Artificial Intelligence in Gastroenterology

Artif Intell Gastroenterol 2021 June 28; 2(3): 69-93
MINIREVIEWS

69 Artificial intelligence in gastrointestinal diseases
 Tanabe S, Perkins EJ, Ono R, Sasaki H

77 Biophysics inspired artificial intelligence for colorectal cancer characterization
 Hardy NP, Dalli J, Mac Aonghusa P, Neary PM, Cahill RA

85 Implications of artificial intelligence in inflammatory bowel disease: Diagnosis, prognosis and treatment follow up
 Almomani A, Hitawala A, Abureesh M, Qapaja T, Alshaikh D, Zmaili M, Saleh MA, Alkhayyat M
ABOUT COVER
Editorial Board Member of Artificial Intelligence in Gastroenterology, Syed Muhammad Ali, FCPS, FRCS (Ed), FRCS (Gen Surg), MBBS, Adjunct Professor, Surgeon, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar. alismc2051@gmail.com

AIMS AND SCOPE
The primary aim of Artificial Intelligence in Gastroenterology (AIG, Artif Intell Gastroenterol) is to provide scholars and readers from various fields of artificial intelligence in gastroenterology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.
AIG mainly publishes articles reporting research results obtained in the field of artificial intelligence in gastroenterology and covering a wide range of topics, including artificial intelligence in gastrointestinal cancer, liver cancer, pancreatic cancer, hepatitis B, hepatitis C, nonalcoholic fatty liver disease, inflammatory bowel disease, irritable bowel syndrome, and Helicobacter pylori infection.

INDEXING/ABSTRACTING
There is currently no indexing.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Jia-Hui Li; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Artificial intelligence in gastrointestinal diseases

Shihori Tanabe, Edward J Perkins, Ryuichi Ono, Hiroki Sasaki

ORCID number: Shihori Tanabe 0000-0003-3706-0616; Edward J Perkins 0000-0003-1693-7714; Ryuichi Ono 0000-0002-1081-0395; Hiroki Sasaki 0000-0002-9443-0364.

Author contributions: Tanabe S designed the outline and coordinated the writing of the paper, performed the majority of the writing and editing, and prepared the figure and table; Perkins EJ performed the editing; Ono R and Sasaki H provided input into the writing the paper and performed the editing.

Supported by Japan Agency for Medical Research and Development (AMED), No. JP20ak0101093.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Abstract

Artificial intelligence (AI) applications are growing in medicine. It is important to understand the current state of the AI applications prior to utilizing in disease research and treatment. In this review, AI application in the diagnosis and treatment of gastrointestinal diseases are studied and summarized. In most cases, AI studies had large amounts of data, including images, to learn to distinguish disease characteristics according to a human’s perspectives. The detailed pros and cons of utilizing AI approaches should be investigated in advance to ensure the safe application of AI in medicine. Evidence suggests that the collaborative usage of AI in both diagnosis and treatment of diseases will increase the precision and effectiveness of medicine. Recent progress in genome technology such as genome editing provides a specific example where AI has revealed the diagnostic and therapeutic possibilities of RNA detection and targeting.

Key Words: Artificial intelligence; Gastrointestinal disease; RNA; Therapeutic application; Inflammatory diseases

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The application of artificial intelligence (AI) in the diagnosis and treatment of disease is a promising approach in medicine. The application of AI approaches in gastrointestinal diseases is summarized and reviewed. AI holds great promise in
APPLICATION OF AI IN DIAGNOSIS OF GASTROINTESTINAL DISEASES

There are several areas in which AI can advance the diagnosis of GI diseases. Diseases of interest for AI-oriented disease management are summarized in Figure 1.

AI application in inflammatory diseases

The diagnosis of GI diseases such as inflammatory bowel disease (IBD) including Crohn’s disease, a chronic inflammatory condition in the GI tract, and ulcerative colitis, which occurs in the colon, includes several fundamental laboratory tests including measurement of hemoglobin, hematocrit, blood urea nitrogen, creatinine, liver enzymes and C-reactive protein[16].

