World Journal of Gastrointestinal Surgery

World J Gastrointest Surg 2024 June 27; 16(6): 1485-1955

Published by Baishideng Publishing Group Inc

WJGS

World Journal of Gastrointestinal Surgery

Contents

Monthly Volume 16 Number 6 June 27, 2024

EDITORIAL

1485	Has the open surgical approach in colorectal cancer really become uncommon?
	Cariati M, Brisinda G, Chiarello MM
1493	Intestinal Behçet's disease: A review of clinical diagnosis and treatment Liu Y, Gao F, Yang DQ, Jiao Y
1501	Non-operative management of rectal cancer: Highlighting the controversies <i>Emile SH, Wignakumar A</i>
1507	Current considerations for the surgical management of gallbladder adenomas <i>Pavlidis ET, Galanis IN, Pavlidis TE</i>
1513	Immunotherapy in gastric cancer with liver metastasis: Challenges and opportunities <i>Bardakçi M, Ergun Y</i>
1517	From the mathematical model to the patient: The scientific and human aspects of artificial intelligence in gastrointestinal surgery

Arredondo Montero J

MINIREVIEWS

1521 Laparoscopic right radical hemicolectomy: Central vascular ligation and complete mesocolon excision vs D3 lymphadenectomy - How I do it?

Yadav K

ORIGINAL ARTICLE

Case Control Study

1527 Perioperative outcomes of transvaginal specimen extraction laparoscopic total gastrectomy and conventional laparoscopic-assisted total gastrectomy

Zhang ZC, Wang WS, Chen JH, Ma YH, Luo QF, Li YB, Yang Y, Ma D

Retrospective Cohort Study

Optimal extent of lymphadenectomy improves prognosis and guides adjuvant chemotherapy in 1537 esophageal cancer: A propensity score-matched analysis

Tang JM, Huang SJ, Chen QB, Wu HS, Qiao GB

1548 Efficacy of laparoscopic low anterior resection for colorectal cancer patients with 3D-vascular reconstruction for left coronary artery preservation

Wang Y, Liu ZS, Wang ZB, Liu S, Sun FB

Conton	World Journal of Gastrointestinal Surgery
Conten	Monthly Volume 16 Number 6 June 27, 2024
1558	Robotic-assisted low anterior resection for rectal cancer shows similar clinical efficacy to laparoscopic surgery: A propensity score matched study
	Long SX, Wang XN, Tian SB, Bi YF, Gao SS, Wang Y, Guo XB
1571	Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
	Yang KF, Li SJ, Xu J, Zheng YB
1582	Risk factors associated with intraoperative persistent hypotension in pancreaticoduodenectomy
	Wang XJ, Xuan XC, Sun ZC, Shen S, Yu F, Li NN, Chu XC, Yin H, Hu YL
	Retrospective Study
1592	Endoscopic ultrasound-guided biliary drainage vs percutaneous transhepatic bile duct drainage in the management of malignant obstructive jaundice
	Zhu QQ, Chen BF, Yang Y, Zuo XY, Liu WH, Wang TT, Zhang Y
1601	Clinical efficacy of Gamma Knife® combined with transarterial chemoembolization and immunotherapy in
	the treatment of primary liver cancer
	Wang GF, Shu CX, Cai XD, Wang HB, Xu JH, Jia YQ
1609	Identifying the risk factors for pancreatic fistula after laparoscopic pancreaticoduodenectomy in patients with pancreatic cancer
	Xu H, Meng QC, Hua J, Wang W
1618	Correlation between postoperative chemotherapy regimen and survival in patients with resectable gastric adenocarcinoma accompanied with vascular cancer thrombus
	Yang ZF, Dong ZX, Dai CJ, Fu LZ, Yu HM, Wang YS
1629	Gastroesophageal signet ring cell carcinoma morbidity and mortality: A retrospective review
	Grinlinton M, Furkert C, Maurice A, Angelo N, Booth M
1637	Analysis of lymph node metastasis and survival prognosis in early gastric cancer patients: A retrospective study
	Liu DY, Hu JJ, Zhou YQ, Tan AR
1647	Clinical study of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hypertriglyceridemia- induced acute pancreatitis and acute biliary pancreatitis with persistent organ failure
	Xu MS, Xu JL, Gao X, Mo SJ, Xing JY, Liu JH, Tian YZ, Fu XF
1660	Tumor recurrence and survival prognosis in patients with advanced gastric cancer after radical resection with radiotherapy and chemotherapy
	Nie SF, Wang CY, Li L, Yang C, Zhu ZM, Fei JD
1670	Prediction and analysis of albumin-bilirubin score combined with liver function index and carcinoem- bryonic antigen on liver metastasis of colorectal cancer
	Wang ZM, Pan SP, Zhang JJ, Zhou J

