World Journal of
Gastrointestinal Oncology

World J Gastrointest Oncol 2024 August 15; 16(8): 3368-3740
CONTENTS

###EDITORIAL

- **3368** Remazolam combined with transversus abdominis plane block in gastrointestinal tumor surgery: Have we achieved better anesthetic effects?
 Cao J, Luo XL, Lin Q

- **3372** Immune-related gene characteristics: A new chapter in precision treatment of gastric cancer
 Gao L, Lin Q

- **3376** Navigating the labyrinth of long non-coding RNAs in colorectal cancer: From chemoresistance to autophagy
 Yu JM, Sun CQ, Xu HH, Jiang YL, Jiang XY, Ni SQ, Zhao TY, Liu LX

- **3382** Importance of early detection of esophageal cancer before the tumor progresses too much for effective treatment
 Ono T

- **3386** Early diagnosis of esophageal cancer: How to put “early detection” into effect?
 Pubu S, Zhang JW, Yang J

- **3393** Colon cancer screening: What to choose?
 Gomez Zuleta MA

###REVIEW

- **3397** Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review
 Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F

- **3410** Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer

###MINIREVIEWS

- **3428** Importance of diet and intestinal microbiota in the prevention of colorectal cancer - colonoscopy early screening diagnosis
 Jovandaric MZ

###ORIGINAL ARTICLE

Retrospective Cohort Study

- **3436** Analysis of vascular thrombus and clinicopathological factors in prognosis of gastric cancer: A retrospective cohort study
 Chen GY, Ren P, Gao Z, Yang HM, Jiao Y
Contents

World Journal of Gastrointestinal Oncology
Monthly Volume 16 Number 8 August 15, 2024

