<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10392</td>
<td>OPINION REVIEW: Regulating monocyte infiltration and differentiation: Providing new therapies for colorectal cancer patients with COVID-19</td>
<td>Bai L, Yang W, Qian L, Cui JW</td>
</tr>
<tr>
<td>10400</td>
<td>REVIEW: Role of circular RNAs in gastrointestinal tumors and drug resistance</td>
<td>Xi SJ, Cai WQ, Wang QQ, Peng XC</td>
</tr>
<tr>
<td>10438</td>
<td>MINIREVIEWS: Role of immune escape in different digestive tumours</td>
<td>Du XZ, Wen B, Liu L, Wei YT, Zhao K</td>
</tr>
<tr>
<td>10451</td>
<td>ORIGINAL ARTICLE: Basic Study: Magnolol protects against acute gastrointestinal injury in sepsis by down-regulating regulated on activation, normal T-cell expressed and secreted</td>
<td>Mao SH, Feng DD, Wang X, Zhi YH, Lei S, Xing X, Jiang RL, Wu JN</td>
</tr>
<tr>
<td>10464</td>
<td>ORIGINAL ARTICLE: Case Control Study: Effect of Nephritis Rehabilitation Tablets combined with tacrolimus in treatment of idiopathic membranous nephropathy</td>
<td>Lv W, Wang MB, Zhang CZ, Sun XX, Yan ZZ, Hu XM, Wang TT</td>
</tr>
<tr>
<td>10484</td>
<td>ORIGINAL ARTICLE: Clinical features and survival of patients with multiple primary malignancies</td>
<td>Wang XK, Zhou MH</td>
</tr>
</tbody>
</table>
Contents

Retrospective Study

10494 **Thoracoscopic segmentectomy and lobectomy assisted by three-dimensional computed-tomography bronchography and angiography for the treatment of primary lung cancer**
 Wu YJ, Shi QT, Zhang Y, Wang YL

10507 **Endoscopic ultrasound fine needle aspiration vs fine needle biopsy in solid lesions: A multi-center analysis**
 Moura DTH, McCarty TR, Jirapinyo P, Ribeiro IB, Farias GFA, Madruga-Neto AC, Ryou M, Thompson CC

10518 **Resection of bilateral occipital lobe lesions during a single operation as a treatment for bilateral occipital lobe epilepsy**
 Lyu YE, Xu XF, Dai S, Feng M, Shen SP, Zhang GZ, Ju HY, Wang Y, Dong XB, Xu B

10530 **Improving rehabilitation and quality of life after percutaneous transhepatic cholangiography drainage with a rapid rehabilitation model**
 Xia LL, Su T, Li Y, Mao JF, Zhang QH, Liu YY

10540 **Combined lumbar muscle block and perioperative comprehensive patient-controlled intravenous analgesia with butorphanol in gynecological endoscopic surgery**
 Zhu RY, Xiang SQ, Chen DR

10549 **Teicoplanin combined with conventional vancomycin therapy for the treatment of pulmonary methicillin-resistant *Staphylococcus aureus* and *Staphylococcus epidermidis* infections**
 Wu W, Liu M, Geng JJ, Wang M

10557 **Application of narrative nursing in the families of children with biliary atresia: A retrospective study**

Observational Study

10566 **Comparative study for predictability of type 1 gastric variceal rebleeding after endoscopic variceal ligation: High-frequency intraluminal ultrasound study**
 Kim JH, Choe WH, Lee SY, Kwon SY, Sung IK, Park HS

10576 **Effects of WeChat platform-based health management on health and self-management effectiveness of patients with severe chronic heart failure**

10585 **Early cardiopulmonary resuscitation on serum levels of myeloperoxidase, soluble ST2, and hypersensitive C-reactive protein in acute myocardial infarction patients**
 Hou M, Ren YP, Wang R, Lu LX

Prospective Study

10595 **Remimazolam benzenesulfonate anesthesia effectiveness in cardiac surgery patients under general anesthesia**
 Tang F, Yi JM, Gong HY, Lu ZY, Chen J, Fang B, Chen C, Liu ZY
Randomized Clinical Trial

