Contents

MINIREVIEWS

8808 Ear, nose, and throat manifestations of COVID-19 and its vaccines
 Al-Ani RM

8816 Potential influences of religiosity and religious coping strategies on people with diabetes
 Onyishi CN, Eseadi C, Ilechukwu LC, Okoro KN, Okolie CN, Egbulu E, Asogwa E

ORIGINAL ARTICLE

Case Control Study

8827 Effectiveness of six-step complex decongestive therapy for treating upper limb lymphedema after breast cancer surgery

Retrospective Study

8837 Hospital admissions from alcohol-related acute pancreatitis during the COVID-19 pandemic: A single-centre study
 Mak WK, Di Mauro D, Pearce E, Karran L, Myintmo A, Duckworth J, Orabi A, Lane R, Holloway S, Manzelli A, Mossadegh S

8844 Indocyanine green plasma clearance rate and 99mTc-galactosyl human serum albumin single-photon emission computed tomography evaluated preoperative remnant liver
 Iwaki K, Kathara S, Kita R, Kitamura K, Hashida H, Uryuhara K

8854 Arthroscopy with subscapularis upper one-third tenodesis for treatment of recurrent anterior shoulder instability independent of glenoid bone loss

8863 Evaluation of the prognostic nutritional index for the prognosis of Chinese patients with high/extremely high-risk prostate cancer after radical prostatectomy
 Yang F, Pan M, Nie J, Xiao F, Zhang Y

Observational Study

8872 Chlorine poisoning caused by improper mixing of household disinfectants during the COVID-19 pandemic: Case series
 Lin GD, Wu JY, Peng XB, Lu XX, Liu ZY, Pan ZG, Qiu ZW, Dong JG

8880 Mental health of the Slovak population during COVID-19 pandemic: A cross-sectional survey
 Kralova M, Brazinova A, Sivcova V, Izakova L
Contents

World Journal of Clinical Cases
Thrice Monthly Volume 10 Number 25 September 6, 2022