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3471</td>
<td>Microvascular structural changes in esophageal squamous cell carcinoma pathology according to intrapapillary capillary loop types under magnifying endoscopy</td>
<td>Shu WY, Shi YY, Huang JT, Meng LM, Zhang HJ, Cui RL, Li Y, Ding SG</td>
</tr>
<tr>
<td>3481</td>
<td>Camrelizumab, apatinib and hepatic artery infusion chemotherapy combined with microwave ablation for advanced hepatocellular carcinoma</td>
<td>Zuo MX, An C, Cao YZ, Pan JY, Xie LP, Yang XJ, Li W, Wu PH</td>
</tr>
<tr>
<td>3496</td>
<td>Serum ferritin and the risk of early-onset colorectal cancer</td>
<td>Urback AL, Martens K, McMurry HS, Chen EY, Citti C, Sharma A, Kardosh A, Shatzel JI</td>
</tr>
<tr>
<td>3507</td>
<td>Combining lymph node ratio to develop prognostic models for postoperative gastric neuroendocrine neoplasm patients</td>
<td>Liu W, Wu HY, Lin JX, Qu ST, Gu YJ, Zhu JZ, Xu CF</td>
</tr>
<tr>
<td>3521</td>
<td>Efficacy of chemotherapy containing bevacizumab in patients with metastatic colorectal cancer according to programmed cell death ligand 1</td>
<td>Kang SW, Lim SH, Kim MJ, Lee J, Park YS, Lim HY, Kang WK, Kim ST</td>
</tr>
<tr>
<td>3529</td>
<td>Endoscopic detection and diagnostic strategies for minute gastric cancer: A real-world observational study</td>
<td>Ji XW, Lin J, Wang YT, Ruan JJ, Xu JH, Song K, Mao JS</td>
</tr>
<tr>
<td>3559</td>
<td>Expression and significant roles of the long non-coding RNA CASC19/miR-491-5p/HMGA2 axis in the development of gastric cancer</td>
<td>Zhang LX, Luo PQ, Wei ZJ, Xu AM, Guo T</td>
</tr>
<tr>
<td>3585</td>
<td>Insulin-like growth factor 2 targets IGF1R signaling transduction to facilitate metastasis and imatinib resistance in gastrointestinal stromal tumors</td>
<td>Li DG, Jiang JP, Chen FY, Wu W, Fu J, Wang GH, Li YB</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3624</td>
<td>Effect of acacetin on inhibition of apoptosis in Helicobacter pylori-infected gastric epithelial cell line</td>
<td>Yao QX, Li ZY, Kang HL, He X, Kang M</td>
</tr>
<tr>
<td>3635</td>
<td>Curcumin for gastric cancer: Mechanism prediction via network pharmacology, docking, and in vitro experiments</td>
<td>Yang PH, Wei YN, Xiao BJ, Li SY, Li XL, Yang LJ, Pan HF, Chen GX</td>
</tr>
<tr>
<td>3651</td>
<td>Lecithin-cholesterol acyltransferase is a potential tumor suppressor and predictive marker for hepatocellular carcinoma metastasis</td>
<td>Li Y, Jiang LN, Zhao BK, Li ML, Jiang YY, Liu YS, Liu SH, Zhu L, Ye X, Zhao JM</td>
</tr>
<tr>
<td>3687</td>
<td>Current trends and hotspots of depressive disorders with colorectal cancer: A bibliometric and visual study</td>
<td>Yan ZW, Liu YN, Xu Q, Yuan Y</td>
</tr>
<tr>
<td>3705</td>
<td>Research status and hotspots of tight junctions and colorectal cancer: A bibliometric and visualization analysis</td>
<td>Li HM, Liu Y, Hao MD, Liang XQ, Yuan DJ, Huang WB, Li WF, Ding L</td>
</tr>
<tr>
<td>3716</td>
<td>Aggressive fibromatosis of the sigmoid colon: A case report</td>
<td>Yu PP, Liu XC, Yin L, Yin G</td>
</tr>
<tr>
<td>3723</td>
<td>Jejunal sarcomatoid carcinoma: A case report and review of literature</td>
<td>Feng Q, Yu W, Feng JH, Huang Q, Xiao GX</td>
</tr>
<tr>
<td>3732</td>
<td>Current and future research directions in cellular metabolism of colorectal cancer: A bibliometric analysis</td>
<td>Jiang BW, Zhang XH, Ma R, Luan WY, Miao YD</td>
</tr>
<tr>
<td>3738</td>
<td>Risk factors for the prognosis of colon cancer</td>
<td>Wu CY, Ye K</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board of World Journal of Gastrointestinal Oncology, Salem Youssef Mohamed, MD, Professor, Gastroenterology and Hepatology Unit, Department of Internal Medicine, Zagazig University, Zagazig 44516, Egypt. salemyousefmohamed@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING
The WJGO is now abstracted and indexed in PubMed, PubMed Central, Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 edition of Journal Citation Reports® cites the 2023 journal impact factor (JIF) for WJGO as 2.5; JIF without journal self cites: 2.5; 5-year JIF: 2.8; JIF Rank: 71/143 in gastroenterology and hepatology; JIF Quartile: Q2; and 5-year JIF Quartile: Q2. The WJGO’s CiteScore for 2023 is 4.2 and Scopus CiteScore rank 2023: Gastroenterology is 80/167; Oncology is 196/404.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Si Zhao; Production Department Director: Xiang Li; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Gastrointestinal Oncology

ISSN
ISSN 1948-5204 (online)

LAUNCH DATE
February 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Monjur Ahmed, Florin Burada

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
August 15, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/239

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/256

ONLINE SUBMISSION
https://www.ijfpublishing.com
Remazolam combined with transversus abdominis plane block in gastrointestinal tumor surgery: Have we achieved better anesthetic effects?

Jing Cao, Xing-Liao Luo, Qiang Lin

Abstract

Laparoscopic surgery is the main treatment method for patients with gastrointestinal malignant tumors. Although laparoscopic surgery is minimally invasive, its tool stimulation and pneumoperitoneum pressure often cause strong stress reactions in patients. On the other hand, gastrointestinal surgery can cause stronger pain in patients, compared to other surgeries. Transversus abdominis plane block (TAPB) can effectively inhibit the transmission of nerve impulses caused by surgical stimulation, alleviate patient pain, and thus alleviate stress reactions. Remazolam is an acting, safe, and effective sedative, which has little effect on hemodynamics and is suitable for most patients. TAPB combined with remazolam can reduce the dosage of total anesthetic drugs, reduce adverse reactions, reduce stress reactions, and facilitate the rapid postoperative recovery of patients.

