Supplementary Table 1 Studies examining the upper gastrointestinal tract

Reference	Author (year)	Disease	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy/AUC	Sensitivity/Specificity
13	de Groof <i>et al.</i> (2019)	BE	EGD, WLI	Detect early BE neoplasia	Supervised learning techniques	Internal and external	92.0%	95.0% / 85.0%
12	de Groof <i>et al.</i>	BE	EGD	Detect early BE	Hybrid ResNet-UNet	Internal and	88.0%-89.0%	90-93% / 83-88%
	(2020)	DE	EGD	neoplasia	model	external	(2 test datasets)	(2 test datasets)
10	Hashimoto <i>et</i> al. (2020)	BE	EGD, WL, NBI	Detect early BE neoplasia	CNN (Inception-ResNet-v2) + data augmentation	Internal	95.4%	96.4/94.2 (Sn WLI 98.6, NBI 92.4, Sn standard focus 96.6, near focus 96.2) NBI Sp WLI 99.2, WLI 88.8, near focus 98.4, standard focus 89.9.
11	van der Sommen <i>et al.</i> (2016)	BE	EGD, WLI	Detect early BE neoplasia	SVM. specific texture, color filters, and machine learning.	Internal and external	N/A	Per lesion: 83.0% / 83.0% Per patient: 86.0% / 87.0%
16	Swager <i>et al.</i> (2017)	BE	EGD, VLE	Detect early BE neoplasia on ex-vivo VLE	n/a	Internal	0.950	90.0% / 93.0%
17	Trindade <i>et al</i> (2019)	BE	EGD, VLE	Detect dysplasia in BE	IRIS	Internal	N/A	N/A
14	Ebigbo <i>et al.</i> (2020)	BE, EAC	EGD WL, NBI	Differentiation between BE and early EAC	ResNet based DCNN (based on DeepLab V.3+) with 101 layers	Internal	89.9%	83.7% / 100
15	Riaz <i>et al.</i> (2013)	BE, EC	EGD (NBI)	Detect and classify BE into normal, pre-cancer and cancer	SVM	Internal and external	91.8%	91.8% / 92.1%
29	Liu <i>et al.</i> (2020)	EC	EGD WLI	Classify and distinguish EAC from premalignant lesions	CNN Inception-ResNet (O-stream and P-stream) with data augmentation	Internal	85.8%	94.2% / 94.7%
30	Liu <i>et al.</i> (2016)	EC, GC	EGD	 Detect early esophageal cancer. Detect early gastric cancer 	Joint diagonalization principal component analysis (JDPCA)	Internal	1. 90.8% 2. 90.8%	1. 93.3% / 89.2% 2. 90.8% / 90.7%
31	Nakagawa <i>et al.</i> (2019)	ESCC	EGD, non-ME, ME	Differentiate between SM1 and SM2/3 ESCC lesions	BP-CNN with 16 layers and Caffe framework.	Internal	91.0%	90.1% / 95.8%
32	Shimamoto <i>et</i> <i>al.</i> (2020)	ESCC	EGD, WLI, BLI/NBI, non-ME and ME	Detect invasion depth in ESCC	BP-CNN with 16 layers and PyTorch framework.	Internal	non-ME: 87.3%. ME: 89.2%	non-ME: 50.0% / 98.7% ME: 70.8% / 94.9%
20	Cai <i>et al.</i> (2019)	ESCC	EGD WL	Detect ESCC under WL imaging	CNN with 8-layers trained with	Internal and external	91.4%	97.8% / 85.4%

					augmented training data			
21	Fukuda <i>et al.</i> (2020)	ESCC	EGD, non-ME and ME NBI	Detect suspicious lesions and characterize cancer (ESCC) vs non-cancer under NBI	BP-CNN with 16 layers	Internal	Detection: 63.0%. Characterization: 88.0%	Detection: 91.0% / 51.0% Characterization: 86.0% / 89.0%
24	Kumagai <i>et al.</i> (2019)	ESCC	EGD, ECS	Investigate whether biopsy based ESCC histology can be replaced by ECS.	GoogLeNet	Internal	90.9% (AUC 85)	92.6% /89.3%
25	Li et al. (2021)	ESCC	EGD, non-ME NBI	Detect early ESCC, and compare diagnosis with 20 endoscopists (validation	CAD NBI	Internal and external	95.3% (AUC 97.61)	91.0% / 96.7%
26	Ohmori <i>et al.</i> (2020)	ESCC	1. EGD (non-ME with WLI) 2. EGD (non-ME with NBI/BLI) 3. EGD (ME with NBI/BLI)	Detect ESCC	CNN	Internal and external	1. 81.0% 2. 77.0% 3. 77.0%	1. 90.0% / 76.0% 2. 100% / 63.0% 3. 98.0% / 56.0%
27	Tan <i>et al.</i> (2021)	ESCC	EGD, HRME	Detection of ESCC by algorithm and endoscopists, and improvement of endoscopists with algorithm	Fully automated algorithm	Internal and external	79.4%	76.3% / 85.3%
28	Zhao <i>et al.</i> (2019)	ESCC	EGD, NBI-ME	Classification of IPCLs to improve detection of ESCC.	double-labeling FCN image segmentation and multitask learning. VGG16 net	Internal and external	89.2%	87.0% / 84.1%
23	Horie <i>et al.</i> (2019)	ESCC, EAC	EGD, WL, NBI, non-ME	Detect ESCC and EAC	CNN, 16 or more layers, Caffe framework.	Internal	99.0% for superficial cancer and 92.0% for advanced cancer	98.0% / 79.0%
22	Guo <i>et al.</i> (2020)	ESCC, precancerous lesions	EGD, non-ME and ME NBI	Develop real-time automated diagnosis of precancerous lesions and early ESCC in non-ME and ME setting	CAD DNN. SegNet lesion segmentation.	Internal and external	0.989	Image: (dataset A) 98.04/ (dataset B)95.03. Dataset C: Video per frame non-ME: Sn 60.8. per-lesion non-ME: Sn 100. Video per frame ME: 96.1. per lesion ME 100. Dataset D: Full range video per-frame Sp 99.9. per case Sp 90.9.

55				ido-tif. I.]
				identify long				
				non-coding RNA				
				signatures able to				
	Chen <i>et al.</i>	Gastric	Genetics	classify			0.95	N/A
	(2019)	cancer	Genetics	microsatellite			0.95	N/A
				instability and				
				create a predictive		10-fold		
				model for MSI	SVM	cross-validation		
53				Diagnosis of				
	Gao et al.	Gastric	СТ	metastatic LN in			AUC: 0.8995	N/A
	(2019)	cancer	ci		FR-CNN	NI / A	AUC. 0.8333	N/A
37				gastric cancer	FR-CININ	N/A		
5,	Guimaraes et	Atrophic	EGD	Detect atrophic		10-fold	93	100.0% / 87.5%
	al. (2020)	gastritis		gastritis	CNN	cross-validation		
38			EGD (WL, CE, NBI)					
	Hirasawa et al.	Gastric	white light.	Detect gastric			N/A	92.2% / N/A
	(2018)	cancer	Chromoendoscopy	cancer (early or				
			Narrow-band imaging	advanced)	CNN	N/A		
39				Detect gastric				
	Ishioka <i>et al.</i>	Gastric	EGD (ESD)	cancer (early or			94.10%	N/A
	(2019)	cancer		advanced)	CNN	N/A		
54			Biomarkers, imaging,					
	Jagric <i>et al.</i>	Gastric	tumor size, histology,	Prediction of liver			N/A	71.0% / 96.1%
	(2010)	cancer	TNM, Lymph nodes	metastasis	QNN	N/A	,	,
57				metastasis	Quit		AUC for OS, DFS	
							in training 0.796,	
							0.805, internal	
							validation 0.809,	
							0.813 and	
							external	
	Jiang et al.	Gastric					validation 0.834,	
	(2018)		Immunohistochemistry				0.828 cohorts.	
	(2018)	cancer					This compared	
							to the TNM's	
							training (0.649,	
							0.659), internal	
				Predict survival,			(0.746, 0.678)	
				predict treatment		Unspecified	and external	
				benefit	SVM	internal/external	(0.745, 0.737)	
50				Detect gastric	-	.,	· · · · · · · · · · · · · · · · · · ·	
	Kanesaka <i>et al.</i>	Gastric	EGD NBI + ME	cancer (early or			96.30%	96.7% / 95.0%
	(2018)	cancer			0.04	51 / A	90.30%	30.7/0 33.0%
40				advanced)	SVM	N/A		
	Korhani Kangi	Gastric					ANN 89.1%	ANN: 88.2% / 90.3%,
	et al. (2018)	cancer	Medical record				(0.944), BNN:	BNN: 95.4% / 90.9%
				Predict survival	ANN, Bayesian NN	N/A	93.5% (0.961)	
41		Gastric	EGD (ME-NBI)					
	Li <i>et al.</i> (2020)	cancer	magnified narrow				90.9%	91.2% / 90.6%
		Cancel	band imaging	Detect EGC	CNN	Internal		
30	Liu <i>et al.</i> (2016)	Esophageal	EGD	1. Detect early	Joint diagonalization	10-fold	1. 90.8%	1. 93.3% / 89.2%
	•		•	•	•	•		

