus in the literature database and no results of pathogenicity analysis. The parents of the child were both heterozygous for this locus by lineage verification analysis. In the present case, the child was female, and both parents were carriers of the heterozygous variant. Both had no clinical manifestations, consistent with autosomal recessive inheritance.

Imaging examinations

Abdominal ultrasound: no abnormality was found in liver, biliary tract, pancreas and spleen.

FINAL DIAGNOSIS

NTCP deficiency disease.

TREATMENT

She was treated with phenobarbital, rifampicin and difenacoum for 2 wk, vitamin D supplementation, intensive psycho-behavioral developmental interventions and other symptomatic supportive treatments, with no significant decrease in bile acids and normal liver enzymes on dynamic review.

OUTCOME AND FOLLOW-UP

After the age of 1 year, the bile acid level of this child showed a gradual decrease to a level of about 130 μmol/L. There was no liver enzyme damage, no skin pruritus and no white clay-like stools. Current follow-up at 20 mo 4 d, the child’s head circumference was 46 cm (P50), length was 80 cm (P75), weight was 11.5 kg (P50-75). The results of the Gesell Developmental Diagnostic Scale: gross motor score was 89 at the normal state (developmental age 17.8 mo); fine motor score was 77 at the borderline state (developmental age 15.4 mo); adaptive ability score was 78 at borderline state (developmental age 15.6 mo); language ability score was 70 at the delayed state.
Table 1 Dynamic changes of liver function in the patient

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>Day 5</th>
<th>2 mo 20 d</th>
<th>5 mo 20 d</th>
<th>9 mo</th>
<th>9 mo 16 d</th>
<th>10 mo 17 d</th>
<th>11 mo 2 d</th>
<th>11 mo 17 d</th>
<th>12 mo</th>
<th>13 mo 15 d</th>
<th>17 mo</th>
<th>20 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (65-85 g/L)</td>
<td>49</td>
<td>56.6</td>
<td>60.1</td>
<td>61.4</td>
<td>64.4</td>
<td>74.2</td>
<td>66.1</td>
<td>68.5</td>
<td>69</td>
<td>72</td>
<td>65.5</td>
<td>67</td>
</tr>
<tr>
<td>Glutamic pyruvic transaminase (7-40 μ/L)</td>
<td>43.2</td>
<td>45.4</td>
<td>40.2</td>
<td>38.4</td>
<td>42.6</td>
<td>61.8</td>
<td>21.9</td>
<td>8.7</td>
<td>11.2</td>
<td>32.2</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Glutamic oxaloacetic transaminase (13-35 μ/L)</td>
<td>32.0</td>
<td>40.9</td>
<td>31.0</td>
<td>23.3</td>
<td>35.1</td>
<td>86.6</td>
<td>37.4</td>
<td>30.8</td>
<td>32.0</td>
<td>35.8</td>
<td>39.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Albumin (40-55 g/L)</td>
<td>30.5</td>
<td>41.4</td>
<td>42.7</td>
<td>40.7</td>
<td>42.5</td>
<td>43.9</td>
<td>40.1</td>
<td>44.2</td>
<td>43.0</td>
<td>47.0</td>
<td>40.6</td>
<td>42.0</td>
</tr>
<tr>
<td>Alkaline phosphatase (< 28 IU/L)</td>
<td>400.0</td>
<td>573.6</td>
<td>572.0</td>
<td>479.2</td>
<td>384.2</td>
<td>327.0</td>
<td>336.0</td>
<td>461.7</td>
<td>432.0</td>
<td>342.9</td>
<td>472.0</td>
<td>435.0</td>
</tr>
<tr>
<td>Total bilirubin (3.4-17.1 μmol/L)</td>
<td>131.5</td>
<td>7.0</td>
<td>3.9</td>
<td>3.1</td>
<td>5.4</td>
<td>3.8</td>
<td>2.9</td>
<td>3.6</td>
<td>3.0</td>
<td>4.5</td>
<td>5.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Indirect bilirubin (≤ 3.4 μmol/L)</td>
<td>126.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.6</td>
<td>3.0</td>
<td>1.3</td>
<td>2.4</td>
<td>3.1</td>
<td>2.5</td>
<td>3.2</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Direct bilirubin (1.7-10.2 μmol/L)</td>
<td>5.2</td>
<td>3.6</td>
<td>1.6</td>
<td>0.5</td>
<td>2.4</td>
<td>2.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.3</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Total bile acid (≤ 10 μmol/L)</td>
<td>231.9</td>
<td>193.0</td>
<td>239.6</td>
<td>235.1</td>
<td>210.7</td>
<td>543.3</td>
<td>576.1</td>
<td>533.0</td>
<td>220.0</td>
<td>180.2</td>
<td>145.4</td>
<td>137.0</td>
</tr>
</tbody>
</table>