Key Words: Transversus abdominis plane block; Remazolam; Hemodynamics; Gastrointestinal tumor surgery; Oxidative stress

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: The application of laparoscopy in gastrointestinal tumor surgery can lead to strong stress reactions, severe changes in hemodynamics, and an increased risk of postoperative adverse events. The application of transversus abdominis plane block, combined with remazolam, to treat laparoscopic tumor patients can promote more stable anesthesia, reduce hemodynamic fluctuations, and improve the quality of patient rehabilitation.

Citation: Cao J, Luo XL, Lin Q. Remazolam combined with transversus abdominis plane block in gastrointestinal tumor surgery: Have we achieved better anesthetic effects? World J Gastrointest Oncol 2024; 16(8): 3368-3371
DOI: https://dx.doi.org/10.4251/wjgo.v16.i8.3368

INTRODUCTION
Gastrointestinal malignant tumors are one of the most common malignant tumors in the world, with incidence and mortality rates among the top five of all tumors. Surgery is the preferred treatment method. Laparoscopic surgery has been widely used for the treatment of gastrointestinal tumors due to its advantages of minimally invasive technology, pain relief, improved prognosis, and rapid recovery. Surgical tool stimulation, pneumoperitoneum pressure, and anesthesia, as strong stressors for patients, can cause sympathetic nervous system excitation and lead to severe stress reactions[1]. Laparoscopy with general anaesthesia causes hormonal imbalance, oxidative stress, and immune system suppression. Laparoscopic surgery generates a large amount of CO₂ and pneumoperitoneum pressure, which can lead to hypoxia and desiccation of the peritoneal mesothelial cells, causing a series of acute inflammatory reactions[2]. The peritoneal mucosa of mesothelial cells surround the intestinal organs and female reproductive organs, responsible for immune integrity[3]. Damaged mesothelial cells also indicate damage to immune function. In addition, gastrointestinal surgery often causes more severe pain than other surgeries, which can further exacerbate stress reactions and lead to decreased immunity, thereby affecting prognosis.

THE MECHANISM OF ACTION OF REMAZOLAM AND TRANSVERSUS ABDOMINIS PLANE BLOCK
Transversus abdominis plane block (TAPB) was first proposed by Rafi. TAPB involves injection of a local anesthetic solution into the gap between the transversus abdominis and the obliquus internus abdominis[4]. It corresponds to thoracic and abdominal nerves T7 to T11. TAPB can effectively inhibit the transmission of spinal cord nerve impulses caused by surgical stimulation, reduce sympathetic nerve activity, and not decrease the sensitivity of the immune system. Ultimately, pain is relieved, cognitive impairment, restlessness, and the incidence of postoperative complications decrease, and intestinal barrier function is improved. Meanwhile, due to the combination of TAPB and general anesthesia, the dosage of anesthetic drugs can be reduced, which can reduce the secretion of stress response hormones, alleviate the adverse effects of oxidative stress on the immune system, and thus improve immune suppression. It helps to reduce the incidence of postoperative cognitive impairment, restlessness and negative emotions, and improves the quality of postoperative recovery. Remazolam acts on the central GABAa receptor and is an ultra-short acting benzodiazepine hypnotic drug, which is a safe and effective sedative[5]. Remazolam has a short half-life, rapid onset, fast metabolism, and minimal inhibitory effects on circulation and respiration[6]. Among them, it is worth noting that Remazolam has the least impact on the cardiovascular system and is more easily accepted by the elderly or patients with cardiovascular diseases, reducing hemodynamic fluctuations[7].

EFFECTIVELY IMPROVING THE QUALITY OF REHABILITATION
The manuscript (Application of remimazolam transversus abdominis plane block in gastrointestinal tumor surgery) by Liu et al[8] analyzed the clinical data of 102 patients with gastrointestinal malignant tumors who had undergone laparoscopic surgery under general anesthesia. Fifty-one patients received general anesthesia including remazolam as the control group. The remaining 51 patients received TAPB combined with remazolam-general anesthesia. By comparing the hemodynamic parameters, stress indicators, pain severity, recovery quality, analgesic effect, and adverse reactions of two groups of patients during the perioperative period, this study aims to explore the effect of TAPB combined with remazolam-general anesthesia on acute stress response and the recovery status of the patients. The heart rate of patients in the observation group was found to be high after leaving the operating room (T3) and 1 min after induction (T1). In addition, the mean arterial pressure in the observation group at T1 was also higher. In terms of stress hormones, the levels of adrenaline and norepinephrine significantly decreased in the observation group 5 min after extubation. This suggests that the combination of TAPB and remazolam under general anesthesia causes a smaller stress response, promoting a more stable hemodynamic response in patients. The reason may be that TAPB inhibits the transmission of spinal nerve impulses caused by surgical stimulation, while remazolam ensures a more stable internal environment, allowing patients to have stable vital sign. In terms of analgesic effect, patients in the observation group had lower VAS