AI application in tumor

Recent progress in AI has resulted in predictive tools for the diagnosis of GI cancer classification, where network-based machine learning in colorectal and bladder organoid models predicts drug responders and non-responders using network analysis of pharmacogenomics data and the patient’s transcriptome[17]. Bioinformatic analyses of gene expression data have revealed common gene signatures in hypopharyngeal and esophageal squamous cell carcinoma, which may serve as diagnostic and therapeutic targets[18]. Balloon catheter tracking and visualization in GI tracking could be made more precise with AI guidance using image recognition[19]. Deep learning algorithms for image recognition can lead to more precise endoscopic diagnosis with improved sensitivity and specificity in upper GI tract diseases such as gastric cancer and Barrett’s esophagus[20]. Convolutional neural networks (CNNs) have generated liver imaging features and shown promise in medicine, but to safely and efficiently apply AI in medicine, the advantages and limitations should first be carefully considered.
Table 1 Classification of systems in artificial intelligence-oriented disease management

<table>
<thead>
<tr>
<th>Disease of interest</th>
<th>Purpose of AI</th>
<th>User</th>
<th>Limitation of use</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute appendicitis</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The study is designed in retrospective nature</td>
<td>Reismann et al [7]</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The design of the analysis is post hoc and the number of patients is limited</td>
<td>Reichling et al [4]</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Long-term clinical prognosis is not clear</td>
<td>Maeda et al [7]</td>
</tr>
<tr>
<td>Spinal stenosis in degenerative lumbar kyphoscoliosis</td>
<td>Surgery navigation</td>
<td>Specialist</td>
<td>The number of patients is limited. Long-term follow-up data is needed</td>
<td>Ho et al [9]</td>
</tr>
<tr>
<td>Coronavirus infectious disease (COVID-19)</td>
<td>Screening, diagnosis</td>
<td>Specialist</td>
<td>Privacy of the patient data should be considered</td>
<td>Bhattacharya et al [10]</td>
</tr>
<tr>
<td>Diseases in general</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The burden on specialists may increase</td>
<td>Karako et al [11]</td>
</tr>
<tr>
<td>Diseases in general</td>
<td>Screening</td>
<td>Specialist</td>
<td>Careful and thorough investigation is necessary</td>
<td>Shiyam Sundar et al [12]</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>There is a difference in the definition of anomaly detection between the area of computer science and medical domain</td>
<td>de Lange et al [13]</td>
</tr>
<tr>
<td>Gastrointestinal disease, hepatic diseases</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>High-quality datasets are needed</td>
<td>Le Berre et al [14]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The quality of previous study designs is limited, and practical usefulness of computer-associated diagnosis systems is unknown</td>
<td>Kudo et al [15]</td>
</tr>
<tr>
<td>Colorectal cancer, bladder cancer</td>
<td>Prediction of anti-cancer drug efficacy</td>
<td>Specialist</td>
<td>Further molecular layer profiling in organoids may be needed</td>
<td>Kong et al [17]</td>
</tr>
<tr>
<td>Hypopharyngeal squamous cell carcinoma, esophageal squamous cell carcinoma</td>
<td>Identification of diagnostic and therapeutic targets</td>
<td>Specialist</td>
<td>Further studies are needed to validate the findings of the study</td>
<td>Zhou et al [18]</td>
</tr>
<tr>
<td>Arterial stenosis, coronary arterial diseases, stricture of the gastrointestinal tract</td>
<td>Guiding of balloon catheter</td>
<td>Specialist</td>
<td>The systemic performance needs to be improved</td>
<td>Kim et al [19]</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Further studies are needed to improve the performance</td>
<td>Marlicz et al [20]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Prediction of liver metastasis</td>
<td>Specialist</td>
<td>The investigation of another dataset is needed</td>
<td>Lee et al [21]</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The change of protein expression level needs to be investigated</td>
<td>Xue et al [22]</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Investigation and development of newly improved methods are encouraged</td>
<td>Borghi et al [23]</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Further development is needed</td>
<td>Adler and Bjarnason [24]</td>
</tr>
<tr>
<td>Upper gastrointestinal cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Only high-quality endoscopic images for the training and validation analyses were used</td>
<td>Luo et al [25]</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The associations of the quality or the number of training images and the CNN accuracy needs to be examined</td>
<td>Hirasawa et al [26]</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The possibilities to improve the medical performance, to reduce the medical cost, and to improve the satisfaction of the patient and medical staff are unknown</td>
<td>Min et al [27]</td>
</tr>
<tr>
<td>Functional gastrointestinal disorder</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Evaluation of the feasibility of AI on studies on the gut-brain-microbiome axis is needed</td>
<td>Mukhtar et al [28]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>The uncertainty about the true efficacy of CAD in “real-world” practice remains</td>
<td>Ahmad et al [29]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Further accumulation of lesion images for training is needed</td>
<td>Yamada et al [30]</td>
</tr>
<tr>
<td>Small-bowel disease</td>
<td>Diagnosis</td>
<td>Specialist</td>
<td>Further multicenter, prospective studies and external validation are needed</td>
<td>Yang [31]</td>
</tr>
</tbody>
</table>
Colorectal cancer | Diagnosis | Specialist | Complaints of system malfunctions and reports of patient injuries could lead to lawsuits against stakeholders | Ciuti et al[32]
---|---|---|---|---
Cholangiocarcinoma, pancreatic adenocarcinoma | Diagnosis | Specialist | Case-control and single-center design, and the lack of an independent validation cohort should be considered | Urman et al[33]
Colorectal cancer | Screening | Specialist | The applicability to other types of cancer needs optimization | Misawa et al[34]
Gastrointestinal disease | Diagnosis | Specialist | Most studies were designed in retrospective manner. Ethical issues on misdiagnosis or misclassification need to be handled | Yang and Bang [35]
Gastrointestinal cancer | Prediction of microsatellite instability for immunotherapy | Specialist | Larger training cohorts are needed | Kather et al[36]
Colorectal cancer | Diagnosis | Specialist | The CNN architecture needs to be improved for colonoscopy | Azer[37]
Barrett esophagus cancer | Diagnosis | Specialist | The number of patients is limited. Further optimization is needed | Ebigbo et al[38]
Celiac disease | Diagnosis | Specialist | The preliminary results need to be followed-up with a real clinical setting | Tenório et al[39]
Esophageal squamous cell carcinoma | Prediction of prognosis | Specialist | Further experimental studies to verify the results are needed | Zhang et al[40]
Advanced rectal adenocarcinoma | Prediction of response to neoadjuvant chemoradiotherapy | Specialist | The size of the cohort is limited. The confirmation of the findings with another data set is needed | Ferrando et al [41]
Inflammatory bowel disease | Prediction of prognosis | Specialist | Interventional study to confirm the efficacy of the stratifying therapy is needed | Biasci et al[42]
Inflammatory bowel disease | Mapping | Specialist | The application of advanced natural language processing algorithms to the text-mining step may improve the current process | Sarntivijai et al [43]