10604 Effects of lower body positive pressure treadmill on functional improvement in knee osteoarthritis: A randomized clinical trial study
Chen HX, Zhan YX, Ou HN, You YY, Li WY, Jiang SS, Zheng MF, Zhang LZ, Chen K, Chen QX

SYSTEMATIC REVIEWS

10616 Effects of hypoxia on bone metabolism and anemia in patients with chronic kidney disease
Kan C, Lu X, Zhang R

META-ANALYSIS

10626 Intracuff alkalized lidocaine to prevent postoperative airway complications: A meta-analysis
Chen ZX, Shi Z, Wang B, Zhang Y

CASE REPORT

10638 Rarely fast progressive memory loss diagnosed as Creutzfeldt-Jakob disease: A case report
Xu YW, Wang JQ, Zhang W, Xu SC, Li YX

10645 Diagnosis, fetal risk and treatment of pemphigoid gestationis in pregnancy: A case report
Jiao HN, Ruan YP, Liu Y, Pan M, Zhong HP

10652 Histology transformation-mediated pathological atypism in small-cell lung cancer within the presence of chemotherapy: A case report
Ju Q, Wu YT, Zhang Y, Yang WH, Zhao CL, Zhang J

10659 Reversible congestive heart failure associated with hypocalcemia: A case report
Wang C, Dou LW, Wang TB, Guo Y

10666 Excimer laser coronary atherectomy for a severe calcified coronary ostium lesion: A case report
Hou FJ, Ma XT, Zhou YJ, Guan J

10671 Comprehensive management of malocclusion in maxillary fibrous dysplasia: A case report

10681 Intravascular papillary endothelial hyperplasia as a rare cause of cervicothoracic spinal cord compression: A case report
Gu HL, Zheng XQ, Zhan SQ, Chang YB

10689 Proximal true lumen collapse in a chronic type B aortic dissection patient: A case report
Zhang L, Guan WK, Wu HP, Li X, Lv KP, Zeng CL, Song HH, Ye QL

10696 Tigecycline sclerotherapy for recurrent pseudotumor in aseptic lymphocyte-dominant vasculitis-associated lesion after metal-on-metal total hip arthroplasty: A case report
Lin IH, Tsai CH
10702 Acute myocardial infarction induced by eosinophilic granulomatosis with polyangiitis: A case report
 Jiang XD, Guo S, Zhang WM

10708 Aggressive natural killer cell leukemia with skin manifestation associated with hemophagocytic
 lymphohistiocytosis: A case report
 Peng XH, Zhang LS, Li LJ, Guo XJ, Liu Y

10715 Chronic lymphocytic leukemia/small lymphocytic lymphoma complicated with skin Langerhans cell
 sarcoma: A case report
 Li SY, Wang Y, Wang LH

10723 Severe mediastinitis and pericarditis after endobronchial ultrasound-guided transbronchial needle
 aspiration: A case report
 Koh JS, Kim YJ, Kang DH, Lee JE, Lee SI

10728 Obturator hernia - a rare etiology of lateral thigh pain: A case report
 Kim JY, Chang MC

10733 Tracheal tube misplacement in the thoracic cavity: A case report
 Li KX, Luo YT, Zhou L, Huang JP, Liang P

10738 Peri-implant keratinized gingiva augmentation using xenogeneic collagen matrix and platelet-rich fibrin:
 A case report
 Han CY, Wang DZ, Bai JF, Zhao LL, Song WZ
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Gagan Mathur, MBBS, MD, Associate Professor, Director, Staff Physician, Department of Pathology, Saint Luke’s Health System, Kansas City, MO 64112, United States. gmathur@saint-lukes.org

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Xia Xing; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
December 6, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Observational Study

Effects of WeChat platform-based health management on health and self-management effectiveness of patients with severe chronic heart failure

Zhan-Ru Wang, Jia-Wu Zhou, Xiao-Ping Liu, Guo-Juan Cai, Qi-Hong Zhang, Jun-Fang Mao

ORCID number: Zhan-Ru Wang 0000-0002-0655-2493; Jia-Wu Zhou 0000-0002-3680-5914; Xiao-Ping Liu 0000-0002-2155-6716; Guo-Juan Cai 0000-0002-1815-0088; Qi-Hong Zhang 0000-0002-8385-4883; Jun-Fang Mao 0000-0002-3930-7996.