		and gastric		esophageal cancer. 2. Detect early	principal component analysis	cross-validation	2. 90.8%	2. 90.8% / 90.7%
				gastric cancer	(JDPCA)			
62	Martin <i>et al.</i>			Identification of HP			99.1% (AUC:	
	(2020)	H Pylori	Gastric biopsies	on histopathology	CNN	Internal	1.000)	95.7% / 100%
42	(2020)			on motoputnology			SVM output for	
	Miyaki <i>et al.</i>	Gastric		Detect gastric			cancerous	
			EGD (BLI)	-				N/A
	(2015)	cancer		cancer (early or	0.44	to to cont	lesions:	
63				advanced)	SVM	Internal	1.453e-17)	
05							82.5% for	
	Nakashima <i>et</i>						current	
	al. (2020)	H Pylori	EGD				infection, 79.2%	N/A
				Detect infection and			for prior	
				prior infection		Internal	infection	
58	Que et al.	Gastric	Biomarkers, medical			5-fold cross	75.2%	86.5% / 43.8%
	(2019)	cancer	record	Predict survival	ANN	validation	701270	
61	Shichijo <i>et al</i> .			compare diagnostic				
	-	H Pylori	EGD images	ability of CNN vs			87.7%	88.9% / 87.4%
	(2019)			endoscopists	CNN (GoogLeNet)	Internal		
43	Togo <i>et al.</i>					5-fold cross		
	(2019)	Gastritis	Barium XR	Detect Gastritis	CNN	validation	N/A	96.2% / 98.3%
44				Detect gastric	Recalibrated			
	Wang et al.	Gastric	Pathology slides	cancer (early or	multi-instance DL		86.5%	N/A
	(2019)	cancer		advanced)	(RMDL)	N/A		
52						5-fold		
		Gastric				cross-validation		
	Wu et al. (2019)	cancer	EGD	Detect early gastric		and early	92.5%	94.0% / 91.0%
				cancer (EGC)	CNN	stopping		
49				Detect and classify		300pp8		
	Zhang et al.	Atrophic	EGD	chronic atrophic		5-fold	94.2%	94.5% / 94.0%
	(2020)	gastritis	EGD		CNIN		94.276	94.5%7 94.0%
65				gastritis	CNN	cross-validation		
	Zheng et al.	H Pylori	EGD				84.5% (AUC:	81.4% / 90.1%
59	(2019)			H pylori detection	CNN	Internal	0.93)	
29	Zhu <i>et al.</i>	Gastric	EGD	Predict gastric			AUC: 0.94	76.5% / 95.6%
	(2019)	cancer		cancer depth	CNN-CAD system	Internal		
56							Kappa 0.27 (fair	
	Nakahira <i>et al.</i>	Gastric					interobserver	
	(2020)	cancer	EGD				agreement	N/A
	(2020)	cancer		Gastric cancer risk			among	
				stratification	CNN	Internal	endoscopists)	
45	Luo et al.	Gastric	EGD	stratification Detection of gastric	CNN	Internal Internal and		01 20/ / 02 20/
45	Luo <i>et al.</i> (2019)	Gastric cancer	EGD		CNN GRAIDS		endoscopists) 97.7%	94.2% / 92.3%
45 51				Detection of gastric		Internal and	97.7%	
	(2019)	cancer	EGD	Detection of gastric cancer (automatic)		Internal and		94.2% / 92.3% 80.0% / 94.8%
	(2019) Sakai <i>et al.</i>	cancer Gastric	EGD	Detection of gastric cancer (automatic) Detection of gastric	GRAIDS	Internal and external	97.7% 87.6%	80.0% / 94.8%
51	(2019) Sakai <i>et al.</i> (2019)	cancer Gastric cancer		Detection of gastric cancer (automatic) Detection of gastric cancer (automatic)	GRAIDS	Internal and external	97.7%	
51	(2019) Sakai <i>et al.</i> (2019) Namikawa <i>et al.</i>	cancer Gastric cancer Gastric	EGD	Detection of gastric cancer (automatic) Detection of gastric cancer (automatic) Gastric cancer	GRAIDS CNN (GoogLeNet)	Internal and external Internal	97.7% 87.6%	80.0% / 94.8%

48								
40	Zhou <i>et al.</i>	Gastric					Highest	
	(2021)	cancer	Medical record	Gastric cancer		5-fold cross	algorithm:	N/A
	. ,			recurrence	Five models	validation	Logistic (80.1%)	
69				Develop prognostic			AUC: 0.88 for	
	Shung et al.			score and compare			GBS, 0.73 for	
	(2020)			to GBS, Rockall and	Gradient-boosting		Rockall and 0.78	
		GIB	Health records	AIMS65	model	Internal/external	for AIMS65	100% / 26.0%
68							Mortality AUC of	
							0.917 vs 0.710 of	
							GBS, VC model	
							was best for	
	Seo <i>et al.</i>						hypotension	
	(2020)						(AUC:0.757 vs	
				Algorithm that			GBS: 0.668) and	
				predicts adverse			rebleeding (AUC	
				events in	Random forest		0.733 vs GBS:	
		GIB	Health records	non-variceal UGIB	classifier	Internal	0.694)	N/A
67		615		Identify patients at		internal	0.0347	17/5
				high risk for				
	Wong et al.			recurrent ulcer				
	(2019)			bleeding at 1 year in				
				patients with				
				idiopathic PUD			Accuracy: 84.3%,	
71		GIB	Health records	bleed	IPU-ML	Internal	AUC: 0.775	41.4% / 74.6%
/1							77-89% for	SRH: 89.0%-96.0%,
	Das et al.						stigmata,	Endoscopic therapy
	(2008)			Non-endoscopic			61-81% for need	81.0-94.0%;
				triage of UGIB			of endoscopic	Specificity: 63-89%,
		GIB	Health records	compared to Rockall	ANN	Internal/external	therapy	48-82%
70								For mortality,
								recurrent bleed and
								endoscopic
	Das et al.						97.0%, 93.0%,	reintervention:
							94.0% for	Sensitivity: 87.5%,
	(2003)						mortality,	80.0%, 89.0%
				Compare predictive			recurrent bleed	Specificity: 97.0%,
				score to BLEED			and endoscopic	95.0%, 95.0%,
		GIB	Health records	score	ANN	Internal/external	reintervention	respectively
72				Compare if ANN can				
				outperform Strate				
	Loftus <i>et al.</i>			rule to predict				
	(2017)			severe GIB and				
				predict surgical				
		GIB	Health records	intervention	ANN	Internal	AUC: 0.954	N/A
73							88.0%, 91.0%	
							and 83.0% for	
	Ayaru <i>et al.</i>						recurrent	
	(2015)			Prediction of LGIB	Gradient-boosting		bleeding,	
		CIR	Health records		-	Internal Jours		N/A
		GIB	Health records	outcomes	model	Internal/external	therapeutic	N/A

			reintervention	
			and severe	
			bleeding,	
			respectively	

BE: Barrett's esophagus; EGD: Esophagogastroduodenoscopy; WLI: White light imaging; NBI: Narrow band imaging; SVM: Support vector machine; VLE: Volumetric laser endomicroscopy; EAC: Esophageal adenocarcinoma; EC: Esophageal cancer; CNN: Convoluted neural network; GC: Gastric cancer; ESCC: Esophageal squamous cell carcinoma; JDPCA: Joint diagonalization principal component analysis; ME: Magnification endoscopy; WL: White light; AUC: Area under the curve; ECS: Endocytoscopy systems; DNN: Deep neural network; CE: Chromoendoscopy; ESD: Endoscopic submucosal dissection; ANN: Artificial neural network; GBS: Glasgow-Blatchford score.