AI: Artificial intelligence; CAD: Computer-aided diagnosis; CNN: Convolutional neural network.

Figure 1 Disease of interest in references surveyed in artificial intelligence-oriented disease management. AI: Artificial intelligence; COVID-19: Coronavirus disease 2019.
including multi-class images and video datasets that are useful for AI deep learning [23]. It seems that the performance of capsule endoscopy for diagnosing small bowel disease is improved using AI approaches[24]. An AI deep learning algorithm that can diagnose upper GI cancers with clinical endoscopic imaging data has been developed and validated[25]. CNNs in AI deep learning using numerous endoscopic image data have been developed that can detect and diagnose gastric cancer[26].

AI application in other diseases and endoscopy

Min et al[27] pointed out that one drawback of AI approaches is the need for large datasets to train the system; therefore, the quality of CNN-based AI endoscopy is limited by the need for a large number of high-quality endoscopic images. Machine learning and AI are important to diagnose functional GI disorders and aid healthcare professionals and researchers[28]. Ahmad et al[29] suggested that the level of AI and CAD in colonoscopy has reached that of human expert performance. A real-time AI system with deep learning technology has been developed to diagnose colorectal cancer[30]. An AI-oriented automated CAD system can identify histologic inflammation associated with ulcerative colitis[7]. Reismann et al[3] used AI to identify biomarker signatures to diagnose and classify the pediatric acute appendicitis.