Author contributions: Wang ZR and Zhou JW designed the study; Liu XP drafted the work; Cai GJ and Zhang QH collected the data; Mao JF and Wang ZR analyzed and interpreted the data; Wang ZR, Zhou JW, and Mao JF wrote the article.

Institutional review board statement: This study was approved by the Shaoxing Hospital of China Medical University Ethics Committee.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare that there is no conflict of interest to disclose.

Data sharing statement: No additional data are available.

Country/Territory of origin: China

Abstract

BACKGROUND
Epidemiological studies have found that the prevalence of chronic heart failure in China is 0.9%, the number of people affected is more than 4 million, and the 5-year survival rate is even lower than that of malignant tumors.

AIM
To determine the impact of WeChat platform-based health management on severe chronic heart failure patients’ health and self-management efficacy.

METHODS
A total of 120 patients suffering from chronic heart failure with cardiac function grade III-IV, under the classification of the New York Heart Association, were admitted to our hospital in May 2017. In January 2020, they were divided into two groups: A control group (with routine nursing intervention) and an observation group (with WeChat platform-based health management intervention). Changes in cardiac function, 6-min walking distance (6MWD), high-sensitivity cardiac troponin (hs-cTnT), and N-terminal pro B-type natriuretic peptide (NT-proBNP) were detected in both groups. The Self-Care Ability Scale (ESCA) score, Minnesota Living with Heart Failure Questionnaire score, and compliance score were used to evaluate self-management ability, quality of life, and compliance of the two groups. During a follow-up period of 12 mo, the occurrence of cardiovascular adverse events in both the groups was counted.
INTRODUCTION

Chronic heart failure is the final stage of various cardiovascular diseases. It is complex and involves multiple complications, a high case fatality rate, and a profoundly negative prognosis. Patients frequently need to be hospitalized, which may not only lead to deterioration of their condition, but also add an economic burden on them, causing medical resource waste. Therefore, maintaining a stable condition of chronic heart failure has become a key objective in clinical treatments[1]. However, the phenomena of worsening cardiac situations and repeated hospitalizations are currently very common given that there are no effective approaches to address the issues of health intervention subsequent to the discharge of patients and their poor self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities. Under the present conventional nursing model, interventions for patients outside the hospital consist of discharge guidance and self-management capabilities.
Continuing nursing care is an emerging nursing model that is an extension of hospital care. It ensures that patients receive sustained and efficient care interventions and are able to solve health problems when they are discharged[3]. WeChat is a common and good real-time social application with high interactivity and is utilized frequently in the medical field[4]. In this study, we applied WeChat to continue nursing care outside the hospital for severe patients with chronic heart failure and observed the impact of the WeChat platform-based health management approach on the health of the patients and the efficiency of self-management.

MATERIALS AND METHODS

General information
One hundred and twenty patients with chronic heart failure with cardiac function of grade III-IV, under the New York Heart Association (NYHA), were admitted to our hospital in May 2017. In January 2020, they were divided into two groups: A control group (with routine nursing intervention) and an observation group (with WeChat platform-based health management intervention). The inclusion criteria for the patients were as follows: (1) Suits the standard of chronic heart failure provided in the Chinese Guidelines for the Diagnosis and Treatment of Heart Failure; (2) being in the age group of 18-75 years; (3) having NYHA grade III-IV cardiac function; (4) having a good mastery over using WeChat and residing locally; (5) having an expected lifetime of 12 mo or more; and (6) providing their informed consent. The exclusion criteria were as follows: (1) Having an abnormal function of limbs; (2) suffering from valvular heart disease and/or Cor pulmonale; (3) being diagnosed as insane; (4) having severe infections; and (5) having uncontrollable diseases such as hypertension and diabetes.