Core Tip: The application of laparoscopy in gastrointestinal tumor surgery can lead to strong stress reactions, severe changes in hemodynamics, and an increased risk of postoperative adverse events. The application of transversus abdominis plane block, combined with remazolam, to treat laparoscopic tumor patients can promote more stable anesthesia, reduce hemodynamic fluctuations, and improve the quality of patient rehabilitation.

Citation: Cao J, Luo XL, Lin Q. Remazolam combined with transversus abdominis plane block in gastrointestinal tumor surgery: Have we achieved better anesthetic effects? World J Gastrointest Oncol 2024; 16(8): 3368-3371
DOI: https://dx.doi.org/10.4251/wjgo.v16.i8.3368

INTRODUCTION
Gastrointestinal malignant tumors are one of the most common malignant tumors in the world, with incidence and mortality rates among the top five of all tumors. Surgery is the preferred treatment method. Laparoscopic surgery has been widely used for the treatment of gastrointestinal tumors due to its advantages of minimally invasive technology, pain relief, improved prognosis, and rapid recovery. Surgical tool stimulation, pneumoperitoneum pressure, and anesthesia, as strong stressors for patients, can cause sympathetic nervous system excitation and lead to severe stress reactions[1]. Laparoscopy with general anaesthesia causes hormonal imbalance, oxidative stress, and immune system suppression. Laparoscopic surgery generates a large amount of CO₂ and pneumoperitoneum pressure, which can lead to hypoxia and desiccation of the peritoneal mesothelial cells, causing a series of acute inflammatory reactions[2]. The peritoneal mucosa of mesothelial cells surround the intestinal organs and female reproductive organs, responsible for immune integrity[3]. Damaged mesothelial cells also indicate damage to immune function. In addition, gastrointestinal surgery often causes more severe pain than other surgeries, which can further exacerbate stress reactions and lead to decreased immunity, thereby affecting prognosis.

THE MECHANISM OF ACTION OF REMAZOLAM AND TRANSVERSUS ABDOMINIS PLANE BLOCK
Transversus abdominis plane block (TAPB) was first proposed by Rafi. TAPB involves injection of a local anesthetic solution into the gap between the transversus abdominis and the obliquus internus abdominis[4]. It corresponds to thoracic and abdominal nerves T7 to T11. TAPB can effectively inhibit the transmission of spinal cord nerve impulses caused by surgical stimulation, reduce sympathetic nerve activity, and not decrease the sensitivity of the immune system. Ultimately, pain is relieved, cognitive impairment, restlessness, and the incidence of postoperative complications decrease, and intestinal barrier function is improved. Meanwhile, due to the combination of TAPB and general anesthesia, the dosage of anesthetic drugs can be reduced, which can reduce the secretion of stress response hormones, alleviate the adverse effects of oxidative stress on the immune system, and thus improve immune suppression. It helps to reduce the incidence of postoperative cognitive impairment, restlessness and negative emotions, and improves the quality of postoperative recovery. Remazolam acts on the central GABAa receptor and is an ultra-short acting benzodiazepine hypnotic drug, which is a safe and effective sedative[5]. Remazolam has a short half-life, rapid onset, fast metabolism, and minimal inhibitory effects on circulation and respiration[6]. Among them, it is worth noting that Remazolam has the least impact on the cardiovascular system and is more easily accepted by the elderly or patients with cardiovascular diseases, reducing hemodynamic fluctuations[7].