Supplementary Table 2 Studies examining the lower gastrointestinal tract

			-	-		1		
Reference	Author (year)	Disease	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy/AUC	Sensitivity/Sp
							98.0% (CE	96.9% / 100
	Kuda at al. (2020)						mode)	mode)
	Kudo <i>et al</i> . (2020)		Colonoscopy				96.0% (NBI	96.9% / 94.3
101		CRC	(CE, NBI)	Detect CRC	EndoBRAIN	Internal/External	mode)	mode)
				Detect CRC by				
	Echle <i>et al.</i> (2020)		Histopathology	detecting MSI and				
99		CRC	(H&E)	dMMR		Internal/External	AUC: 0.96	95.0% / 67
							Accuracy:	
	lto <i>et al.</i> (2019)		Colonoscopy	Detect deeply			81.2%, AUC:	
100		CRC	(WL)	invasive (cT1b) CRC	CNN	internal	0.871	67.5% / 89
					Compared			
	Mori <i>et al.</i> (2020)			Estimation of cost	diagnose-leave to			
119		Polyps	Colonoscopy	reduction	resect all	Internal	N/A	93.3% / 95
							88%, 91%,	
							83% for	
							recurrent	57.0% / 91.0
							bleed,	recurrent ble
	Ayaru <i>et al.</i> (2015)						therapeutic	60.0% / 92.0
							intervention	therapeu
							and severe	intervention,
				Outcome	Gradient booster,	Internal +	bleed,	89.0% for se
73		LGIB	EHR	prediction	MLR	External	respectively;	bleedin
					LASSO			
	Rechling <i>et al.</i>			Outcome	algorithm-based			
121	(2020)	Cancer	Histopathology	prediction	DGMate score	Internal	AUC: 0.56	N/A
							Uncertain and	
							poor	
							prognosis	
							group: 76.0%;	Uncertain an
	Skrede <i>et al.</i>						Good and	prognosis g
	(2020)						uncertain to	52.0% / 78
							poor	Good and un
				Outcome		Internal +	prognosis	to poor prog
123		Cancer	Histopathology	prediction	CNN	External	group: 67.0%	group: 69.0%
							93.1% vs 92.7	95.0% / 90.3%
	Gross <i>et al.</i> (2011)		Colonoscopy		Computer-based		human	93.4% / 91
109		Polyps	(NBI+Mag)	Polyp Classification	algorithm	Internal	experts	Experts
	Mari et «/ (2015)		Colonoscopy					
113	Mori <i>et al.</i> (2015)	Polyps	(endocytoscopy)	Polyp Classification	CAD	Internal	89.2%	92.0% / 79
	Sanchez-Montes et		Colonoscopy					
114	al. (2019)	Polyps	(HD WLI)	Polyp Classification	SVM	Internal	91.1%	92.3% / 89
	Tischendorf et al		Colonoscopy				86.6% (vs	96.9% / 53.1
115	(2010)	Polyps	(NBI Mag)	Polyp Classification	SVM	Internal	90.9% human)	96.9% / 71
					Comparison of 8			1. 9.6-69.
	Bernal <i>et al.</i> (2017)				Comparison of a			1. 9.0-09.

						I		I
					end-to-end learning			2. 16.7-71.4
					methods and/or			13.6-93.5
					handcrafted models			
			Colorectal					
			capsule					
			endoscopy					
	Blanes-Vidal <i>et al.</i>		(CCE) <i>,</i>					
	(2019)		conventional					
			colonoscopy					
			and					
89		Polyps	histopathology	Polyp detection	DCNN	Internal	96.4%	97.1% / 93
							AUC: 0.79 (in	
							high quality	
	Fernandez-Esparrach						frames) vs	
	et al. (2016)						0.75 (in all	
90		Polyps	Colonoscopy WL	Polyp detection	WM-DOVA maps	Internal	frames)	70.4% / 72
	Figueiredo <i>et al.</i>							
91	(2019)	Polyps	Colonoscopy WL	Polyp detection	CAD	Internal	91.1%	99.7% / 84
			Colonoscopy					
80	Gong <i>et al.</i> (2020)	Polyps	(RT)	Polyp detection	DNN (ENDOANGEL)	Internal	95.2%	93.2% / 98.0%
								Model: PDR 5
								ADR 29.1
	Klare <i>et al.</i> (2019)		Colonoscopy					Endoscopists
81		Polyps	(RT)	Polyp detection	APDS	Internal	N/A	ADR 30.9
	Kominami <i>et al.</i>	,po	Colonoscopy					7.0110010
93	(2016)	Polyps	(NBI+MAG - RT)	Polyp detection	SVM	Internal	93.2%	93.0% / 93
	Lequan <i>et al.</i>	1 01993			50101	interna	55.270	55.6767 55
94	(2017)	Polyps	Colonoscopy	Polyp detection	FCN	Internal	N/A	71.0% / 88
96	(2017) Misawa <i>et al.</i> (2021)	Polyps	Colonoscopy	Polyp detection	CAD	Internal	N/A	90.5% / 93
		Polyps	Colonoscopy	Polyp detection	CAD	Internal		GAD-NBI:92.09
								/ 89.8%-93
	Mori <i>et al.</i> (2018)							CAD-stain
97			Colonoscopy				NPV: 93.7 -	92.0%-94.6
31		Polyps	(NBI ECS RT)	Polyp detection	CAD	Internal	96.4%	87.5%-93.
							ADR 54.8% vs	
	Repici <i>et al.</i> (2020)		Colonoscopy				40.4% in	
82		Polyps	(RT)	Polyp detection	CAD (GI Genius)	Internal/External	control	N/A
							ADR 28.9% vs	94.8-98.0
	Su <i>et al.</i> (2020)		Colonoscopy				16.5% in	94.5-99.5
83			1	Polyp detection	CNN	Internal	control	
		Polyps	(RT)	Polyp detection				
	Urban et al. (2018)	Polyps	(RT)	Polyp detection			96.4% (AUC	
84	Urban <i>et al.</i> (2018)	Polyps Polyps	(RT) Colonoscopy	Polyp detection	CNN	Internal	96.4% (AUC 0.991)	93.0% / 93
	Urban <i>et al.</i> (2018)					Internal		93.0% / 93
	Urban <i>et al.</i> (2018) Wang <i>et al</i> (2019)					Internal	0.991)	93.0% / 93
						Internal	0.991) ADR CAD:	93.0% / 93 N/A
84	Wang <i>et al</i> (2019)	Polyps	Colonoscopy	Polyp detection	CNN		0.991) ADR CAD: 29.%1 vs	
84		Polyps	Colonoscopy	Polyp detection	CNN		0.991) ADR CAD: 29.%1 vs 20.3% human	

		-						
95	Misawa <i>et al.</i> (2018)	Polyps	Colonoscopy	Polyp detection	CADe	Internal	76.5%	90.0% / 63
92	Hassan <i>et al.</i> (2020)	Polyps	Colonoscopy	Polyp detection	CADe (GI-Genius)	Internal	N/A	Sn: 99.7
	Dump at al. (2010)		Colonoscopy	Polyp				
107	Byrne <i>et al.</i> (2019)	Polyps	NBI	differentiation	DCNN	Internal	94.0%	98.0% / 83
	(1			Polyp				
108	Chen <i>et al.</i> (2018)	Polyps	Colonoscopy	differentiation	DNN	Internal	90.1%	96.3% / 78
	Horiuchi <i>et al</i> . (2019)		Colonoscopy	Polyp	CAD-autofluorescence			
110	Homuchi <i>et ul</i> . (2019)	Polyps	(RT)	differentiation	imaging	internal	91.5%	80.0% / 95
			Colonoscopy					
	Misawa <i>et al.</i> (2016)		(NBI	Polyp				
111		Polyps	endoscytoscopy)	differentiation	EndoBRAIN	Internal	96.9%	97.6% / 95
								Diminutive le
	Mori <i>et al</i> . (2016)							92% / 89
	Woll et al. (2016)		Colonoscopy	Polyp				Small lesions:
112		Polyps	(endocytoscopy)	differentiation	CAD	Internal/External	89.0%	89%
		Colorectal		Polyps and			ADR in CON:	
	Liu <i>et al.</i> (2020)	polyps,		adenomas			0.2389; in	
87		adenomas	Colonoscopy	detection (CADe)	CNN	internal	CADe: 0.3910	N/A
								OS HR 1.63, C
	Kather <i>et al.</i> (2019)					Internal +		HR 2.29, relap
122		Cancer	Histopathology	Predict Survival	CNN	External	94.0%	survival HR
				Quality of				
	Thakkar <i>et al.</i> (2020)		Colonoscopy	examination metric				
120		Quality	(RT)	development	CAD	Internal	N/A	N/A

CRC: Colorectal cancer; CE: Chromoendoscopy; NBI: Narrow band imaging; MSI: Microsattelite instability; dMMR: Deficient mismatch repair; WL: White light; H&E: Hematoxyllin-Eosin; EHR: Electronic health record; CNN: Convolutional neural network; CAD: Computer-aided detection; ADR: Adenoma detection rate; CCE: Colorectal capsule endoscopy; NBI: Narrow band imaiging; DCCN: Deep convolutional neural network; FCN: Fully convolutional network.

Supplementary Table 3 Studies examining video capsule endoscopy

Reference	Author (year)	Disease	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy/AUC	Sensitivity/Specificity
131	Ding et al. (2019)	All	VCE	Assist in evaluation of small bowel abnormalities	CNN	internal and external	N/A	99.9% / 99.9%
130	Aoki et al. (2020)	Bleeding	VCE	Bleeding detection	CNN	Internal	96.6% (0.9998)	99.9% / 99.9%
132	Fu et al. (2014)	Bleeding	VCE	Bleeding detection	SVM	Internal	94.0%	97.0% / 92.0%
133	Hassan et	Bleeding	VCE	Bleeding detection	SVM	Internal	99.2%	99.4% / 98.9%