| Prospective Study | 8893 | Arthroscopic anatomical reconstruction of lateral collateral ligaments with ligament advanced reinforcement system artificial ligament for chronic ankle instability
Wang Y, Zhu JX |
|-------------------|------|--|
| **SYSTEMATIC REVIEWS** | 8906 | How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM |
| | 8922 | Lymphocytic choriomeningitis virus: An under-recognized congenital teratogen
Ferenc T, Vujica M, Mezljak A, Vilbic-Cavlek T |
| **CASE REPORT** | 8932 | Alagille syndrome associated with total anomalous pulmonary venous connection and severe xanthomas: A case report
| | 8939 | Colo-colonic intussusception with post-polypectomy electrocoagulation syndrome: A case report
Moon JY, Lee MR, Yim SK, Ha GW |
| | 8945 | Portal vein gas combined with pneumatosis intestinalis and emphysematous cystitis: A case report and literature review
Hu SF, Liu HB, Hao YY |
| | 8954 | Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report
Sopek Merkaš I, Lakušić N, Paar MH |
| | 8962 | Treatment of gastric carcinoma with lymphoid stroma by immunotherapy: A case report
Cui YJ, Ren YY, Zhang HZ |
| | 8968 | Gallstone associated celiac trunk thromboembolisms complicated with splenic infarction: A case report
Wu CY, Su CC, Huang HH, Wang YT, Wang CC |
| | 8974 | Extracorporeal membrane oxygenation for lung cancer-related life-threatening hypoxia: A case report
Yoo SS, Lee SY, Choi SH |
| | 8980 | Multi-disciplinary treatment of maxillofacial skeletal deformities by orthognathic surgery combined with periodontal phenotype modification: A case report
Liu JY, Li GF, Tang Y, Yan FH, Tan BC |
| | 8990 | X-linked recessive Kallmann syndrome: A case report
Zhang P, Fu JY |
| | 8998 | Delayed complications of intradural cement leakage after percutaneous vertebroplasty: A case report
Ma QH, Liu GP, Sun Q, Li JG |
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9004</td>
<td>Coexistent Kaposi sarcoma and post-transplant lymphoproliferative disorder in the same lymph nodes after pediatric liver transplantation: A case report</td>
<td>Zhang SH, Chen GY, Zhu ZJ, Wei L, Liu Y, Liu YJ</td>
</tr>
<tr>
<td>9012</td>
<td>Misdiagnosis of pancreatic metastasis from renal cell carcinoma: A case report</td>
<td>Liang XK, Li LJ, He YM, Xu ZF</td>
</tr>
<tr>
<td>9020</td>
<td>Discoid medial meniscus of both knees: A case report</td>
<td>Zheng ZR, Ma H, Yang F, Yuan L, Wang GD, Zhao XW, Ma LF</td>
</tr>
<tr>
<td>9028</td>
<td>Simultaneous laparoscopic and arthroscopic excision of a huge juxta-articular ganglionic cyst compressing the sciatic nerve: A case report</td>
<td>Choi WK, Oh JS, Yoon SJ</td>
</tr>
<tr>
<td>9036</td>
<td>One-stage revision arthroplasty in a patient with ochronotic arthropathy accompanied by joint infection: A case report</td>
<td>Wang XC, Zhang XM, Cai WL, Li Z, Ma C, Liu YH, He QL, Yan TS, Cao XW</td>
</tr>
<tr>
<td>9044</td>
<td>Bladder paraganglioma after kidney transplantation: A case report</td>
<td>Wang L, Zhang YN, Chen GY</td>
</tr>
<tr>
<td>9050</td>
<td>Total spinal anesthesia caused by lidocaine during unilateral percutaneous vertebroplasty performed under local anesthesia: A case report</td>
<td>Wang YF, Bian ZY, Li XX, Hu YX, Jiang L</td>
</tr>
<tr>
<td>9057</td>
<td>Ruptured splenic artery aneurysms in pregnancy and usefulness of endovascular treatment in selective patients: A case report and review of literature</td>
<td>Lee SH, Yang S, Park I, Im YC, Kim GY</td>
</tr>
<tr>
<td>9064</td>
<td>Gastrointestinal metastasis secondary to invasive lobular carcinoma of the breast: A case report</td>
<td>Li LX, Zhang D, Ma F</td>
</tr>
<tr>
<td>9071</td>
<td>Post-bulbar duodenal ulcer with anterior perforation with kissing ulcer and duodenocaval fistula: A case report and review of literature</td>
<td>Alzerwi N</td>
</tr>
<tr>
<td>9078</td>
<td>Modified orthodontic treatment of substitution of canines by first premolars: A case report</td>
<td>Li FF, Li M, Li M, Yang X</td>
</tr>
<tr>
<td>9087</td>
<td>Renal cell carcinoma presented with a rare case of icteric Stauffer syndrome: A case report</td>
<td>Popov DR, Antonov KA, Atanasova EG, Pentchev CP, Milatchkov LM, Petkova MD, Neykov KG, Nikolov RK</td>
</tr>
</tbody>
</table>
Contents

9112 Congenital hepatic cyst: Eleven case reports
 Du CX, Lu CG, Li W, Tang WB

9121 Endovascular treatment of a ruptured pseudoaneurysm of the internal carotid artery in a patient with nasopharyngeal cancer: A case report
 Park JS, Jang HG

9127 Varicella-zoster virus meningitis after spinal anesthesia: A case report
 Lee YW, Yoo B, Lim YH

9132 Chondrosarcoma of the toe: A case report and literature review
 Zhou LB, Zhang HC, Dong ZG, Wang CC

9142 Tamsulosin-induced life-threatening hypotension in a patient with spinal cord injury: A case report
 Lee JY, Lee HS, Park SB, Lee KH

9148 CCNO mutation as a cause of primary ciliary dyskinesia: A case report
 Zhang YY, Lou Y, Yan H, Tang H

9156 Repeated bacteremia and hepatic cyst infection lasting 3 years following pancreatoduodenectomy: A case report
 Zhang K, Zhang HL, Guo JQ, Tu CY, Lv XL, Zhu JD

9162 Idiopathic cholesterol crystal embolism with atheroembolic renal disease and blue toes syndrome: A case report
 Cheng DJ, Li L, Zheng XY, Tang SF

9168 Systemic lupus erythematosus with visceral varicella: A case report
 Zhao J, Tian M

LETTER TO THE EDITOR

9176 Imaging of fibroadenoma: Be careful with imaging follow-up
 Ece B, Aydan S
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Mohsen Khosravi, MD, Assistant Professor, Department of Psychiatry and Clinical Psychology, Zahedan University of Medical Sciences, Zahedan 9819713955, Iran. m.khosravi@zaums.ac.ir

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
September 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Effectiveness of six-step complex decongestive therapy for treating upper limb lymphedema after breast cancer surgery

Hui-Zhen Zhang, Qiao-Ling Zhong, Hui-Ting Zhang, Qing-Hua Luo, Hai-Lin Tang, Li-Juan Zhang

Background: Complex decongestive therapy (CDT) is currently recommended as the standard treatment for lymphedema. CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cancer surgery, and is considered non-invasive, painless and without side effects.