EFFECTIVELY IMPROVING THE QUALITY OF REHABILITATION
The manuscript (Application of remimazolam transversus abdominis plane block in gastrointestinal tumor surgery) by Liu et al[8] analyzed the clinical data of 102 patients with gastrointestinal malignant tumors who had undergone laparoscopic surgery under general anesthesia. Fifty-one patients received general anesthesia including remazolam as the control group. The remaining 51 patients received TAPB combined with remazolam-general anesthesia. By comparing the hemodynamic parameters, stress indicators, pain severity, recovery quality, analgesic effect, and adverse reactions of two groups of patients during the perioperative period, this study aims to explore the effect of TAPB combined with remazolam-general anesthesia on acute stress response and the recovery status of the patients. The heart rate of patients in the observation group was found to be high after leaving the operating room (T3) and 1 min after induction (T1). In addition, the mean arterial pressure in the observation group at T1 was also higher. In terms of stress hormones, the levels of adrenaline and norepinephrine significantly decreased in the observation group 5 min after extubation. This suggests that the combination of TAPB and remazolam under general anesthesia causes a smaller stress response, promoting a more stable hemodynamic response in patients. The reason may be that TAPB inhibits the transmission of spinal nerve impulses caused by surgical stimulation, while remazolam ensures a more stable internal environment, allowing patients to have stable vital sign. In terms of analgesic effect, patients in the observation group had lower VAS
scores at 12 h, 24 h, and 48 h after surgery, and fewer cases of postoperative salvage analgesia. This indicated that TAPB, combined with remazolam-general anesthesia, has a better analgesic effect. On the other hand, the observation group patients also achieved better sedative effects after surgery. However, the incidence of postoperative adverse reactions, nausea, vomiting, itching, or other adverse reactions did not differ between the two groups of patients. This may be due to multimodal analgesia, which reduces the use of anesthetic drugs during the perioperative period and also reduces the side effects of anesthetic drugs. The author integrates the advantages of TAPB combined with remazolam for general anesthesia, and systematically reviews the stress response and postoperative recovery of 102 patients who had undergone gastrointestinal tumor surgery, presenting the clinical application results of this method to readers. It is believed that the author has made an important and timely contribution to the anesthesia management of patients undergoing gastrointestinal tumor surgery. The combination of TAPB and new drugs is likely to facilitate the development of further technologies and methods to alleviate perioperative stress reactions in patients undergoing gastrointestinal tumor surgery. Further, it will aid in improving rehabilitation quality, and in meeting the surgical needs of pain relief and sedation levels. This direction is crucial.

LIMITATIONS OF RESEARCH

Despite presenting us with so many results, the manuscript still has some limitations. This study based on a single center, small sample trial, and the conclusion still needs to be validated by multiple centers and large samples. The author used flurbiprofen ester as a postoperative analgesia, a non-selective cyclooxygenase inhibitor used clinically as a nonsteroidal anti-inflammatory drug. Flurbiprofen ester may cause adverse reactions, such as gastrointestinal ulcers[9]. Therefore, clinicians doctors should consider these contraindications and determine whether flurbiprofen axetil should be applied to all patients with gastrointestinal tumors. On the other hand, it is unclear whether factors such as patient weight, body mass index, and age should be considered when using the same protocol for patient controlled intravenous analgesia for all patients, and whether the same dose should be used. Considering that the patient has had gastrointestinal tumor surgery patient, adding time getting out of bed, as an indicator, can objectively evaluate the effect of TAPB combined with remazolam general anesthesia on gastrointestinal recovery.

CONCLUSION

This type of nerve block, combined with a new type of general anesthesia drug, is widely used in clinical practice, and its advantages have been considered. This approach provides patients with a smooth anesthesia process, it reduces stress reactions, improves patient prognosis, and embodies the concept of Enhanced Recovery after Surgery. It is hoped that multimodal anesthesia will be increasingly applied in clinical practice to ensure stable perioperative periods for patients.

FOOTNOTES

Author contributions: Cao J completed manuscript preparation; Luo XL provided assistance for manuscript preparation; Lin Q provided comprehensive guidance and constructive feedback on the manuscript. All authors have read the final manuscript.

Supported by Health Commission of Hebei Province, China, No. 20240074; and Scientific Research Project of Hebei Provincial Administration of Traditional Chinese Medicine, China, No. 2024317.

Conflict-of-interest statement: All authors have nothing to disclose.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Jing Cao 0000-0002-2129-6440; Xing-Liao Luo 0000-0008-8235-0878; Qiang Lin 0000-0001-9599-4121.

REFERENCES

1 Liu Y, Sun ZR, Lu LH, Zhang X, Gao LL, Wu JM, Yang L, Xu PB. Comparison of effects of transversus abdominis plane block and thoracic