	al. (2015)							
135	Leenhardt et al. (2019)	Bleeding	VCE	Angioectasia detection	CNN	Internal/External	98.0%	100% / 96.0%
136	Lv et al. (2011)	Bleeding	VCE	Bleeding detection	SVM	Internal	97.9%	97.8% / 98.0%
137	Noya et al. (2017)	Bleeding	VCE	Angioectasia detection	RUSBoost	Internal	96.6% (0.932)	89.5% / 96.8%
138	Pan et al. (2009)	Bleeding	VCE	Bleeding detection	Probabillistic Neural Network	Internal	87.4%	93.1% / 85.8%
139	Sainju et al. (2014)	Bleeding	VCE	Bleeding detection	MLP	N/A	93.0%	96.0% / 90.0%
140	Tsuboi et al. (2020)	Bleeding	VCE	Angioectasia detection	CNN	Internal	0.998	98.8% / 98.4%
141	Xing et al. (2018)	Bleeding	VCE	Bleeding detection	KNN	Internal	0.9922	95.5% / 99.5%
142	Yuan et al. (2016)	Bleeding	VCE	Bleeding detection	SVM	Internal	95.8% (0.9771)	92.0% % 96.5%
134	lakovidis et al. (2014)	Bleeding/Ulcer/Polyp	VCE	Angioectasia/Bleeding/Polyp	SVM	Internal/External	94.0%	95.4% / 82.9%
152	Zhou et al. (2017)	Celiac	VCE	Celiac disease detection	GoogLeNet	Internal	N/A	100% / 100%
154	Wang et al. (2020)	Celiac	VCE	Celiac disease detection	CNN (InceptionV3, ResNet50 + SVM)	Internal	95.9%	97.2% / 95.6%
151	Tenorio et al (2011)	Celiac	VCE	Celiac disease detection	clinical decision-support system (CDSS)	Internal	84.2%	92.9% / 95.8%
153	Wimmer (2016)	Celiac	VCE	Celiac disease detection	CNN, SVM	Internal	92.5%	N/A
148	Charisis et al. (2016)	Crohn	VCE	Detect CD	SVM	Internal	93.8%	95.2% / 92.4%
147	Klang et al.	Crohn	VCE	Detect CD	CNN	Internal	96.7% (0.99)	92.5-97.1% /

96.0-98.1% 58.3% / 87.5%
58.3% / 87.5%
84.5% / 93.0%
84.6% / 88.6%
N/A
90.7% / 79.8%
95.5% / 98.5%
94.7% / 94.0%
96.2% / 94.3%
N/A
88.2% / 90.9%
96.8% / 93.7%
89.7% / 90.5%

VCE: Video capsule endoscopy; CNN: Convolutional neural network; SVM: Support vector machine; MLP: Multilayer perceptron; KNN: K-nearest neighbor; CDSS: Clinical decision-support system; CD: Crohn's disease.

Supplementary Table 4 Studies examining inflammatory bowel disease and disease subclasses.

Referenc e	Author (year)	Diseas e	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy/AUC	Sensitivity/Specificit y
178	Takenaka <i>et al.</i> (2020)	IBD	Colonoscopy	Disease Severity	DNN	Internal	Accuracy: 90.1% for endoscopic remission, 92.9% for histologic remission	93.3%, 87.8%
171	Mossotto <i>et al.</i> (2017)	IBD	Endoscopic images, Histopathology	Diagnosis	SVM	Internal	Accuracy: 83.3%	83.0%, 86.0%
170	Mahapatr a <i>et al.</i> (2016)	CD	MRI	Diagnosis	RF	Internal	Accuracy: 86.9%	N/A
168	Khorasani <i>et al.</i> (2020)	UC	Genetics	Diagnosis	SVM	Internal	AUC: 0.62	Specificity 62.0%
169	Kumar <i>et</i> <i>al.</i> (2012)	CD	VCE	Diagnosis	SVM	Internal	Accuracy: 96.5%	89.6,83.7%
183	Waljee <i>et</i> al. (2017)	IBD	Laboratory tests+Medication s	Disease Course Prediction	RF	Internal	AUC: 0.87	74-80%, 80-82%
188	Wei <i>et al.</i> (2013)	IBD	Genetics dataset	Disease Risk	SVM	Internal	AUC: 0.864 for CD and 0.826 for UC	71.0%, 83.0%
187	lsakov <i>et</i> al. (2017)	IBD	Genetics dataset	Disease Risk	RF, SVM, Gradient boosting, elastic net regularized generalized linear model	Internal/Externa	Accuracy: 80.8%, AUC: 0.829	57.7%, 88.0%
174	Niehaus <i>et</i> <i>al.</i> (2015)	CD	Laboratory studies	Disease Severity	SVM, LR, RF	Internal	Accuracy: 68.7%	59.1%, 78.4%

172	Maeda <i>et</i> <i>al.</i> (2019)	UC	Colonoscopy + ECS	Disease Severity	CAD	Internal	Accuracy: 90%	74.0%, 91.0%
166	Ozawa et al. (2019)	UC	Colonoscopy	Disease Severity	CNN (GoogLeNet)	Internal	AUC: 0.86, 0.98 to identify Mayo 0 and 1	N/A
175	Reddy <i>et</i> <i>al.</i> (2019)	CD	EHR data	Disease Severity	Gradient boosting, RR, LR	Internal	AUC: 0.9282 in the GB model, 0.8270 in the RR, and 0.8112 in the LR	N/A
173	Matalka <i>et</i> <i>al.</i> (2013)	IBD	Histopathology	Disease Severity	N/A	Internal	N/A	98.3%, 98.3%
176	Stidham <i>et</i> <i>al.</i> (2020)	CD	CTE	Disease Severity	Semi-automate d bowel measurement	Internal	Accuracy: 87.6%, AUC: 0.857	67.2%, 92.5%
177	Stidham <i>et</i> <i>al.</i> (2019)	UC	Colonoscopy	Disease Severity	CNN	Internal/Externa	AUC: 0.966	83, 96%
179	Yao <i>et al.</i> (2021)	UC	Colonoscopy	Disease severity	CNN	Internal/Externa	Accuracy: 87.6%	90.2%,87.0%
190	Firouzi <i>et</i> <i>al.</i> (2007)	IBD	EHR data	Other	WEKA (Waikato Environment for Knowledge analysis)	Internal	Accuracy: 86.2-89.8%	65.7-82.8%, 95.2-96.3%
189	Hou (2013)	IBD	Colonoscopy	Other	NLP ARC	Internal	Accuracy: 80%	77.0%, 0.88%
184	Waljee <i>et</i> <i>al.</i> (2018)	UC	Laboratory studies + demographics	Response to treatment	RF	internal	AUC: 0.73	72.0%, 68.0%
185	Waljee <i>et</i> al. (2017)	IBD	Laboratory studies + demographics	Response to treatment	RF	Internal	AUC: 0.79 (vs 0.49 6TGN)	N/A
182	Waljee <i>et</i> <i>al.</i> (2010)	IBD	Laboratory tests	Response to treatment	RF	Internal	AUC: 0.856 for non-responders ; 0.594 for 6TGN	N/A

180	Doherty <i>et</i> <i>al.</i> (2018)	CD	Fecal microbiota	Response to treatment Ustekinumab	RF	Internal	AUC: 0.844	77.4%, 83.1%
186	Waljee <i>et</i> al. (2019)	CD	CRP, Albumin, demographics	Response to treatment	RF	Internal	AUC: 0.78 for 8w model, 0.76 for albumin/CRP at 6w model	8w model: 79.0% , 67.0%; albumin/CRP 6w: 77.0%, 68.0%
181	Douglas <i>et</i> <i>al.</i> (2018)	CD	Genetics from intestinal biopsy	Response to treatment/Diseas e severity	RF	Internal	Accuracy: 84.2%	N/A
143	Aoki <i>et al.</i> (2019)	CD	VCE	Ulcers	CNN	Internal	Accuracy: 90.8%, AUC: 0.958	88.2%, 90.9%

IBD: Inflammatory bowel disease; DNN: Deep neural network; SVM: Support vector machine; RF: Random forest; MRI: Magnetic resonance imaging; AUC: Area under the curve; CD: Crohn's disease; UC: Ulcerative colitis; VCE: Video capsule endoscopy; LR: Logistic regression; CNN: Convolutional neural network; CAD: Computer-aided detection; CTE: Computed tomography - Enterography; EHR: Electronic health record; NLP: Natural language processing.

Supplementary Table 5 Studies examining Hepatobiliary conditions

Reference	Author (year)	Disease	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy(%) / AUC (dec)	Sensitivity/Specificity
251	Abajian et al. (2018)	нсс	MRI, Clinical data	Predict treatment response of TACE based on qEASL criterion	LR, RF	Internal	78.0%	62.5% / 82.1%
209	Ahmed et al. (2020)	HCV	Tagged MRI	Detect HCV-associated liver F1-F4 fibrosis from the heart- induced deformation in tagged MR images	SVM	LOO cross-validation	83.7%	81.8% / 86.6%
264	Ai et al. (2018)	DILI	Drug molecular fingerprints	To predict hepatotoxicity in early stages of drug development	SVM, RF, extreme gradient boosting, QSAR model	Internal/External	Training: 71.1% (0.764). Testing: 84.3% (0.904)	Training: 79.9%/60.3%. Testing: 86.9%/75.4%.
243	Andres et al. (2018)	PSC, LT	Clinical data	Predict individual survival after LT for PSC	Patient-specific survival prediction (PSSP) software	Internal	PSSP accurately estimates the survival probability over time	N/A
244	Ayllon et al. (2018)	LT	Clinical data	Validation of model for doner-recipient matching in liver transplantation. Outcome 1) graft survival 3 months 2) graft survival 12 months	ANN, MOEA	Internal/External	3-month:0. 94 (CCR and MS AUC) 12-month: 0.78, 0.82 (CCR, MS AUC)	N/A
265	Banerjee et al. (2018)	нсс	US	Extract LI-RADS scoring of HCC from structured and unstructured US reports	NN, combination with word semantics and rule-based LI-RADS coding	Internal	N/A	49.0% / 59.0%
245	Bertsimas et al.	LT	Clinical data	Predict death or unsuitable for LT	OCT model (decision tree	50% training, 20% validation,	0.859	N/A