Aim: To determine the effectiveness of a six-step CDT involving a foam granule bandage for the treatment of upper extremity lymphedema pressure after breast cancer surgical intervention.

Methods: The study included 100 patients with upper extremity lymphedema after breast cancer surgery. The surgical methods were mastectomy plus axillary lymph node dissection and breast preservation plus sentinel lymph node biopsy. The study population was further divided into the experimental group and control group with 50 cases in each group. The control group was given conventional CDT (four-step method), which included skin care, freehand lymphatic drainage, foam granule pressurized bandage, and functional exercise. In the experimental group, a six-step CDT method was applied that involved a foam particle bandage combined with air wave pressure therapy in addition to the four steps of conventional CDT. Patients in both groups were given one course of treatment daily (20 times), and the changes in body moisture and subjective symptoms were measured before and after treatment, preoperatively and 20 times after treatment.

Results: No statistically significant differences in 50-Hz bioelectrical impedance and extracellular moisture ratio were observed between the two groups before treatment, suggesting comparability of the baseline data. After treatment, the 50-
Hz bioelectrical impedance of the experimental group was significantly higher than that in the control group, and the extracellular moisture ratio was significantly lower than that in the control group. A comparison of the differences between the two groups before and after treatment indicated that the treatment effect in the experimental group was better than that in the control group. After 20 treatments, according to subjective evaluations, the tightness and swelling of the limbs in the experimental group were significantly reduced as compared with those in the control group.

CONCLUSION
The six-step CDT method can effectively reduce lymphedema, promote lymphatic circulation, and alleviate the subjective symptoms of patients, and thereby improve the quality of life and treatment compliance among patients.

Key Words: Comprehensive deswelling; Foam granule bandage; Breast cancer; Upper limb lymphedema; Air pressure wave therapy

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The purpose of this study was to determine the effectiveness of six-step complex decongestive therapy for the treatment of upper limb lymphedema after breast cancer surgery. The results showed that this method could effectively reduce edema of the upper extremity, reduce local tissue congestion, and promote lymph circulation.

INTRODUCTION
Breast cancer is the most common malignant tumor amongst women, accounting for 23% of all cancer cases and 14% of all cancer-related deaths in women[1]. Moreover, the incidence of breast cancer is increasing in most countries[2]. Surgical intervention is considered an important component in the management of breast cancer patients. According to the literature, upper limb lymphedema is one of the most common and most serious complications after breast cancer surgery. The incidence of unilateral arm lymphedema post-breast cancer treatment ranged from 8.4% to 21.4%[3]. Another study reported that the incidence of secondary lymphedema caused by nonspecific cancer in a UK lymphedema specialist clinic (n = 11555) was 2.05-3.99:1000[4]. Risk factors for lymphedema include obesity at the time of cancer diagnosis, chemotherapy, adjuvant radiotherapy, surgical methods, physical therapy and the number of axillary lymph nodes removed[3,5].