There were 60 cases in the control group, with 36 patients being male and 24 being female. The age range was 40 years to 75 years and the average age (mean ± SD) was 58.69 ± 10.13 years. There were 60 cases in the observation group, with 32 patients being male and 24 being female. The age range was 40 years to 75 years and the average age was 59.41 ± 11.05 years.

Methods
The control group received conventional care intervention and discharge guidance, including reasonable diet, usage of drugs under instruction, proper exercise, and an appointment for the next visit to the hospital. Telephonic follow-ups were done regularly when they were discharged from the hospital.

The observation group received WeChat platform-based health management intervention. The WeChat health management group was composed of a doctor, a nurse, and an administrator on the network platform. The administrator built the group and the official accounts of health management, and ensured that both were maintained and run routinely. Medical staff regularly published relevant knowledge about self-management of chronic heart failure, including basic knowledge of cardiovascular diseases, a regular schedule to adhere to, diet and drug instructions, sports guidance, emotion management, etc. This content was issued in the form of pictures, texts, audio notes, and video notes, once a day. WeChat provided personalized instructions, propagated health behavior interventions, and instructed patients, whose conditions were getting worse, to obtain medical treatment instantly, and also assisted them with arranging hospitalization via private talks.

Measurements
The cardiac function indexes, left ventricular ejection fraction (LVEF) and stroke output (SV), were detected using an ultrasonic cardiogram before and after the 12-mo interventions. The detection equipment used was a Philips IE33 Color Doppler Ultrasound diagnostic instrument with a probe frequency of 3.0-7.5 MHz. Fasting venous blood (3 mL) was collected from the patients, and centrifuged for 10 min at 3500 r/min within 1 h after the blood collection. The serum was tested for high-sensitivity cardiac troponin (hs-cTnT) and N-terminal pro B-type natriuretic peptide (NT-proBNP) by enzyme-linked immunosorbent assay. The kit was manufactured by Shanghai Enzyme Link Biotechnology Co., Ltd., and the instrument used was the RT-96A enzyme label instrument manufactured by Shenzhen Mindray Medical Electronics Co., Ltd.
Evaluation standards
The Self-care Ability Scale (ESCA) score, Minnesota heart failure quality of life (LiHFe) score, and compliance score were used to evaluate the self-management ability, quality of life, and compliance of both groups.

The ESCA score includes 43 items of self-care responsibility, self-concept, self-care skills, and self-care health knowledge, and the score is positively correlated with self-management ability. The LiHFe score includes 21 items in total, including physical limitations, disease symptoms, psychological emotions, and social relationships. A 6-segment scoring method is applied, and the score is inversely proportional to the quality of life[5]. The compliance score includes a reasonable diet, regular medication, healthy behavior, and timely review. This scale is a self-designed score by the hospital, with a single score ranging from 0 to 10 points, which is proportionate to compliance by the patient.

Follow-up information
The occurrence and hospitalization time of cardiovascular adverse events (i.e., aggravation of heart failure, acute myocardial infarction, severe arrhythmia, cardiogenic readmission, etc.) in both groups were recorded by the outpatient service or WeChat platform for 12 mo.

Statistical analysis
Statistical analyses were performed with SPSS19.0. Measuring index are expressed as the mean ± SD and were compared by the t test. Count data were compared by the χ² test. Statistical significance was defined as P < 0.05.

RESULTS

Comparison of baseline data between the two groups
There was no statistical significance when comparing the baseline data between the two groups (P > 0.05; Table 1).

Comparison of heart function between the two groups
The LVEF and SV rose after intervention in both groups. Further, the heart function after intervention of the observation group significantly increased compared to that of the control group (P < 0.05; Table 2).

