Supplementary Table 1 Physical and biochemical parameters of mice received STZ by intraperitoneal injection

Variable	Control	DN mice	
Body weight (g)	30.2±2.4	23.3±2.5 a	
Glucose (mmol/l)	5.6±1.1	20.9±3.4 a	
Heart rate (beats/min)	478.4±41.3	483.8±32.6	
Relative kidney weight	10.22+0.02		
(mg/g body weight)	10.33±0.93	17.54±2.17 a	
UACR(mg/mmol)	3.64±0.76	15.42 ± 3.44 a	

Abbreviations: STZ, streptozotocin; DN mice, diabetic nephropathy mice; UACR, Urinary albumin/creatinine ratio, **a**: P<0.05 vs. Control.

Supplementary Table 2 Clinical data in the kidney from diabetic subjects with or without DN.

	Age at		CRP		Scr	Serum		eGFR		Macrov	Renal
	Biopsy(y		(mg/d	DM	(µmo	Urea	UPE/24	(ml/mi	HbA1c	ascular	Disease
Patient	r)	Sex	1)	(years)	1/L)	(mmol/L)	h (g)	n/1.73m	(%)	Disease AD	Other

								2)				than
												DN
Normal												
control												
s												
1	59	М	1.78	NA	59	3.58	<0.15	115	NA	Ν	Ν	Ν
2	48	F	< 0.35	NA	68	4.67	<0.15	103	NA	Ν	Ν	Ν
3	63	М	2.78	NA	57	4.35	<0.15	96	NA	Ν	Ν	Ν
4	59	М	1.21	NA	60	5.11	<0.15	127	NA	Ν	Ν	Ν
5	71	F	3.76	NA	96	7.08	<0.15	81	NA	Ν	Ν	Ν
mean±S			2.38±1		68±1			104.4±				
D	60±8.3		.12		6.2	4.96±1.31		17.6				
DN												
group												
1	46	М	NA	1	187	9.78	3.21	51	10.3	Ν	Ν	Ν
2	63	М	NA	5	197	17.21	4.65	31	6.9	IHD	Ν	Ν
3	76	F	NA	10	231	15.7	6.17	26	8.3	Ν	Ν	Ν
4	79	F	NA	11	279	22.1	5.97	21	9.4	PVD	Ν	Ν
5	51	М	NA	2	142	16.87	3.14	47	NA	Ν	Ν	Ν

			207.2				
mean±S		5.8 ± 4.5	±51.2	16.33±4.4	4.63±1.4	35.2±	
D	63±14.6	5	а	1	5	13.2 b	8.7±1.5

SCr, serum creatinine; UPE, urinary protein excretion; eGFR, estimated GFR; CRP, C-reactive protein; HbA1c, hemoglobin A1c; AD, autoimmune disease; F, female; M, male; DN, diabetic nephropathy; IHD, ischemic heart disease; N, not present; PVD, peripheral vascular disease;NA, not applicable/not available.**a**: P<0.05 vs. Control/Normal control. **b**: P<0.01 vs. control/Normal control.

Supplementary Table 3 Physical and biochemical parameters of mice received AAV by tail vein injection

Variable	Control(Scramble)	DN(Scramble)	Control(shRNA-β-a	rrestin-2) DN(shRNA-β-arrestin-2)
Body weight (g)	31.1±1.3	22.4±0.5 a	30.4±1.9	23.5±1.5 a
Glucose (mmol/l)	6.4±0.9	22.2±5 b	6.2±0.8	23.6±4.7 b
Heart rate (beats/min)	466.9±15.3	473.0±15.6	470.9±18.1	468.3±23.6
Relative kidney weight	10 42 10 94	19 72 11 20 -	10.40±0.86	15.63±1.55 ad
(mg/g body weight)	10.43±0.84	18.73±1.20 a		

Abbreviations: AAV, adeno-associated virus; DN, diabetic nephropathy; **a**: P<0.05 vs. Scramble/control. **b**: P<0.01 vs. Scramble/control. d: P<0.05 vs. Scramble/STZ-induced DN mice.