Currently, the frequency of lymphedema after contemporary surgery of the axilla is much lower, but lymphedema remains a major problem. Damage to the lymphatic system after surgery accompanied by protein leakage and abnormal accumulation thereof in the tissue space of the ipsilateral upper arm can lead to lymphatic flow obstruction, swelling, pain, fatigue, secondary infection, and extremity dysfunction in the affected upper limb[6]. Patients with lymphedema may be afflicted with the disease for their entire life and are likely to suffer from an abnormal appearance of the limb, susceptibility to fatigue, repeated limb infections and limb dysfunction, which seriously affects their quality of life after surgical intervention[7]. Active and effective treatment for upper limb lymphedema is very important for improving the health and quality of life of patients after breast cancer treatment. Complex decongestive therapy (CDT) is currently recommended as the standard treatment for lymphedema. CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cancer surgery, and is considered non-invasive, painless and without side effects[8-10]. CDT typically involves manual lymphatic drainage, elastic bandage compression, limb function exercises, and personalized skin care[7-11]. However, for the purposes of reducing scar formation and preventing axillary reticulum syndrome, this study added two steps to create a six-step CDT approach that included the use of a foam type granule bandage, which was applied for the treatment of upper extremity lymphedema pressure.
was drawn into a square pattern according to each pattern set on the surface of the bandage and wound in the functional position. The high elastic bandage was applied from the back of the hand and was then wrapped under the shoulder with 50% overlap. The pressure gradient hand and was wrapped under the shoulder with a 50% overlap. The short stretch bandage started at the hand. Cotton bandages were run from the hand to shoulder. The foam pellet bandage started at the cubital fossa lymph nodes) and, finally, the lateral upper arm. The touching technique needed to be moved to the upper side of the chest (drainage to the contralateral axillary or ipsilateral supraclavicular nodes of the upper arm (drainage to the ipsilateral inguinal lymph nodes through the dorsal armpit or dorsal side of the body), the lymph nodes on the back of the hand, the palm and forearm (drainage to the ipsilateral inguinal lymph nodes), the lower side of the chest wound (drainage to the ipsilateral inguinal lymph nodes), the lymph nodes on the back of the hand, the palm and forearm (drainage to the ipsilateral inguinal lymph nodes), the lower side of the chest wound after surgery, i.e., wound scar after mastectomy and breast conserving operation, and then moved to the upper side of the chest (drainage to the contralateral axillary or ipsilateral supraclavicular lymph nodes), the lower side of the chest wound (drainage to the ipsilateral inguinal lymph nodes), the medial lymph nodes of the upper arm (drainage to the supraclavicular lymph nodes), the medial lymph nodes of the upper arm (drainage to the ipsilateral inguinal lymph nodes through the dorsal armpit or dorsal side of the body), the lymph nodes on the back of the hand, the palm and forearm (drainage to the cubital fossa lymph nodes) and, finally, the lateral upper arm. The touching technique needed to be gentle to avoid local skin reddening [12-14]; a pressure of 25-30 mmHg was applied.

Pressure dressing of foam granule bandage: The retaining bandage was wound around the finger joint and hand. Cotton bandages were run from the hand to shoulder. The foam pellet bandage started at the hand and was wrapped under the shoulder with a 50% overlap. The short stretch bandage started at the back of the hand and was then wrapped under the shoulder with 50% overlap. The pressure gradient was gradually decreased from the distal to the proximal end. During the dressing, the socket was kept in the functional position. The high elastic bandage was applied from the back of the hand. The pressure was drawn into a square pattern according to each pattern set on the surface of the bandage and wound under the shoulder with 50% overlap. The elastic bandage layer should be tightly wrapped to

STUDY DESIGN

Study design

This study was approved by the Hospital Ethics Committee (GYX2020-002). The study reporting adheres to the law of China and the 2008 version of the Declaration of Helsinki. Written informed consent forms were signed by all participants or their legally authorized guardians regarding the diagnosis, pathology, and publication of the patients’ personal information in article form. A total of 100 patients with upper extremity lymphedema after breast cancer surgical intervention who were admitted to the lymphedema clinic of our hospital from March 2019 to December 2019 were selected by a convenience sampling method. Patients who met the inclusion and exclusion criteria and signed the informed consent form were directly included as research subjects. All the patients were then equally divided into the experimental group and the control group with 50 patients in each group. The inclusion criteria were: (1) Diagnosis of subcutaneous soft tissue lymphedema of the upper extremity by lymphography and/or color ultrasound; (2) no prior CDT; (3) age ≥ 18 years; (4) education level above primary school level with certain reading and writing abilities; and (5) agreement to participate in the study and provision of informed written consent. Patients were excluded according to the following criteria: (1) Past or current history of a psychiatric disorder; (2) already identified recurrence, distant metastasis or metastatic cancer; (3) serious systemic diseases related to the heart, lung, liver and kidney; (4) past history of severe complications such as severe systemic infection, anemia and cachexia; (5) past history of thrombus and tumor emboli; (6) local infections such as ulcers and bleeding tendencies; or (7) inability to continue the treatment due to physical reasons during the treatment process. The demographic and clinical data of the patients are presented in Table 1.