	(2019)			within 3 months	based)	30% testing		
246	Bhat et al. (2018)	LT, NODM	Clinical data	Key predictors and survival outcome of NODM after LT.	RF, NN, LR, gradient boosting, SVM	70% training, 30% validation	N/A	Rater 1: 63%/ 77%; rater 2: 62%/ 74%
247	Briceno et al. (2014)	LT	Clinical data	Donor-recipient matching in LT and prediction of 3 month graft survival	ANN, LR, decision tree, SVM	Internal/External	NN-CCR: 90.79% (0.80). NN-MS: 71.42% (0.82)	N/A
210	Byra et al (2018)	NAFLD	US, B-mode	Assessment of steatosis level on ultrasound	D-CNN, SVM, Lasso regression method, ImageNet training	Internal	0.977	100% / 88.2%
235	Canbay et al. (2019)	NASH, NAFLD	Clinical data	Differentiate NAFLD from NASH	ensemble feature selection	Internal/External	0.730	N/A
211	Chang et al. (2016)	Cirrhosis	EHR	Improving the identification of cirrhosis patients by ICD-9 codes with addition of NLP.	n/a	Internal/External	N/A	NLP portion of algorithm: 90% / 98.98%
252	Chaudhary et al. (2018)	нсс	Multi-omics (RNAseq, miRNAseq, DNA methylation)	Survival prediction in HCC patients	SVM, autoencoders neural network	Internal/External	Concordance index of 0.69-0.77	N/A
212	Chen et al. (2017)	HBV, cirrhosis	US, elastography	Determine fibrosis stage of HBV or cirrhosis patients.	RF, k-nearest neighbor, SVM, naïve Bayes	Internal/External	Highest accuracy for RF: 82.9%	Highest values for SVM and naïve Bayes: 92.9% and 82.5%, respectively
193	Chen et al. (2020)	Gallbladder polyps	US	Differentiate diagnosis of neoplastic and non-neoplastic gallbladder polyps	Principal components analysis (PCA) and AdaBoost	Internal	87.5%	86.5% / 89.4%
213	Choi et al. (2018)	Liver cirrhosis, fibrosis	ст	Staging fibrosis	CNN	Internal/External	Significant fibrosis: 94.1% (0.96) Advanced fibrosis: 95%,	84.6-95.5% / 89.9-96.6%

							(0.97)	
							Cirrhosis: 92.1% (0.95)	
214	Cui et al. (2021)	Liver fibrosis	CT, multiphase	Staging liver fibrosis on multiphase CT	gradient boosting	Internal/External	F>1: 0.650 F>2: 0.790 F4: 0.800	F>1: 39.6%/85.1%. F>2: 72.7%/73.2% F4: 78.2%/81.8%.
266	Dickerson et al. (2019)	End stage liver disease, hepatic encephalopathy	EHR	Assess pre-transplant cognitive impairment in patients with end stage liver disease through patient to provider messages.	19 NLP measures (Lexical, Lexico-syntactic, Syntactic, Lexico-semantic, Sentiment domains)	Internal	MELD≥30 decreased word length, fewer 6-letter words, increased sentence length	N/A
236	Docherty et al. (2021)	NASH	EHR	Predict NASH from NAFLD data of Optum EHR dataset with liver biopsy as gold standard.	extreme gradient boosting	Internal/External	14-feature model: AUC of 0.82. 5-feature model: AUC of 0.79	14-feature: Sn 81%. 5-feature: 80%.
204	Dong et al. (2019)	Cirrhosis, EV	Clinical data	Predict EV in liver cirrhosis patients	RF	Internal/External	EV: 0.82 VNT: 0.75	EV 92.3%/65.9%. VNT: 100%/49.3%.
256	Eaton et al. (2020)	PSC	Clinical data	PRESTO PSC risk estimate tool based on clinical and laboratory values to predict PSC outcomes (decompensation)	gradient boosting	Internal/External	PSC risk estimate tool predicts decompensation with C-statistic: 0.90 (higher then MELD or Mayo Score)	N/A
203	Abd El-Salem et al. (2019)	HCV cirrhosis, EV	Clinical data	Predict EV in HCV cirrhosis patients from clinical and laboratory data	ANN, naïve Bayes, decision tree, SVM, RF, Bayesian network	Internal/External	Bayesian network (highest performance): 68.9% (0.748)	65.3% / 72.0%
237	Fialoke et al. (2018)	NASH	EHR	Predict NASH from NAFLD	decision tree, LR, RF, extreme gradient boosting	Internal/External	76.2-79.7% (0.83-0.88)	74.3-77.4% / 77-80.8%

215	Forlano et al. (2020)	NAFLD	Histopathological slides	NASH, ballooning, and fibrosis	k-means	Internal	0.802	80.0% / 62.0%
257	Garcia et al. (2019)	ACLF	Clinical data	Predict mortality in patients with ACLF up to day 29.	extreme gradient boosting, LR	Internal	Day 1: 0.97. Day 29: 0.758.	N/A
273	Garcia-Carretero et al. (2019)	NASH	Clinical data	Prediction of NASH among patients with hypertension.	LASSO, RF	80% training, 20% testing	0.790	70.0% / 79.0%
218	Gatos et al. (2019)	CLD, liver fibrosis	US, SWE	Fibrosis staging	CNN	Internal	82.5-95.5%	N/A
216	Gatos et al. (2016)	CLD, liver fibrosis	US, SWE	Fibrosis staging	SVM	Internal	87% (0.85)	83.3% / 89.1%
217	Gatos et al. (2017)	CLD, liver fibrosis	US, SWE	Fibrosis staging	SVM	Internal	87.3% (0.87)	93.5% / 81.2%
194	Hamm et al. (2020)	Liver masses, HCC	MRI	Differentiate benign from malignant focal liver lesions	CNN	Internal	0.992	90.0% / 98.0%
267	He et al. (2019)	Liver cirrhosis, fibrosis	MRI, Clinical data	Stiffness estimation	Radiomics, SVM	Internal	75% (0.80)	63.6% / 82.4%
219	Heinemann et al. (2019)	NAFLD, NASH	ANIMAL - Histopathology slides	Define ballooning, inflammation, steatosis and fibrosis (features of NASH, Kleiner score) on histology slides	CNN (4×)	Internal	86.0–94.5%	N/A
205	Hong et al. (2011)	HBV cirrhosis, EV	Clinical, imaging data	Prediction of presence of esophageal varices in HBV cirrhosis patients based on clinical, laboratory and imaging variables	MLP-ANN (three-layered, feed-forward ANN model with three hidden nodes, with back propagation algorithm)	Internal	86.8%	96.5% / 60.4%
220	Huang et al. (2007)	HCV cirrhosis	Genomics	To predict cirrhosis risk in patients with chronic HCV (Cirrhosis Risk Score)	naïve Bayes	Internal/External	0.760	Low risk for cirrhosis: 87.9%/42.9%. High risk for cirrhosis: 53.6%/96.2%.

258	Ibragimov et al.	Post SBRT liver	Clinical data, CT	Predict SBRT	CNN, SVM, RF, fully			
	(2018)	injury	(3D dose plans)	hepatoxicity on pre-treatment CT	connected NNs	Internal	0.850	N/A
259	Jovanovic et al. (2014)	Choledocholithiasis	Clinical data, laboratory and extracted imaging features	Predict presence of biliary stones/ necessity for therapeutic ERCP	MNN, LR	Internal	0.884	92.7% / 68.4%
260	Kanwal et al. (2020)	Liver cirrhosis	Clinical data	Predict all-cause mortality in cirrhosis patients	LR with LASSO, extreme gradient boosting, partial path model	Internal/External	CiMM 0.780 vs MELD-Na: 0.670	Mean sensitivity of CiMM was 10/11% higher than MELD-Na score
248	Kazemi et al. (2019)	LT	Clinical data	Predict survival after LT	SVM, Bayesian network, decision tree, MNN, k nearest neighbor	Internal	0.900	Sensitivity: 81.0%
268	Khan et al. (2018)	HBV	Serum, Raman spectroscopy	Detect spectral differences between normal and HBV serum samples	SVM	Internal	98.0%	100% / 95.0%
195	Kim et al. (2021)	нсс	CT, multiphase	Detecting primary hepatic malignancies on CT	CNN, mask region based	Internal/External	84.8%	Sensitivity: 84.8%
196	Kim et al. (2004)	Liver cirrhosis (multiple etiologies)	Molecular gene analysis with cDNA microarray on surgical tissue	 Determine molecular signature between two distinct groups of cirrhosis patient, low-risk vs high-risk s 2) Develop molecular gene signature for HCC 	k-nearest neighbor, SVM	Internal/External	1) KNN: 78.0%, SVM: 86.0% 2) KNN: 79.0%, SVM: 89.0%.	N/A
222	Konerman et al. (2015)	нсч	Clinical data	Fibrosis prediction in HCV patients	LR, RF	Internal/External	Fibrosis progression: 0.78-0.79 Clinical progression:	Fibrosis progression: 85%/71-77% Clinical progression: 74-81%/70-78%