Supplementary Table 4 Primer pairs of target genes used for real time RT-PCR in this study

Genes	Accession No.	Forward	Reverse
Mus β -arrestin1	<u>NM_178220.3</u>	ACCTTTGAGATCCCGCCAAA	CAGGGGCATACTGAACCTTC
Mus β -arrestin2	<u>NM_001271360.1</u>	GGAGTAGACTTTGAGATTCGAG	CTTTCTGATGATAAGCCGCACA
		С	
Mus β-actin	<u>NM_007393.3</u>	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT

Supplementary Table 5 Antibodies used in this study

Primary antibodies	Host	Dilution and supplier	Product ID	Application
β-arrestin1	Rabbit	1:1000(1:100 for IHC, IF); Bioworld Technology, Louis Park,	BS2213	WB, IF, IHC
		MN		

β-arrestin2		Rabbit	1:1000 (1:50 for IHC, IF); ProteinTech Group, Chicago, IL	10171-1-AP	WB, IF, IHC
Endothelin		Mouse	1:100 for IF; Invitrogen, Thermo Fisher Scientific	MA3-005	IF
Goat	anti-Mouse	Goat	1:200; Invitrogen, Thermo Fisher Scientific	A-21050	IF
Alexa Fluc	or 633				
Goat	anti-Rabbit	Goat	1:200; Invitrogen, Thermo Fisher Scientific	A32790	IF
Alexa Fluc	or 488				
Bcl-2		Rabbit	1:1000; ProteinTech Group, Chicago, IL	12789-1-AP	WB
Bax		Rabbit	1:1000; ProteinTech Group, Chicago, IL	60267-1-lg	WB
β-Actin		Mouse	1:5000; ProteinTech Group, Chicago, IL	66009-1-Ig	WB
Bip		Rabbit	1:1000; Cell Signaling, Danvers, MA	3177	WB
Chop		Mouse	1:1000; Cell Signaling, Danvers, MA	2895	WB
e-NOS		Rabbit	1:1000; Cell Signaling, Danvers, MA	32027	WB
GAPDH		Mouse	1:4000; ProteinTech Group, Chicago, IL	60004-1-Ig	WB
ZO-1		Rabbit	1:1000; Cell Signaling, Danvers, MA	8193	WB
Occludin		Rabbit	1:1000; Cell Signaling, Danvers, MA	91131	WB
ATF4		Mouse	1:1000; Cell Signaling, Danvers, MA	97038	WB
ATF6		Rabbit	1:1000; Abcam	Ab134561	WB
p-PERK		Rabbit	Affinity Biosciences LTD.	DF7576	WB
Histone H	3	Rabbit	1:3000; Abcam	Ab1791	WB

PERK	Rabbit	Affinity Biosciences LTD.	AF5304	WB
IRE1	Rabbit	Affinity Biosciences LTD.	AF7651	WB
p-IRE1 (Ser724)	Rabbit	Affinity Biosciences LTD.	AF7150	WB
XBP1	Mouse	1:1000; Cell Signaling, Danvers, MA	27901	WB
eIF2a	Rabbit	Affinity Biosciences LTD.	AF6087	WB
p-eIF2a	Rabbit	Affinity Biosciences LTD.	AF3087	WB

Supplementary Figure 1 The data showed renal injury in the mice model of diabetic nephropathy(DN) induced by streptozotocin (STZ). (A) The urinary albumin in the mice at the 24 hours. (c: *P*<0.001 vs. control, n=8) (B) The blood urea nitrogen in the mice from different groups. (c: *P*<0.001 vs. control, n=8). (C) Serum creatinine in the mice from different groups. (a: *P*<0.05 vs. control, n=8) (D) The images of PeriodicAcid-Schiff stain (PAS) staining in control and STZ-induced DN mice. (black bars=50µm).