Treatment

The patients were assessed and treated at the ambulatory clinic of Sun Yat-sen University Cancer Center by a senior nurse with an internationally recognized lymphedema therapy certification, who is also called a lymphedema therapist. According to the Vodder method, the patient was completely relaxed. The therapist used the large and small thenar muscles of the palm or the closed index finger, middle finger and ring finger to touch the nearby superficial lymph nodes with moderate strength to stimulate superficial lymph nodes, to dredge the lymphatic channels and accelerate lymphatic circulation. All patients completed one course (20 treatments over 28 days) of the six-step treatment. Skin care was provided by the lymphedema therapist for approximately 10 min. Upon completion of manual lymphatic drainage, the patients were treated with air pressure wave therapy for 15 min and then with bandages. This was followed by functional exercises supervised by a lymphedema therapist. The entire treatment process took approximately 1.5 h per day.

Conventional decongestion therapy in the control group

The control group was given conventional CDT (international standard four-step method). The steps were as follows:

Skin care: The objectives of the skin care component were to clean the skin and address any skin-related complications. Firstly, the patients were instructed to wash and dry their skin using pH-neutral soap. Any wrinkled skin was kept clean and dry. A further goal was to protect the skin from cuts, abrasions, and bites (especially sensitive skin). Finally, complications such as skin keratosis, fungal infection, lymphatic leakage, ulcers and lymphangitis were treated.

Manual lymphatic drainage: The therapist touched the affected side of the limbs from the distal end to the proximal end of the heart along the superficial lymphatic vessels, with circular propulsion, rotary propulsion, and spoon-shaped propulsion. The drainage procedure was started at the beginning of the chest wound after surgery, i.e., wound scar after mastectomy and breast conserving operation, and then moved to the upper side of the chest (drainage to the contralateral axillary or ipsilateral supraclavicular lymph nodes), the lower side of the chest wound (drainage to the ipsilateral inguinal lymph nodes), the medial lymph nodes of the upper arm (drainage to the supraclavicular lymph nodes), the medial lymph nodes of the upper arm (drainage to the ipsilateral inguinal lymph nodes through the dorsal armpit or dorsal side of the body), the lymph nodes on the back of the hand, the palm and forearm (drainage to the cubital fossa lymph nodes) and, finally, the lateral upper arm. The touching technique needed to be gentle to avoid local skin reddening [12-14]; a pressure of 25-30 mmHg was applied.

MATERIALS AND METHODS

Study design

This study was approved by the Hospital Ethics Committee (GYX2020-002). The study reporting adheres to the law of China and the 2008 version of the Declaration of Helsinki. Written informed consent forms were signed by all participants or their legally authorized guardians regarding the diagnosis, pathology, and publication of the patients’ personal information in article form. A total of 100 patients with upper extremity lymphedema after breast cancer surgical intervention who were admitted to the lymphedema clinic of our hospital from March 2019 to December 2019 were selected by a convenience sampling method. Patients who met the inclusion and exclusion criteria and signed the informed consent form were directly included as research subjects. All the patients were then equally divided into the experimental group and the control group with 50 patients in each group. The inclusion criteria were: (1) Diagnosis of subcutaneous soft tissue lymphedema of the upper extremity by lymphography and/or color ultrasound; (2) no prior CDT; (3) age ≥ 18 years; (4) education level above primary school level with certain reading and writing abilities; and (5) agreement to participate in the study and provision of informed written consent. Patients were excluded according to the following criteria: (1) Past or current history of a psychiatric disorder; (2) already identified recurrence, distant metastasis or metastatic cancer; (3) serious systemic diseases related to the heart, lung, liver and kidney; (4) past history of severe complications such as severe systemic infection, anemia and cachexia; (5) past history of thrombus and tumor emboli; (6) local infections such as ulcers and bleeding tendencies; or (7) inability to continue the treatment due to physical reasons during the treatment process. The demographic and clinical data of the patients are presented in Table 1.
Table 1 Demographic and clinical data of the two groups

<table>
<thead>
<tr>
<th></th>
<th>Control group (n = 50)</th>
<th>Experimental group (n = 50)</th>
<th>χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>46.32 ± 10.08</td>
<td>49.50 ± 11.64</td>
<td>1.683</td>
<td>0.195</td>
</tr>
<tr>
<td>< 50</td>
<td>38</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 50</td>
<td>12</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic level</td>
<td></td>
<td></td>
<td>2.319</td>
<td>0.314</td>
</tr>
<tr>
<td>Primary school</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle school</td>
<td>27</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor degree or above</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer staging</td>
<td></td>
<td></td>
<td>2.186</td>
<td>0.335</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>36</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of operation</td>
<td></td>
<td></td>
<td>0.177</td>
<td>0.674</td>
</tr>
<tr>
<td>Mastectomy plus axillary lymph node dissection</td>
<td>48</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast conserving plus sentinel lymph node biopsy</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>46</td>
<td>49</td>
<td>0.842</td>
<td>0.359</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>32</td>
<td>41</td>
<td>3.247</td>
<td>0.072</td>
</tr>
<tr>
<td>Duration of postoperative edema (mo)</td>
<td></td>
<td></td>
<td>6.398</td>
<td>0.094</td>
</tr>
<tr>
<td>< 3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 12</td>
<td>34</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