Comparison of 6-min walking distance, hs-cTnT, and NT-proBNP between the two groups
After intervention, the 6-min walking distance (6 MWD) increased, and the hs-cTnT and NT-proBNP decreased in both groups; the 6MWD, hs-cTnT, and NT-proBNP after intervention of the observation group significantly increased compared to those of the control group (P < 0.05; Table 3).

Comparison of ESCA scores between the two groups
After intervention, ESCA scores of self-care responsibility, self-concept, self-care skills, self-care health knowledge, etc. increased in both groups and ESCA scores after intervention of the observation group significantly increased compared to those of the control group (P < 0.05; Table 4).

Comparison of LiHFe scores between the two groups
After intervention, LiHFe scores of physical limitations, disease symptoms, psychological emotions, social relationships, etc. decreased in both groups and the LiHFe scores after intervention of the observation group significantly increased compared to those of the control group (P < 0.05; Table 5).

Comparison of compliance scores between the two groups
After intervention, compliance scores of reasonable diet, regular medication, healthy behavior, timely review, etc. increased in both groups and compliance scores after intervention in the observation group significantly increased compared to those of the control group (P < 0.05; Table 6).
Table 1 Comparison of baseline data between the two groups, n (%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n = 60)</th>
<th>Observation group (n = 60)</th>
<th>(\chi^2/ t)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>36 (75.00)</td>
<td>32 (53.33)</td>
<td>0.543</td>
<td>0.461</td>
</tr>
<tr>
<td>Female</td>
<td>24 (35.00)</td>
<td>28 (46.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>58.69 ± 10.13</td>
<td>59.41 ± 11.05</td>
<td>0.372</td>
<td>0.711</td>
</tr>
<tr>
<td>Course (yr)</td>
<td>6.36 ± 1.24</td>
<td>6.24 ± 1.57</td>
<td>0.465</td>
<td>0.643</td>
</tr>
<tr>
<td>History of smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22 (36.67)</td>
<td>28 (46.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>38 (63.33)</td>
<td>32 (53.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA classification</td>
<td></td>
<td></td>
<td>0.534</td>
<td>0.465</td>
</tr>
<tr>
<td>III</td>
<td>31 (51.67)</td>
<td>27 (45.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>29 (48.33)</td>
<td>33 (55.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart-based diseases</td>
<td></td>
<td></td>
<td>2.394</td>
<td>0.495</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>5 (8.33)</td>
<td>9 (15.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>10 (16.67)</td>
<td>12 (20.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>18 (30.00)</td>
<td>19 (31.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High blood pressure</td>
<td>27 (45.00)</td>
<td>20 (33.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>15 (25.00)</td>
<td>21 (35.00)</td>
<td>1.429</td>
<td>0.232</td>
</tr>
<tr>
<td>Hypertension</td>
<td>30 (50.00)</td>
<td>33 (55.00)</td>
<td>0.301</td>
<td>0.583</td>
</tr>
<tr>
<td>Diabetes</td>
<td>19 (31.67)</td>
<td>15 (25.00)</td>
<td>0.657</td>
<td>0.418</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td>1.295</td>
<td>0.523</td>
</tr>
<tr>
<td>Junior high school and below</td>
<td>12 (20.00)</td>
<td>9 (15.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary and tertiary</td>
<td>24 (40.00)</td>
<td>21 (35.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate and above</td>
<td>24 (40.00)</td>
<td>30 (50.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Comparison of heart function between the two groups (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>LVEF (%)</th>
<th>SV (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-intervention</td>
<td>After intervention</td>
</tr>
<tr>
<td>Control</td>
<td>60</td>
<td>34.23 ± 4.26</td>
<td>48.23 ± 4.63*</td>
</tr>
<tr>
<td>Observation</td>
<td>60</td>
<td>33.97 ± 4.51</td>
<td>60.44 ± 4.58*</td>
</tr>
<tr>
<td></td>
<td>(t)</td>
<td>0.325</td>
<td>14.522</td>
</tr>
<tr>
<td></td>
<td>(P) value</td>
<td>0.746</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\(^*P < 0.05 \) vs before intervention.
LVEF: Left ventricular ejection fraction; SV: stroke output.