Carta	World Journal of Gastrointestinal Surgery
Conter	Monthly Volume 16 Number 6 June 27, 2024
1681	Comparative analysis of the short and medium-term efficacy of the Da Vinci robot <i>versus</i> laparoscopic total mesangectomy for rectal cancer
	Gao WG, Shi W, Gong XC, Li ZW, Tuoheti Y
1691	How to apply ex-vivo split liver transplantation safely and feasibly: A three-step approach
	Zhao D, Xie QH, Fang TS, Zhang KJ, Tang JX, Yan X, Jin X, Xie LJ, Xie WG
1700	Clinical efficacy of laparoscopic cholecystectomy combined with endoscopic papillary balloon dilation in treatment of gallbladder stones with common bile duct stones: A retrospective study
	Liu HD, Zhang Q, Xu WS, Jin S
1709	Evaluation of oxaliplatin and tigio combination therapy in locally advanced gastric cancer
	Wang T, Zhang LY
1717	Lung ultrasound score evaluation of the effect of pressure-controlled ventilation volume-guaranteed on patients undergoing laparoscopic-assisted radical gastrectomy
	Tan J, Bao CM, Chen XY
1726	Effect of endoscopic sphincterotomy and endoscopic papillary balloon dilation endoscopic retrograde cholangiopancreatographies on the sphincter of Oddi
	Fu K, Yang YY, Chen H, Zhang GX, Wang Y, Yin Z
1734	Influence of reduced-port laparoscopic surgery on perioperative indicators, postoperative recovery, and serum inflammation in patients with colorectal carcinoma
	Wu HB, Liu DF, Liu YL, Wang XF, Cao YP
	Clinical Trials Study
1742	Clinical effect of spleen aminopeptide on improving liver function damage and immune function in children with infant hepatitis syndrome
	Fang XQ, Gan T, Wang LM
	Observational Study
1749	Observation of therapeutic effect of lamp irradiation combined with purple gromwell oil gauze on alleviating intestinal colic in patients
	Cen BZ, Chen YS, Li LP, Wu JW, Xie YF
	Randomized Controlled Trial
1756	Radiofrequency ablation combined with transcatheter arterial chemoembolization for recurrent liver cancer
	Guo JY, Zhao LL, Cai HJ, Zeng H, Mei WD
	Randomized Clinical Trial
1765	Effect of high-protein peptide-based formula compared with isocaloric isonitrogenous polymeric formula in critically ill surgical patient
	Sumritpradit P, Shantavasinkul PC, Ungpinitpong W, Noorit P, Gajaseni C

Contents

World Journal of Gastrointestinal Surgery

Monthly Volume 16 Number 6 June 27, 2024

Clinical and Translational Research

- 1775 Metabolic disorders and hepatitis: Insights from a Mendelian randomization study Liang LB, Liu XP, Mao TR, Su QL
- 1791 Analysis of cancer-specific survival in patients with metastatic colorectal cancer: A evidence-based medicine study

Zhou YJ, Tan ZE, Zhuang WD, Xu XH

1803 FDX1 as a novel biomarker and treatment target for stomach adenocarcinoma

Xie XZ, Zuo L, Huang W, Fan QM, Weng YY, Yao WD, Jiang JL, Jin JQ

Basic Study

1825 Peritoneal fluid indocyanine green test for diagnosis of gut leakage in anastomotic leakage rats and colorectal surgery patients