accommodate the finger. The pressure was maintained appropriately, as making the bandage too tight could affect the blood circulation of the affected limb and leaving it too loose would not achieve the therapeutic effect[15].

Functional exercises: After bandaging, the patients were instructed to partake in functional exercise, and each joint was moved according to the six-step health exercise[15]. During exercising, the muscles expand and contract, and the bandage resisted muscle expansion and exerted force on the intermittent pressure of deep tissue. When resting, the muscle relaxes, and the bandage’s resilience acts on the tissue to produce persistent pressure, thereby promoting the flow of lymph. This protocol is consistent with the guidelines for preventing upper limb lymphedema proposed by the National Lymphedema Network in 2003[16]. The patients were advised to practice self-care to prevent lymphedema by avoiding the following things: infusion into the affected limb (to avoid increasing the circulation load of the affected limb); measuring blood pressure; wearing tight jewelry; performing any swinging, throwing, pulling, or pressing movements; lifting weights; damaging the skin; exposing the affected limb to excessive heat or cold; and wearing elastic cuffs for extended periods of time. In addition, during airplane flights, the cabin pressure is less than the atmospheric pressure on the ground. As the plane rises from sea level to an altitude of 6000-8000 feet, the pressure in the cabin decreases further. Reduced cabin pressure leads to changes in tissue pressure that may worsen lymphedema. Therefore, when flying, patients should wear elastic sleeves and perform unarmed lymphatic drainage.

Six-step therapy in the experimental group

The experimental group received six steps of CDT. The additional two steps were as follows:

Treatment of scar tissue: Firstly, the nurse opened the lymphatic pathways as mentioned earlier. Then, the therapist touched the superficial lymph nodes with their index finger, middle finger, and ring finger, applying a static rolling motion with moderate intensity. The nodes were touched in the following order: supraclavicular lymph nodes, cervical lymph nodes, anterior and posterior auricular lymph nodes, sternal lymph nodes, axillary nodes, elbow lymph nodes, thoracic lymph nodes, dorsal lymph nodes and inguinal lymph nodes[12]. Then the therapist used the finger pulp of both hands to relieve
the scar tissue, loosen the connective tissue, and reduce the scar contraction, which further led to reductions in lymphatic compression and backflow obstruction and increased the range of motion of the shoulder joint.

Foam granule bandage combined with an air wave pressure therapy instrument: A foam granule bandage combined with a POWER-Q6000 air wave pressure therapy instrument was used for treatment. The instrument is produced in Korea, and includes two parts: an electric air pressure pump and an inflatable sleeve. The sleeve generally has six cavities, and the nurse works one by one after inflating the sleeve along the long axis of the limb to the root of the limb press. The patient was placed in the supine position, and then a foam pellet bandage was wrapped around the back of the hand with 50% overlap until it reached below the shoulder. Then the whole affected limb was wrapped with the upper limb cuff of the air wave pressure therapy instrument containing 6 air sacs. The nurse then pressed the area from the distal end to the proximal end of the full circle with pneumatic pressure in an orderly manner. The pressure was increased gradually from 25 to 30 mmHg. The maximum pressure was kept at 45 mmHg, once a day, for 15 min. At the same time, according to the observation and analysis of subjective and objective symptoms, the subjective symptoms were numbness and pain of the affected limbs and fingers, and the objective symptoms were dark purple and cold fingers. If the patient felt uncomfortable with the affected limb or had dark purple fingers on the affected side, the treatment was suspended immediately[17].

Observational indices and methods

Bioelectrical impedance analysis (BIA): Bioelectrical impedance analysis (BIA) was used to measure the change in body water content before and after treatment. Electrical impedance is one of the most important physical characteristics of the human body. The body bioelectrical impedance (50 HKz) and extracellular moisture ratio of patients in both groups were compared from before the start of the session to after the 20th session. A lower bioelectrical impedance indicated a higher extracellular moisture ratio, indicating more serious edema[9]. An InBody S10 body composition monitor (BCM) was used to measure the trunk bioelectrical impedance and extracellular water ratio at 50 Hz before treatment (the first time) and after treatment (the 20th time).