							0.79-0.86	
221	Konerman et al. (2019)	HCV	Clinical data	Prediction of cirrhosis in patients with HCV	Boosted survival tree	Internal/External	1 year: 0.830 3 year: 0.797 5 year: 0.787	1 year: 76%/77%. 3 year: 76%/73%. 5 year:73%/74%.
263	Konerman et al. (2017)	HCV	Clinical data	To predict fibrosis progression and clinical outcomes in HCV patients	RF	External	1 year: 0.78 3 year: 0.76	1 year: 80%/62% 3 year: 69%/65%
223	Kuppili et al. (2017)	NAFLD, liver fibrosis	us	Risk stratification for fatty liver disease on ultrasound images	SVM, extreme learning machine	Cross-validation	96.8% (0.97)	94.2% / 97.6%
224	Lara et al. (2014)	chronic HCV, liver fibrosis	Viral markers, HCV genetic assays	To identify patients with fast and slow fibrosis progression rates among patients undergoing liver transplant for chronic HCV infection.	k-nearest neighbor, linear projection, Bayesian networks	Internal/External	Split cross-validation: 90-95%. Validation: 85-90%.	70.0-71.4% / 92.3-100%
249	Lau et al. (2017)	LT	Clinical data	Predict graft failure or non-function after LT using donor and recipient factors	RF, ANN, LR	Internal	0.818	N/A
234	Lee et al. (2020)	Liver fibrosis	B-mode ultrasonography	Predict METAVIR score for liver fibrosis	CNN	Internal/External	Internal: 86.5% (detecting significant fibrosis, F2-F4). External: 88.3% (detecting cirrhosis, F4)	Internal: 91.3%/82.4% (detecting significant fibrosis/ F2-F4). External: 77.8%/93.7% (detecting cirrhosis/ F4)
250	Lee et al. (2018)	LT	Pre- and intraoperative variables by anesthesia and	Prediction of AKI after LT	decision tree, RF, gradient boosting machine, SVM, naîve Bayes, MNN,	Internal	84.0% (0.90)	N/A

			surgery		deep belief networks, LR			
					HELWOIKS, LK			
225	Li et al. (2019)	HBV, liver fibrosis	US	Fibrosis staging in HBV patients	decision tree, RF, SVM, AdaBoost	Internal	AdaBoost, RF and SMV: 85.0%	AdaBoost: 87.5%/76.9%. RF 87.5%/76.9%. SVM: 93.8%/69.2%
269	Li et al. (2018)	нсс	ст	Automatic liver tumor segmentation	2D and 3D fully CNN (H-DenseUNet)	Internal	Effectively performs liver and tumor segmentation from CT volumes	N/A
206	Liu et al. (2020)	Liver cirrhosis	CT, contrast enhanced. MRI.	Identify clinically significant portal hypertension (CSPH) on 1) CT 2) MRI	CNN (pretrained-VGG19)	Internal/External	1.91.1% 2.88.9%	1. 91.4%/90.9%. 2. 92.0%/84.9%
274	Ma et al. (2018)	NAFLD	Clinical and laboratory data	NAFLD prediction	Bayesian network	Internal	83.0%	87.8% / 67.5%
207	Marozas et al. (2017)	portal hypertension	Clinical data	Predict presence of elevated HVPG	naïve Bayes, LR, decision tree, RF	Internal	89.7% (0.96)	83.0% / 92.0%
226	Meffert et al. (2014)	Liver steatosis	Clinical data	Steatosis score	Variable selection: boosting algorithm. Bayesian network.	Internal/External	0.876	N/A
275	Moccia et al. (2018)	LT, liver steatosis	Histopathology donor liver	Analysis of donor liver texture for hepatic steatosis		Internal	88.0%	95.0% / 81.0%
253	Morshid et al. (2019)	нсс	СТ	Predicting TACE response of HCC patients	CNN, RF	Internal	74.2% (0.733)	N/A
270	Mueller-Breckenridge et al. (2019)	HBV	Genomics	Classify seroconversion to HBeAg from complete HBV genome of European and Asian	RF	Internal/External	97.0%	96.0% / 100%

				cohort				
227	Perakakis et al. (2019)	NASH, NAFLD	Serum (lipidomic, glycomic and free fatty acids)	NASH and fibrosis diagnosis	SVM	Internal	>90.0% NASH, NAFLD diagnosis >97.0% Fibrosis diagnosis	Multiple metrics reported in Fig. 6
276	Perveen et al. (2018)	NAFLD	EHR	NAFLD diagnosis risk and progression	Decision tree	Internal/External	76% (0.73)	Without random oversampling: 83.2-93.7% / 76.0%-78.0%
228	Piscaglia et al. (2006)	HCV, LT	Clinical data, laboratory	Predict post-LT fibrosis in HCV patients	ANN	Internal	83.3%	100% / 79.5%
208	Qi et al. (2019)	Liver cirrhosis, portal hypertension	CT angiography (virtual hepatic vein pressure gradient, HVPG)	Develop and validate computational model for non-invasive HVPG	Finite element analysis and computational fluid dynamics analysis	Internal/External	Training: 0.83. Validation: 0.89.	74.0% / 93.0%
229	Raoufy et al. (2009)	chronic HBV, liver cirrhosis	Laboratory data and age	Diagnose cirrhosis based on laboratory data and age	ANN	Internal	91.4% (0.898)	97.5% / 92.0%
230	Redman et al. (2017)	NAFLD	Radiology reports (US, CT, MRI)	Identify presence of fatty liver disease based on full-text radiology reports	CLAMP NLP software	Internal/External	US: 93.4%. CT: 98.8%. MRI: 100%	US: 90%/95.3%. CT: 93.5%/99.5%. MRI: 100%/100%
254	Saillard et al. (2020)	нсс	Histological slides, whole slide imaging	Prediction of survival after HCC resection	Pre-trained CNN	Internal/External	C-indices for survival prediction 0.75-0.78	N/A
197	Schmauch et al. (2019)	Liver masses	US	Detection and classification of focal liver lesions	CNN	Internal/External	Detection: 0.935. Characterization: 0.916.	N/A
255	Shan et al. (2019)	нсс	СТ	Predict recurrence of HCC after resection or ablation based on	Radiomics, LASSO LR model	Internal	0.790	N/A

				peritumoral radiomics				
272	Shousha et al. (2018)	HCV	Genetics	Discover predictors for advanced fibrosis in HCV patients	MNN, decision tree (REPTree)	Internal	MNN: 0.880	MNN 82.5% / 81.1%
198	Singal et al. (2013)	нсс	Clinical data	Predicting HCC development in cirrhosis patients	decision tree, RF	Internal	80.7%	80.7% / 46.8%
231	Sowa et al. (2013)	NAFLD	Liver serum parameters, hyaluronic acid and cell death markers	Fibrosis prediction in NAFLD	LR, decision tree, RF, SVM, k-nearest neighbor	Internal	79.0%	>60.0% / 77.0%
238	Sowa et al. (2014)	NALFD, ALD	Liver serum parameters, (adipo-)cytokines and cell death markers	Distinguish NAFLD from ALD.	LR, decision tree, SVM, RF	Internal	NAFLD from ALD non-cirrhosis: SVM (0.9118) – RF (0.8932)- DT 89.02%. ALD cirrhosis from non-cirrhosis: SVM (0.9058) – RF (0.8971) – DT 95.1%	Decision tree NAFLD from ALD non-cirrhosis: 74.2%/98.4%. ALD cirrhosis from non-cirrhosis: 94.1%/96.1%
261	Speiser et al. (2019)	ALF (acetaminophen)	Clinical data	Daily outcomes in acetaminophen induced ALF	decision tree (BiMM tree)	Internal/External	0.749	44.9-61.3% / 63.8-84.1%
262	Speiser et al. (2015)	ALF (acetaminophen)	Clinical data	APAP ALF prognosis prediction	decision tree (CART analysis)	Internal/External	72.0% (0.79)	71.0% / 77.0%
199	Sun et al. (2020)	Liver cancer	Histopathological image analysis	Classify liver histopathological images as normal or cancer	CNN	Internal	100%	100% / 100%