APPLICATION OF AI IN THERAPEUTICS OF GI DISEASES

The application of AI in therapeutics of GI diseases has been expanding. The roles of AI in capsule endoscopy and other recent advanced diagnostic technologies have increased in therapeutics of GI diseases[31,32]. AI analysis was implemented to build neural network models enabling the classification of patients with biliary strictures and identify potential biomarkers in human bile[33]. Machine learning on medical examination records has stimulated the development of preventative measures for colorectal cancer[34]. Retrospective and prospective clinical studies have been conducted to diagnose and predict the prognosis of GI diseases including gastroesophageal reflux disease, atrophic corpus gastritis, acute pancreatitis, acute lower GI bleeding, esophageal cancer, nonvariceal upper GI bleeding, ulcerative colitis after cytophapheresis therapy, IBD, lymph node metastasis in T1 colorectal cancer and postoperative distant metastasis in esophageal squamous cell carcinoma[35]. Kather et al[36] found that deep learning can be used to predict microsatellite instability from histology in GI cancer. Azer[37] developed CNN models that can detect and classify colorectal polyps, which may increase colonoscopy application in appropriate colorectal cancer therapeutics. AI-guided tissue analysis has been developed that predicts stage III colon cancer outcomes, which may improve patient care with pathologists’ assistance[6]. Ebigbo et al[38] found that AI utilization can be used to classify the Barret esophagus cancer. An AI-based clinical decision-support system has been developed to diagnose celiac disease[39]. Bioinformatics analyses have identified important genes associated with the pathogenesis and prognosis of esophageal squamous cell carcinoma, which may contribute to the molecular-targeted therapy[40]. Long non-coding RNA signature has been identified in locally advanced rectal adenocarcinoma, which may predict the response to neoadjuvant chemoradiotherapy in the patients[41]. Machine learning has been utilized for identifying prognostic biomarkers in the whole blood of IBD patients to support the personalized therapy[42]. Ontology tools such as Experimental Factor Ontology or the Ontology of Biomedical Association may be useful for mining the disease-phenotype associations for IBD[43]. Since the responsiveness toward drug alters in cancer cell phenotypes such as epithelial-mesenchymal transition in diffuse-type gastric cancer, the AI application in the identification of cancer subtype would lead to establish therapeutic strategy[44,45]. The machine learning algorithms may be applied to the therapy of the GI diseases in terms of gut-brain axis[28,46].

FUTURE PERSPECTIVES OF AI APPLICATION IN GI DISEASES

Despite the rapid advances of the application of AI in GI diseases, there still remains some concern in terms of the precision of AI-based diagnosis and the criteria for the therapeutics. Further evidence is needed to solely rely on CAD in colonoscopy to determine an appropriate endpoint[15]. Some regulatory coordination may be needed to use the combination of an AI-assisted device and CAD software[15]. The differences
in levels of AI performance would be considered and adjusted for application in clinical situations[14]. More high-quality datasets are needed to establish deep learning algorithms[14].

CONCLUSION

The area for AI application is rapidly expanding in the diagnosis and therapeutics of GI diseases. AI utilization in image recognition is currently being used to diagnose diseases and assist with personalized therapy. Future studies on disease-phenotype association are needed to maximize the capacity and performance of AI to aide in practical situations.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the colleagues for their support.

REFERENCES

AIG

https://www.wjgnet.com

Tanabe S et al. AI in gastrointestinal diseases

Gastroenterology 2020; 158: 76-94. e2 [PMID: 31593701 DOI: 10.1053/j.gastro.2019.08.058]

Adler SN, Bjarnason I. What we have learned and what to expect from capsule endoscopy. World J Gastrointest Endosc 2012; 4: 448-452 [PMID: 23189215 DOI: 10.4253/wjge.v4.i10.448]

Misawa D, Fukuyoshi J, Sengoku S. Cancer Prevention Using Machine Learning, Nudge Theory and
Tanabe S et al. AI in gastrointestinal diseases