Subjective symptom evaluation

The Lymphedema and Breast Cancer Questionnaire (LBCQ) 17, which includes 19 lymphedema-related symptoms, including numbness, tightness, stiffness, pain and heaviness, etc. was used to evaluate the occurrence of lymphedema-related symptoms in patients at the present time, in the past 1 mo and in the past 1 year. The patients answered "1" or "0". The internal consistency coefficient of the questionnaire was 0.785, and the retest reliability was 0.98018. This study was analyzed and discussed by members of the research group according to the conditions of patients in this study. Six items of tightness, pain, numbness, stiffness, swelling, and limited shoulder movement were selected and evaluated by lymphedema specialist nurses before and after each course of treatment, i.e., after the 20th cycle.

Statistical methods

SPSS version 25.0 (IBM Corporation, Armonk, NY, United States) was used for statistical analysis. The Mann-Whitney U test, χ² test, and Fisher exact test were used to analyze the differences between the two groups.

RESULTS

Comparison of bioelectrical impedance and extracellular moisture ratio between the two groups

In both groups, the body water content was compared before treatment and after the 20th session. The results of the study showed that the body water content was significantly improved after treatment in the experimental group as compared with the control group (P<0.05, Table 2).

Comparison of subjective symptoms of affected limbs

The subjective symptoms were compared between the experimental group and the control group before and after treatment. The results of the study found that the subjective symptoms were improved in both groups. After treatment, the body tension and swelling were more effectively reduced in the experimental group compared with the control group (P<0.001; Table 3).

DISCUSSION

Lymphedema is a chronic progressive disease associated with a high rate of recurrence and
progressively worsening acute episodes. Mild lymphedema of the upper extremity can be gradually alleviated via restoration of the collateral circulation, but serious upper extremity lymphedema is frequently a lifelong condition due to a “vicious cycle” of recurrence. In such cases, the patient will likely suffer from an abnormal appearance of the limb, susceptibility to fatigue, repeated infection and limb dysfunction, which can seriously affect the patient’s quality of life after surgery[7]. Miller et al[18] revealed that although the progress in radiotherapy technology will bring about an improvement in the curative effect, it will increase the risk of upper limb lymphedema in breast cancer patients. Therefore, prevention and treatment of lymphedema should receive considerable attention.

This study improved upon the international standard four-step CDT method by adding scar tissue relief and a foam granule bandage combined with air wave pressure therapy. The six-step CDT was shown to effectively alleviate the symptoms of upper limb lymphedema after breast cancer surgery. Maintaining skin integrity can prevent infection, reduce local skin complications, and ensure the continuity of CDT[19]. Relieving scar tissue can loosen connective tissue, reduce the adhesion of subcutaneous tissue at the incision, and alleviate the obstruction of lymphatic reflux caused by lymphatic compression and deformation caused by scar contracture, effectively preventing axillary nodule dysfunction[13]. Manual lymphatic drainage involves draining lymph from the affected side to the nearest healthy lymphatic pathway. A foam roll bandage combined with air wave pressure therapy can produce gradual compression from the distal end to the proximal end and promote lymph reflux. The foam particle bandage creates a round bubble produced by small particles, using Laplace’s law[20]. This is highly effective at increasing the effective pressure to obtain the required level of contact pressure to promote lymphatic circulfluence used in partial filling pressure and further to reduce blood capillary leakage, prevent fluid accumulation, and promote lymph circulfluence[20], to prevent
The six-step CDT method introduced in this study was shown to effectively reduce lymphedema, promote lymphatic circulation, and alleviate the subjective symptoms of patients with CDT, and thereby improve the quality of life and treatment compliance among patients.

ARTICLE HIGHLIGHTS

Research background
Patients with lymphedema following breast cancer surgery are likely to suffer from an abnormal appearance of the limb, susceptibility to fatigue, repeated limb infections, and limb dysfunction, which further seriously affects their quality of life. Active and effective treatment for upper limb lymphedema is very important for improving the health and quality of life of patients after breast cancer treatment. Complex decongestive therapy (CDT) is currently recommended as the standard treatment for lymphedema. CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cancer surgery, and is considered non-invasive, painless and without side effects. CDT typically involves manual lymphatic drainage, elastic bandage compression, limb function exercises, and personalized skin care. However, for the purposes of reducing scar formation and preventing axillary reticulum syndrome, this study added two steps to create a six-step comprehensive deswelling therapy combined with the use of a foam type granule bandage, which was applied in the treatment of upper extremity lymphedema pressure.