239	Taylor-Weiner et al. (2021)	NASH	Histopathological samples	Diagnose NASH on histopathlogy samples	CNN. Deep Learning Treatment Assessment (DELTA) Liver Fibrosis score	Internal/External	Concordance indices for inflammation, steatosis and ballooning: 0.57-0.67	N/A
240	Van Vleck et al. (2019)	NAFLD	EHR	Identifying patients with NALFD in EHR	CLIX clinical NLP engine (general-purpose stochastic parser, Clinithink)	Internal	N/A	NLP 93.0% / 89% NLP + ICD: 96.0% / 89.0%.
242	Vanderbeck et al. (2014)	NAFLD	Histopathological slides	Automatic classification of white regions indicative of NAFLD	SVM	Internal	89.0%	59.0-98.0% / 61.5-95.7%%
241	Vanderbeck et al. (2015)	NAFLD	Histopathological slides	Automatic quantification of 1) lobular inflammation and 2) hepatocyte ballooning	SVM	Internal	Lobular inflammation : (0.950) Hepatocyte ballooning (0.980)	Lobular inflammation: 49.0% / 70.0% Hepatocyte ballooning: 54.0% / 91.0%
200	Wang et al. (2019)	Liver masses, HCC	MRI, multiphase	Malignancy classification	СИИ	Internal	N/A	82.9% / 76.5%
232	Wang et al. (2019)	HBV, liver fibrosis	US, elastography	Assess fibrosis in HBV	CNN	Internal/External	0.970-1.000	Multiple metrics reported in Table II
233	Wei et al. (2018)	HBV, HCV	Clinical data	Predict fibrosis in HBV patients	decision tree, RF, GB	Internal/External	0.918	Advanced fibrosis: 84.0% / 85.0% Cirrhosis: 85.0% / 78.0%.
271	Williams et al. (2020)	DILI	Hepatic safety assays	Predict DILI in compounds during drug development	Bayesian network	Bayesian approach (no cross-validation)	86.0%	87.0% / 85.0%
277	Wu et al. (2019)	NAFLD	Clinical data	Predict fatty liver disease	RF, LR, ANN, naïve Bayes	Internal/External	RF: 87.5% (0.925)	RF: 87.2% / 85.9%
201	Yasaka et al. (2017)	Liver masses	CT multiphase	Differentiate benign from malignant	CNN	Internal	84.0% (0.92)	Sensitivity of:

				liver masses				71-100%
202	Yasaka et al. (2018)	Liver masses	MRI	Differentiate liver masses	CNN	Internal	(0.84-0.985)	76-84% / 65-76%
278	Yip et al. (2017)	NAFLD	Clinical data	To predict NALFD combining laboratory values with presence of hypertension	decision tree, LR, RR,	Internal	87.0% (0.870)	92.0% / 90.0%

HCC: Hepatocellular carcinoma; MRI: Magnetic resonance imaging; HCV: Hepatitis-C virus; SVM: Support vector machine; LOO: Leave-one-out; DILI: Drug-induced liver injury; PSC: Primary sclerosing cholangitis; LT: Liver transplant; ANN: Artificial neural network; MOEA: Multi-objective evolutionary algorithm; NN: Neural network; US: Ultrasound; NODM: New-onset diabetes mellitus; LR: Logistic regression; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; NLP: Natural language processing; HBV: Hepatitis B virus; CT: Computed tomography; EHR: Electronic health record; MELD: Model end stage liver disease; EV: Esophageal varices; ACLF: Acute on chronic liver failure; CLD: Chronic liver disease; SWE: Shear-wave elastography; SBRT: Stereotactic body radiation therapy; HVPG: Hepatic vein pressure gradient; ALF: Acute liver failure.

Referenc e	Author (year)	Disease	Diagnostic Modality	Objective	Analytic model	Validation	Accuracy (%)/AUC (dec.)	Sensitivity/Specificit Y
294	Al-Haddad et al. (2010)	IPMN	EHR	Develop clinical registry of patients with surgically resected IPMN	Regenstrief EXtraction Tool (REX)	Internal	N/A	Sensitivity of 97.5%
283	Andersson et al. (2011)	AP	Clinical data	Predict severe acute pancreatitis	ANN	Internal	0.920	N/A
327	Blyuss et al. (2020)	PDAC	PancRISK, urine samples	Comparison of different Al algorithms for risk score of PDAC based on three urinary biomarkers	NN, RF, SVM, NF, LR	Internal	AUC: LR, NN and NF: 0.940, 0.930, 0.940	81.0% / 90.0% LR 81.0% / 90.0% NN 87.0% / 90% NF 82.0% /89.0% SVM 86.0% / 82.0% RF 96.0% / 96.0% LR +

Supplementary Table 6 Studies examining pancreatic conditions

								CA 19.9
316	Chakraborty et al. (2018)	IPMN	CT, clinical data	Investigate CT imaging features as markers for assessment of IPMN risk (Iow vs high).	Radiomics, RF, SVM	Internal	0.770 for imaging features alone. 0.810 with clinical variables.	N/A
301	Chu et al. (2019)	PDAC	СТ	Differentiate PDAC from	Radiomics, RF	Internal	0.999	100% / 98.5%
317	Corral et al. (2019)	IPMN	MRI	Detect dysplasia in pancreatic cysts. Detect high grade dysplasia or cancer.	CNN	Internal	0.780	Detect dysplasia: 92.0% / 52.0% Detect HGD/cancer: 75.0% / 78.0%
302	Das et al. (2008)	PDAC, CP	EUS, radial scanning echoendoscopes	Differentiating PDAC from non-neoplastic tissue on EUS images	DIA (Image J) with PCA, ANN	Internal	0.930	93.0% / 92.0%
318	Dmitriev et al. (2017)	PCN	CT (2D axial 0.75mm), clinical data	Classification of four most common pancreatic cyst types (IPMN, MCN, SCA, SPN)	Bayesian combination of RF and CNN	Internal	83.6%	N/A
328	Facciorusso et al. (2019)	PDAC	EUS-CPN, clinical data	Prediction of pain response after celiac plexus neurolysis	ANN	Internal	0.940	N/A
285	Fei et al. (2019)	AP	Clinical data	Predict risk and severity of ARDS following severe acute pancreatitis	BP-ANN	Internal	84.4%	Sensitivity: 87.5%
286	Fei et al. (2017)	АР	Clinical data	Predict occurrence of portosplenomesenteric venous thrombosis (PSMVT)	BP-ANN	Internal	83.3%	80.0% / 85.7%
284	Fei et al. (2018)	АР	Clinical data	Predict acute lung injury in severe acute pancreatitis	BP-ANN	Internal	84.4%	87.5% / 83.3%
295	Gao et al. (2020)	N/A	MRI (T1-weighted	Differentiate pancreatic	CNN	Internal/Externa	79.5%	N/A

			contrast enhanced)	diseases on MRI	augmented by synthetic images from GANs	I	(0.9451)	
303	Gao et al. (2019)	PNET	MRI (T1-weighted contrast enhanced)	Predicting WHO grade of PNET	CNN augmented by synthetic images from GANs	Internal/Externa I	Cross validation: 85.1% External: 79.1-82.4%	N/A
329	Hayward et al. (2010)	PDAC	Clinical data	Prediction of clinical performance of patients with pancreatic cancer.	Rule-based, decision trees, k-nearest neighbor, Bayesian methods, LRA, MNN	Internal	96.2%	81.3% / 98.9%
287	Hong et al. (2013)	AP	Clinical data	Prediction organ failure in AP.	BP-MNN	Internal	96.2%	81.3% / 98.9%
330	Kaissis et al. (2019)	PDAC	MRI 1.5T (DWI)	Predict above vs below median OS in PDAC patients.	Radiomics, RF	Internal	0.900	87.0% / 80.0%
305	Kaissis et al. (2020)	PDAC	CT (portal-venous-phase)	Predict molecular subtype of pancreatic cancer (quasi-mesenchymal, QM vs non-quasi-mesenchymal , non-QM) on CT	Radiomics, RF	Internal	0.930	84.0% / 92.0%
304	Kaissis et al. (2019)	PDAC	MRI 1.5T (DWI)	Predict molecular subtype of pancreatic cancer (KRT81+) on MRI	Radiomics, Gradient boosted-tree algorithm	Internal	0.930	90.0% / 92.0%
288	Keogan et al. (2002)	AP	Clinical data (physical, biochemical, radiographic)	Prediction of hospital stay length in AP	ANN	Internal	0.830	100% / 29.0%
319	Kurita et al. (2019)	PCN	Clinical data, cyst	Differentiate benign	ANN	Internal	92.9%	95.7% / 91.9%

			fluid cytology and chemistry and extracted imaging features	from malignant pancreatic cystic lesions through cyst fluid obtained during surgery or EUS-FNA				
320	Kuwahara et al. (2019)	IPMN	EUS still images	Define benign from malignant IPMN	CNN (based on ResNet50)	Internal	94.0%	95.7% / 92.6%
331	Li et al. (2019)	PDAC	СТ	Predict survival time in PDAC based on radiomics and HMGA2 and C-MYC gene expressions profile	Radiomics, SVM with k-fold	Internal	95.0% (0.900)	92.0% / 98.0%
335	Li et al. (2018)	PDAC	PET-CT	Pancreatic cancer CAD for PET-CT	SLIC with grey interval mapping for segmentation , DT-PCA for best feature selection, Hybrid SVM-RF to classify	Internal	96.5%	95.2% / 97.5%
321	Li et al. (2019)	PCN	MDCT pancreas protocol	PCN classification between four histopathologically confirmed subtypes (IPMN, MCN, SCN and SPN) with CAD	Densely connected CNN (Dense-Net), saliency maps	Internal	72.8%	N/A
306	Linning et al. (2020)	PDAC, AIP	CT, multiphase	Differentiate focal-type AIP from PDAC	Radiomics, RF	Internal	94.8%	93.3% / 96.1%
336	Liu et al. (2019)	PDAC	СТ	Diagnose pancreatic cancer on CT faster than radiologists.	Faster R-CNN model	Internal	0.9632	N/A
315	Luo et al. (2020)	PNET	ст	To predict PNET grade on CT on arterial, venous and arterial/venous scans)	CNN	Internal/Externa I	88.1% (0.820)	88.3% / 84.6%