Supplementary Figure 2 The expression of β-Arrestin-1 was increased significantly in renal biopsies from diabetic nephropathy patients but not glomerular endothelial cells (GENC) from mice with diabetic in **nephropathy.(A)** Representative images of IHC staining showing β-arrestin-1 expression in human renal paraffin section from normal people and DN patients. (black bars=20 μ m) (B) Relative mRNA levels of β -arrestin-1 in the renal cortex from STZ-induced diabetic nephropathy mice (mean±SD, b: P<0.01 vs. control, n=5). (C) Western blot showing the expression of β -arrestin-1 in the renal cortex from STZ-induced DN mice. (mean±SD, a: P<0.05 vs. control, n=8) (D) Representative images of IHC staining of β -arrestin-1 expression in STZ-induced DN mice. (black bars=20µm) (E) Detection of β -arrestin-1 expression in glomerular endothelial cells (GENC) in STZ-induced diabetic nephropathy mouse model by immunofluorescence double labeling: endothelin (red, mark protein in GENC), β -arrestin-1 (green). (white bars= $20\mu m$)

Supplementary Figure 3 There was no effect of silencing of β-arrestin-2 on the PERK and IRE signal pathway of ER stress. (A) Immunoblotting images and summarize data showing the effects of β-arrestin-2 knockdown on the expression of p-IRE1α, IRE1α and XBP1 in GENC under HG condition. (a: P<0.05 vs. Scramble/control, n=6) (B) Immunoblotting images and summarize data showing the effects of β-arrestin-2 knockdown on the expression of p-PERK, PERK, p-eIF1α and ATF4 in HG-treated GENC. (a: P<0.05 vs. Scramble/control, n=6)

Supplementary Figure 4 (A) Representative western blotting and summarized data showing the overexpression of β-arrestin-2 by pCDNA-β-arrestin-2 plasmids transfection. (a: P<0.05 vs. control, n=6) (**B**) Images and summarized data showing the efficiency of silencing ATF6 with shRNA-ATF6 by western blotting. (b: P<0.01 vs. control, n=6) (**C**) Representative western blotting and summarized data showing that overexpression of ATF6 by pCDNA-ATF6 plasmids transfection. (a: P<0.05 vs. scramble, n=6) (**D**) Representative western blotting showing that the expression of cleaved caspases-3 and the whole caspase-3 under various stimuli. (**E**) Relative mRNA levels of GRP94 which is one of the target genes

regulated by ATF6 in GENC with various stimuli (mean±SD). (a: *P*<0.05 vs. Scramble/control, b: *P*<0.01 vs. Scramble/control, d: *P*<0.05 vs. Scramble/HG treated group, f: *P*<0.05 vs. TM treated group, g: *P*<0.05 vs. pCDNA-β-arrestin-2 treated group, i: *P*<0.05 vs. Si-β-arrestin-2 /HG treated group, n=6)

Supplementary Figure 5 (A) The image of immunofluorence (IF) of GENC showing activating transcription factor 6 translocated into nucleus under high glucose which was inhibitted by silencing of β -arrestin-2. Red arrows means ATF6 translocated into the nucleus. (white bar=50µm). (B) The image of immunohistochemical (IHC) showing the expression of ATF6 in kidney from different groups. Green arrows means ATF6 translocated into the nucleus.

<mark>(blue bars=50µm).</mark>

Supplementary Figure 6 (A) The image of immunofluorence (IF) showing the expression of β-arrestin-2 in glomerular endothelial cells (GENC) from different groups. (white bar=50µm) **(B)** The quantifications of the TUNEL staining from different groups. (b: P<0.01,vs. Scramble/control, d: P<0.05,vs. Scramble/STZ, n=6). **(C)** Representative images of immunohistochemical (IHC) staining showing ZO-1 expression in mice renal from different groups. (blue bars=50µm) **(D)** Representative images of immunohistochemical (IHC) staining occludin expression in mice renal from different groups. (blue bars=50µm).