Research motivation
At present, there are few studies on the treatment of lymphedema after breast cancer surgery in China, and most of the relevant studies focus on the efficacy of single or composite methods. This study is based on the international standard four-step CDT with improvements, and the treatment mode is standardized and reasonable. The six-step CDT method was found to effectively treat upper limb lymphedema.
lymphedema after breast cancer surgery, without trauma, pain, or side effects. At the same time, this study found for the first time that in the early stage of CDT, edema of the affected limb was temporarily aggravated, and the clinical nursing staff need to provide targeted education for patients in order to improve treatment compliance.

Research objectives
The six-step CDT developed in this study effectively alleviated upper limb lymphedema after breast cancer surgery, and the subjective symptoms of patients were reduced or disappeared. Moreover, patients’ self-care ability was improved, which will lead to improvements in the quality of life and treatment compliance among patients. Lymphedema is a chronic and long-term process that requires patients to adhere to the treatment for the curative effect to be stabilized. However, in real life, patients often cannot adhere to the treatment for a long period, and the symptoms of lymphedema may return or be aggravated. At the same time, treatment fatigue is possible, and then treatment compliance gradually decreases. Therefore, good treatment methods and obvious treatment effects can further improve patient compliance. Lymphedema therapists have further investigated methods to improve treatment compliance and the follow-up rate of patients with lymphedema.

Research methods
No six-step approaches to CDT for the treatment of upper limb lymphedema pressure have been reported in the literature, and most related studies have focused on the treatment effect of each individual method. This study adopted six-step CDT for the pressure treatment of upper limb lymphedema, which was found to effectively treat upper limb lymphedema and improve the quality of life of patients, which is worthy of discussion and further research. The results of this study provide a basis for the prevention and treatment of lymphedema in a specialist nursing clinic, and provide a talent basis for the study class of lymphedema specialist nurses, which can be used as a reference for future generations.

Research results
The newly introduced six-step CDT can improve the symptoms of upper limb lymphedema after breast cancer surgery and takes full advantage of the ability of nurses to treat lymphedema. Thus, it is a practice that should be referenced and promoted. Lymphedema treatment is a long process, and our future research will expand upon this study by increasing the sample size, extending the follow-up time, and observing the curative effect of therapy, in order to develop better treatment methods for lymphedema.

Research conclusions
This study put forward a new theory regarding scar care and the effect of a foam rolled bandage combined with the use of an air pressure wave therapeutic instrument. The new method included two new steps in addition to those of the international standard four-step treatment.

Research perspectives
In the future, multi-center studies are needed that include a larger sample size, compare lymphedema at different stages over a longer follow-up time, apply additional relevant scales for quality of life and treatment compliance, and improve the observation indicators, so that more powerful clinical evidence can be obtained.

FOOTNOTES

Author contributions: Zhang HZ and Zhong QL contributed equally to this work; Zhang HZ, Zhang LJ, and Zhong QL conceived and designed the research; Zhang HZ, Zhong QL and Luo QH collected the data and conducted the research; Zhang HZ, and Tang HL analyzed and interpreted the data; Zhang HZ and Zhong QL wrote the initial paper; Zhang LJ and Zhang HT revised the paper; Zhang LJ had primary responsibility for final content; all authors read and approved the final manuscript.

Institutional review board statement: This study was approved by the Ethics Committee of Sun Yat-sen University Cancer Center. All procedures performed in studies involving human participants were in accordance with the ethics standards of the institutional and national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethics standards.

Informed consent statement: Written informed consent was obtained from all individual participants included in this study.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.
Data sharing statement: The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

STROBE statement: The authors have read the STROBE Statement - Checklist of items, and the manuscript was prepared and revised according to the STROBE Statement - Checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: 0000-0002-4262-3199; 0000-0002-5743-995X; 0000-0003-4588-6274; 0000-0002-3206-782X; 0000-0003-4782-9900.

S-Editor: Ma YJ
L-Editor: Webster JR
P-Editor: Ma YJ

REFERENCES

patients. *Breast Cancer Res Treat* 2014; 144: 71-77 [PMID: 24500108 DOI: 10.1007/s10549-014-2856-3]