280	Marya et al. (2020)	AIP	EUS video	Differentiate AIP from PDAC, CP and NP.	CNN, Occlusion heatmap analysis	Internal	75.6%	AIP from NP: 99%/98% AIP from CP: 94%/71% AIP from PDAC 90%/93% AIP from all 90%/85%
296	Mashayekhi et al. (2020)	CP, recurrent AP, functional abdominal pain	ст	Differentiate between functional abdominal pain, RAP and CP	Radiomics, ono-vs-one Isomap, SVM	Internal	82.1%, nonspecific abdominal pain AUC: 0.91, RAP AUC: 0.88, CP AUC of 0.90	Nonspecific abdominal pain group 79%, 100%; RAP: 95%, 78%; CP: 71%, 95%
337	Mehrabi et al. (2015)	PC	EHR	ldentify patients with family history of pancreatic cancer	Unstructured Information Management Architecture (UIMA) with multiply analysis engines	Internal/Externa I	N/A	75.3% / 91.3%
289	Mofidi et al. (2007)	АР	Clinical data	Identify severe acute pancreatitis and predict fatal outcome	ANN	Internal	Severity: 92.5% Death: 97.5%	Severity: 89%/96% Death: 88%/98%
307	Momeni-Boroujen i et al. (2017)	Solid pancreatic masses	EUS-FNA, cytology slides	Design computer model assisted diagnosis of solid pancreatic mass biopsy	MNN	Internal	Benign and malignant: 100% Atypical: 77.0%	80.0% / 75.0%
308	Norton et al. (2001)	PDAC, pancreatitis	EUS	Differentiate between CP and PDAC on EUS	n/a	Internal	80.0%	100% / 50.0%
322	Okon et al. (2001)	Intraductal proliferativ e lesions	Surgical specimen	Classification of pancreatic intraductal proliferative lesions based on nuclear	DIA	Internal	73.0%	N/A

				features				
338	Ozkan et al. (2016)	PDAC	EUS	Detect pancreatic adenocarcinoma in 1. all patients 2. under 40 3. 40-60 years 4. 60+ years	ANN with age-based MLP	Internal	1. 87.5% 2. 92.0% 3. 88.5 % 4. 91.7 %	1. 83.3% / 93.3% 2. 87.5% / 94.1% 3. 85.7% / 91.7% 4. 93.3% / 88.9%
290	Pearce et al. (2006)	АР	Clinical data	Predict severity acute pancreatitis with APACHE II variables and CRP	KLR method	Internal	0.820	87.0% / 71.0%
291	Pofahl et al. (1998)	AP	EHR	Predict LOS in patients with AP	BP-ANN	N/A	N/A	Sensitivity 75.0%
292	Qiu et al. (2019)	АР	Clinical data	Predict MOF in moderately severe AP	SVM, LR and ANN	Internal	SVM 79.9% LR 77.9% ANN 71.1%	SVM 75.0% / 81.7% LR 79.2% / 77.5% ANN 86.1% / 65.5%
293	Qiu et al. (2019)	AP	Clinical data	Predict intra-abdominal infection in moderately severe AP	MNN	Internal/Externa	0.923	80.9% / 89.4%
309	Qui et al. (2019)	PDAC	ст	To predict histopathological grades of PDAC	SVM	Internal	86.0%	78.0% / 95.0%
339	Roch et al. (2015)	PCN	EHR	To implement NLP based pancreatic cyst identification system	Unstructured Information Management Architecture (UIMA) with novel negation algorithm DEEPEN	Internal	N/A	99.9% / 98.8%
297	Roth et al. (2018)	N/A	СТ	Pancreas localization and segmentation	HNNS	Internal	N/A	Sensitivity of nearly 100% for all scans (except for two cases ≥ 94.54%)
310	Saftoui et al.	PDAC, CP	EUS elastography	Differentiate benign from malignant patterns	MLP-NN	Internal	91.1% training / 84.3%	87.6% / 82.9%

	(2012)			in focal pancreatic masses.			testing	
311	Saftoui et al. (2008)	N/A	EUS elastography, hue histograms	Differentiate between normal and diseased tissue on EUS elastography.	MLP-NN	Internal/Externa	89.7%	91.4% / 89.7%
312	Saftoui et al. (2015)	PDAC, CP	CEH-EUS, EUS-FNA	Validate parameters from TIC analysis with ANN model	BP-ANN	Internal/Externa	94.6%	94.6% / 94.4%
323	Song et al. (2013)	PCN	Cytology slides	Automate diagnosis between SCA and MCN.	Bayesian Classifier, k-Nearest Neighbors, SVM, ANN	Internal	Bayesian 79.0% k-NN: 78.0% SVM: 85.0% ANN 85.0%	Bayes: 93%/65% k-NN: 84%/75% SVM 86%/85% ANN 84%/86%
324	Springer et al. (2019)	PCN	Multimodality (Clinical, imaging and cyst fluid genetics and biochemical markers)	Classify patients with pancreatic cysts to surgery, monitoring or no further surveillance	CompCyst	Internal	69.0%	Discharge: 46% 100% Surgery: 91%/54% Surveillance: 99%/30%
332	Walczak et al. (2017)	PDAC	Clinical data	To predict survival likelihood in PDAC	ANN	Internal	N/A	91.0% / 38.0%
325	Wei et al. (2019)	SCN	СТ	To differentiate SCN from MCN on MDCT	Radiomics, SVM	Internal/Externa I	Cross validation AUC: 0.767 Independent validation: 0.837	Cross validation: 0.686, 0.709. Independent validation: 0.667, 0.818.
333	Xu et al. (2013)	PDAC	EUS images	Score the texture features of PDAC on EUS images and evaluate its prognostic value in patients with unresectable pancreatic cancer treated by EUS brachytherapy	DIA, fuzzy classification method	Internal	N/A	N/A

326	Yang et al. (2019)	PCN	CT, contrast-enhanced	To distinguish SCA from MCA.	Radiomics, RF, LASSO	Internal	2mm group: 74.0% (0.66) 5mm group: 83.0% (0.75)	2mm group: 86%/71% 5mm group: 85%/83%
313	Yeaton et al. (1998)	PDAC, CP	ERCP brush cytology	Distinguishing CP from PDAC on ERCP brush cytology	Decision tree method, production rule system.	Internal	88.9%	80.0% / 80.0%
298	Zhang et al. (2020)	PDAC	СТ	To predict survival in PDAC	CNN	Internal/Externa I	Index of prediction accuracy: 11.8% (from traditional radiomics method: 3.8%)	N/A
340	Zhang et al. (2010)	PDAC	EUS	Diagnose pancreatic cancer on EUS images	DIA, SVM	Internal	97.9%	94.4% / 99.5%
334	Zhang et al. (2020)	N/A	EUS images & video	DCNN1: Identify WL/EUS images and activate downstream models. DCNN2: filter unqualified images. DCNN3: recognize pancreas stations during scanning. DCNN4: segment landmarks and monitor pancreatic vision loss.	DCNN, BP MASTER system (station recognition RF classifier)	Internal/Externa I	Station classification: 82.4% Segmentation : 90.0% Trainee recognition: 78.4% from, 67.2%	N/A
299	Zheng et al. (2020)	PDAC	MRI	Pancreas segmentation on MRI in the presence of PDAC	DCNN, 2D UNET, SE blocks, shadowed sets framework	Internal/Externa I	99.9% local dataset 99.9% NIH dataset	Local dataset:64.4%/86.1% NIH dataset: 86.3%/83.1%
300	Zhu et al. (2015)	AIP, CP	EUS	Differentiate AIP from	SVM with LTPV	Internal	89.3%	84.1% / 92.5%

				CP on EUS	descriptor			
314	Zhu et al. (2013)	PDAC, CP	EUS images (enhanced/contrast)	Feasibility of CAD to differentiate between CP and PDAC	SVM	Internal	94.2%	96.3% / 93.4%

IPMN: Intraductal papillary mucinous neoplasm; EHR: Electronic health record; AP: Acute pancreatitis; ANN: Artificial neural network; PDAC: Pancreatic ductal adenocarcinoma; NN: Neural network; RF: Random forest; SVM: Support vector machine; LR: Logistic regression; AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; CP: Chronic pancreatitis; EUS: Endoscopic ultrasound; MCN: Mucinous cystic neoplasm; SCA: Serous cystadenoma; SPN: Solid pseudopapillary neoplasm; PSMVT: Portosplenomesenteric venous thrombosis; PNET: Pancreatic neuroendocrine tumor; DWI: Diffusion-weighed imaging; PET: Positron emission tomography; AIP: Autoimmune pancreatitis; CAD: Computer-aided diagnosis; RAP: Recurrent acute pancreatitis; CEH-EUS: Contrast-enhanced harmonic endoscopic ultrasound.