Comparison of adverse cardiovascular events between the two groups

During the follow-up period of 12 mo, the observation group had lower acute myocardial infarction incidence and cardiogenic readmission rates, and also had shorter hospital stays compared to the control group. There was no statistical difference in the incidence rates of the aggravation of heart failure and severe arrhythmia between the two groups (\(P > 0.05 \); Table 7).
WeChat platform-based health management carries out health education, drug instructions, management of health behaviors etc. by utilizing a social application called WeChat. It belongs to the field of continuing nursing care[6-8]. In recent years, WeChat platform interventions have been applied to various fields, such as chronic diseases, diabetes, coronary heart disease, chronic renal failure, and antenatal guidance[9].

A WeChat platform-based health management style was utilized in cases of severe chronic heart failure in this study, which could promote the capabilities of self-care responsibility, self-conception, self-care skills, self-care health knowledge, etc., as well as moderate life qualities of physical limitations, disease symptoms, psychological emotions, social relationships, etc.; and improve compliance with a reasonable diet, regular medication, healthy behavior, and timely review. This is because official
accounts on the WeChat platform regularly published self-management-related intellectual property relating to chronic heart failure to help patients grasp the main points and skills of self-management. They also answered questions online on WeChat group communications to assist patients in mastering the main points of knowledge better through interaction, as well as urge them to engage in health management in order to improve self-care capability and treatment compliance. After building an electronic medical record, we required patients to report their self-measuring indexes every day to give medically accurate information on changes in their disease conditions and enable them to gain personalized intervention through private talks to recognize and deal with risk elements in time, control disease conditions effectively, and improve quality of life.

LVEF and SV are indicators of cardiac pumping function. A decrease in LVEF indicates myocardial contractility weakening\[^{10-13}\]; and the 6MWD reflects the supportive force of cardiopulmonary function for exercise\[^{14}\]. Hs-cTnT is a structural protein of cardiomyocytes, and its elevation in serum levels indicates myocardial injury and necrosis\[^{15-19}\]. NT-proBNP is an endogenous hormone secreted by ventricular myocytes, and its serum level reflects the degree of myocardial damage, which is an important index for clinical evaluation of the degree of heart failure\[^{20}\]. This study used indexes of ultrasound cardiograms and laboratory serum to estimate the condition of patients. The 6MWD was used to appraise exercise tolerance. We found that a health management style based on the WeChat platform in cases of severe chronic heart failure can promote the expression of heart function and related indicators, which favor disease control. During the 12-mo follow-up, we found that the WeChat platform-based health management style, in cases of severe chronic heart failure, reduced the acute myocardial infarction incidence and cardiogenic readmission rates and shortened hospital stays. Patients experienced the favorable effects of intervention in many aspects, such as healthy lifestyle, objecting to medical advice, and controlling their diseases during the interventions out of the hospital, by improved compliance with a reasonable diet, regular medication, healthy behavior, timely review, etc. In daily reports, in every self-measuring index, the medical staff and patient were able to easily note changes in disease condition in time, make relative adjustments in treatment, and prevent deterioration and relapse of the condition, which will ultimately have a better curative effect in the long term.