The child was not developing well except for gross motor development. The family was advised to strengthen the psychosocial development intervention and follow up on the clinical and biochemical characteristics of the child.

DISCUSSION

NTCP deficiency disease is a newly identified genetic metabolic disorder characterized by significant and persistent hypercholesterolemia. As of July 2021, more than 90 cases of NTCP deficiency have been reported in 12 studies, with a common feature of hypercholestasis, an inheritance pattern consistent with autosomal recessive inheritance, and possible involvement in the development of neonatal hyperbilirubinemia, early infantile cholestasis and gestational cholestasis\[4-15\]. NTCP deficiency disorders currently lack specific treatment. **SLC10A1** gene analysis can help to confirm the diagnosis in patients with this disease in time while avoiding unnecessary tests and interventions\[7\]. The **SLC10A1** gene variant c.800C > T (p.Ser267Phe) is the most common among reported patients with NTCP-deficient disease\[12\], especially in Southeast Asian patients, with an allele frequency of 95.5%\[13\] and occupies an absolute dominance in the **SLC10A1** variant spectrum. In addition, c.263T > C (p. Ile88Thr)\[14\], c.755G > A (p. Arg252His)\[4\], c.615 618del (p. Ser206Profs*12)\[15\], c.595A > C (p.Ser199Arg)\[11\] and other **SLC10A1** variant types were detected. However, the c.422dupA (p.Y141X) mutation locus, in this case, has not been reported, and the new
nonsense variant c.422dupA (p.Y141X) enriches the SLC10A1 mutation spectrum and clinical manifestations in a child with elevated bile acids as the predominant phenotype with motor mental retardation.

The first international case of an NTCP-deficient child was reported in 2015 by Dutch authors with a mutation at c.755G>A (p.Arg252His) and a clinical phenotype of extremely elevated bile acids (up to 1500 μM, reference value < 16.3), accompanied by mild hypotonia, growth retardation and delayed motor milestones[4]. As reported in the latest follow-up, the child remained developmentally delayed and required special education but had normal height and weight development. Another case reported total bile acid levels exceeding 1000 μmol/L until 4 years of age but gradually decreasing to between 500 and 800 μmol/L after 5 years of age[16]. In other case reports of SLC10A1 mutations, hypercholesterolemia was usually reported as the main manifestation, with some cases accompanied by clinical phenotypes such as disorders of lipid metabolism and cholestatic liver disease.

Multiple clinical studies have reported that c.800C>T (p.Ser267Phe)[6], c.595A>C (p.Ser199Arg)[11], c.263T>C (p.Ile88Thr)[14] and c.615 618del (p. Ser206Profs*12)[15] loci mutations were found in patients with dyslipidemia and sex hormone disorders, and NTCP deficient individuals were more prone to vitamin D deficiency, sex hormone disorder and dyslipidemia. In a literature report[7], children with c.800C>T (p.Ser267Phe) pure mutation were between 25% and 75% of the same age group in terms of height and weight, 61% had jaundice (yellowing of eyes or skin), 23.1% had hepatomegaly and proceeded with histopathological features including hepatocyte destruction, periportal inflammation and fibrosis, resembling mild chronic viral hepatitis. In addition, Chen et al[10] reported that 2 patients with NTCP deficiency with pure mutations of p. Ser267Phe had intracranial pressure in late gestation. In summary, previous studies have reported that hypercholesterolemia is the main

Figure 1 Sanger sequencing of the SLC10A1 gene of the child and parents. A: Child; B: Father; C: Mother.
manifestation of the disease, and some cases are associated with lipid metabolism disorders and cholestatic liver disease. Most scholars believe that the manifestation of motor retardation in NTCP-deficient children is still a mystery except the first international report of a child with NTCP deficiency who had mild hypotonia and growth retardation clinical phenotype. However, in the context of this paper, we should re-examine the clinical manifestations, prognosis and interventions related to hypercholesterolemia caused by this disease, and behavioral neurodevelopmental delay may also be one of the clinical manifestations of this disease.

In addition to NTCP, there are also OATP1B1 and OATP1B3 (encoded by SLCO1B1 and SLCO1B3, respectively), which also function in the uptake of bilirubin into hepatocytes[17,18]. In animal experiments by Roscam Abbing et al[19], it was shown that due to the strong compensatory effect of OATP1B1/1B3, mice were able to maintain normal plasma total bile acid levels even when NTCP uptake function was inhibited. However, normal bile acids do not predict an unimpaired liver function, and it was found that the compensation of OATP1B3 can lead to bile deposition in hepatocytes. Over time the massive deposition of bile pigments can lead to damage of hepatocytes and bile ducts and even increase the risk of gallstones[20,21]. Similarly, Mao et al[22] observed in an animal test model of knockout mice with SLC10A1 gene that SLC10A1 deficiency resulted in various abnormal manifestations of the gallbladder, including gallbladder wall thickening, gallbladder enlargement (wall thickening), gallbladder enlargement with black-green bile and diaphragm cap malformation. Furthermore, in an animal model by Zhang et al[23], it was observed that the metabolism of tyrosine, glycine, taurine, fatty acids and glycerophospholipids as well as the biosynthesis of tryptophan, pantothenic acid and coenzyme A were significantly dysregulated in NTCP knockout mice by metabolic pathway analysis, suggesting that NTCP is closely associated with these metabolic pathways. It is worth suggesting that several amino acids such as tyrosine and tryptophan are closely related to neurological development in humans; thus, the developmental delay associated with NTCP deficiency disease should be taken seriously. Whether it is related to abnormal metabolic pathways should be further investigated.

There is a lack of specific therapeutic agents for NTCP-deficient disease; symptomatic supportive therapy is the main management. The long-term effects of long-term hypercholesterolemia are unknown. According to the current study data, the disease lacks specific therapeutic measures, but the short-term clinical outcome of patients tends to be good, and no serious adverse prognosis such as death or cirrhosis due to this disease has been reported so far[4-16]. Therefore, no other relevant medication has been given in this case for the time being.

CONCLUSION

The clinical phenotype, genetic features, treatment and long-term prognosis due to NTCP deficiency disease are still poorly defined and need to be further confirmed by more studies and findings. However, to summarize the current literature, hypercholesterolemia is the main manifestation of the disease. Lipid metabolism disorders, cholestatic liver disease and mental-behavioral developmental delay may also be clinical phenotypes. According to current research data, the disease lacks specific therapeutic measures and requires further research findings and follow-up. Thus, in children with persistent hypercholesterolemia, SLC10A1 can be used as the primary screening gene test, and the child’s growth and development, liver function, 25-hydroxy vitamin D, lipids, sex hormones and other biochemical indicators related to lipid metabolism should be closely monitored for a comprehensive assessment to achieve a better outcome for this group of children.

ACKNOWLEDGEMENTS

We would like to thank the patients and their families for their participation in this study.

REFERENCES

1 Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional

Oncotarget 2017; 8: 106598-106607 [PMID: 29290974 DOI: 10.18632/oncotarget.22503]

J Clin Invest 2017; 128: 761-777 [PMID: 28768799 DOI: 10.1172/JCI117091]