Table 6 Comparison of compliance scores between the two groups (mean ± SD, subdivision)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Reasonable diet</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-intervention</td>
<td>After intervention</td>
<td>Pre-intervention</td>
<td>After intervention</td>
<td>Pre-intervention</td>
<td>After intervention</td>
<td>Pre-intervention</td>
</tr>
<tr>
<td>Control</td>
<td>60</td>
<td>5.78 ± 1.32</td>
<td>7.23 ± 1.45(^a)</td>
<td>6.23 ± 0.85</td>
<td>8.24 ± 0.63(^a)</td>
<td>5.41 ± 0.96</td>
<td>7.58 ± 0.78(^a)</td>
<td>5.32 ± 1.14</td>
</tr>
<tr>
<td>Observation</td>
<td>60</td>
<td>5.82 ± 1.07</td>
<td>8.69 ± 1.12(^a)</td>
<td>6.21 ± 0.76</td>
<td>9.23 ± 0.57(^a)</td>
<td>5.32 ± 1.05</td>
<td>8.75 ± 0.63(^a)</td>
<td>5.37 ± 1.03</td>
</tr>
<tr>
<td>(t)</td>
<td>0.182</td>
<td>6.172</td>
<td>0.136</td>
<td>9.026</td>
<td>0.490</td>
<td>9.039</td>
<td>0.252</td>
<td>9.290</td>
</tr>
<tr>
<td>(P) value</td>
<td>0.856</td>
<td>0.000</td>
<td>0.892</td>
<td>0.000</td>
<td>0.625</td>
<td>0.000</td>
<td>0.801</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\(^a\)P < 0.05 vs before intervention.

Table 7 Comparison of adverse cardiovascular events between the two groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Increased heart failure</th>
<th>Acute myocardial infarction</th>
<th>Severe arrhythmia</th>
<th>Cardiogenic rehospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hospitalization rate</td>
<td>Hospitalization time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>60</td>
<td>5 (8.33)</td>
<td>8 (13.33)</td>
<td>6 (10.00)</td>
<td>17 (28.33)</td>
</tr>
<tr>
<td>Observation</td>
<td>60</td>
<td>2 (3.33)</td>
<td>2 (3.33)</td>
<td>3 (5.00)</td>
<td>7 (11.67)</td>
</tr>
<tr>
<td>(\chi^2/t)</td>
<td>1.365</td>
<td>3.927</td>
<td>1.081</td>
<td>5.208</td>
<td>2.785</td>
</tr>
<tr>
<td>(P) value</td>
<td>0.243</td>
<td>0.048</td>
<td>0.298</td>
<td>0.022</td>
<td>0.006</td>
</tr>
</tbody>
</table>
CONCLUSION

In summary, WeChat platform-based health management can improve the self-care ability and compliance of patients with severe chronic heart failure, improve the cardiac function and related indexes, reduce the occurrence of cardiovascular adverse events, and avoid rehospitalization.

ARTICLE HIGHLIGHTS

Research background
The prevalence of chronic heart failure in China continues to rise. Continuing nursing care is an emerging nursing model that is an extension of hospital care. WeChat is a common and good real-time social application with high interactivity and is utilized frequently in the medical field.

Research motivation
This study explored the impact of WeChat platform-based health management on the treatment of patients with severe chronic heart failure.

Research objectives
The study aimed to explore the significance of health management based on WeChat platform in the treatment of patients with severe chronic heart failure.

Research methods
In May 2017, a group study of 120 patients with chronic heart failure grade III-IV heart function classified by the New York Heart Association was conducted at our hospital.

Research results
The left ventricular ejection fraction, stroke output, and 6-min walking distance (6MWD) increased, and the high-sensitivity cardiac troponin (hs-cTnT) and N-terminal pro B-type natriuretic peptide (NT-proBNP) decreased in both groups, as compared to those before the intervention. Further, cardiac function during the 6MWD, hs-cTnT, and NT-proBNP improved significantly in the observation group after intervention ($P < 0.05$).

Research conclusions
Health management based on the WeChat platform can improve the self-care ability and compliance of patients with severe chronic heart failure, reduce the occurrence of adverse cardiovascular events, and avoid rehospitalization.

Research perspectives
Health management based on the WeChat platform can play a greater role in the treatment of cardiovascular diseases.

REFERENCES

5. Rector TS, Cohn JN. Assessment of patient outcome with the Minnesota Living with Heart Failure

7 **Xu F**, Lu S, Dong L, He Y, Li H, Tang J. Educational Video on the WeChat Platform Can Effectively Improve the Quality of Bowel Preparation: A Prospective, Randomized, Controlled Study. *Gastroenterol Nurs* 2021; **44**: 47-51 [PMID: 33351522 DOI: 10.1097/GNA.0000000000000528]