Huang Y, Li TY, Weng JF, Liu H, Xu YJ, Zhang S, Gu WL

SYSTEMATIC REVIEWS

Global geoepidemiology of gastrointestinal surgery rates in Crohn's disease 1835

> Weissman S, Aziz M, Bangolo A, Nagesh VK, Aung H, Mathew M, Garcia L, Chandar SA, Karamthoti P, Bawa H, Alshimari A, Kejela Y, Mehdi N, Joseph CA, Kodali A, Kumar R, Goyal P, Satheesha S, Nivedita F, Tesoro N, Sethi T, Singh G, Belal A, Intisar A, Khalid H, Cornwell S, Suresh SB, Ahmed K, Marole KK, Anand OP, Reshi RB, Mehta TI, Elias S, Feuerstein JD

META-ANALYSIS

1845 Compare clinical efficacy and safety of neoadjuvant therapy and neoadjuvant chemoradiotherapy for locally advanced rectal cancer: Meta-analysis

Wang Y, Yang Y, Liu QQ, Wang SZ

1857 Sarcopenia adversely impacts clinical outcomes in patients undergoing pancreaticoduodenectomy: A systematic review and meta-analysis

Zhang QH, Ma JD, Lu YM, Zhang RN, Zhao ZH, Li YT, Chen QP

1871 Comparison efficacy and safety of total laparoscopic gastrectomy and laparoscopically assisted total gastrectomy in treatment of gastric cancer

Li L, Liu DY, Leng J, Tao XM, Wu HQ, Zhu YP

1883 Application value of indocyanine green fluorescence imaging in guiding sentinel lymph node biopsy diagnosis of gastric cancer: Meta-analysis

Zhang QJ, Cao ZC, Zhu Q, Sun Y, Li RD, Tong JL, Zheng Q

SCIENTOMETRICS

1894 Visualizing the landscape of appendiceal tumor research after 2010: A bibliometric study Ji JN, Yin ZB

Contents

World Journal of Gastrointestinal Surgery

Monthly Volume 16 Number 6 June 27, 2024

CASE REPORT

1910	No-touch isolation technique in emergency pancreaticoduodenectomy for neoplastic hemorrhage: Two case reports and review of literature
	Cho A, Katagiri S, Ota M, Onizawa S, Higuchi R, Sugishita T, Niwa Y, Ishita T, Mouri T, Kato A, Iwata M
1918	Malignant myopericytoma originating from the colon: A case report
	Zhang HL, Zhang M, Guo JQ, Wu FN, Zhu JD, Tu CY, Lv XL, Zhang K
1926	Novel magnetic compression technique for the treatment of postoperative anastomotic stenosis in rectal cancer: A case report
	Zhang MM, Sha HC, Xue HR, Qin YF, Song XG, Li Y, Li Y, Deng ZW, Gao YL, Dong FF, Lyu Y, Yan XP
1933	Magnetic compression anastomosis to restore biliary tract continuity after obstruction following major abdominal trauma: A case report
	Zhang MM, Tao J, Sha HC, Li Y, Song XG, Muensterer OJ, Dong FF, Zhang L, Lyu Y, Yan XP
1939	Colo-colonic intussusception as a rare complication of colonoscopy with polypectomy: Two case reports
	Xiang SH, Xu GQ
1948	Resection of polyps involving the appendiceal orifice by combined endo-laparoscopic surgery: Two case reports
	Zhang YY, Lu JY, Wang Q, Yang AM

LETTER TO THE EDITOR

Evaluating bacterial contamination and surgical site infection risks in intracorporeal anastomosis: Role of 1953 bowel preparation

Lee J

Contents

Monthly Volume 16 Number 6 June 27, 2024

ABOUT COVER

Peer Reviewer of World Journal of Gastrointestinal Surgery, Deven Juneja, DNB, FNB, EDIC, FCCP, Director, Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India. devenjuneja@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Surgery (WJGS, World J Gastrointest Surg) is to provide scholars and readers from various fields of gastrointestinal surgery with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGS mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal surgery and covering a wide range of topics including biliary tract surgical procedures, biliopancreatic diversion, colectomy, esophagectomy, esophagostomy, pancreas transplantation, and pancreatectomy, etc.

INDEXING/ABSTRACTING

The WJGS is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 Edition of Journal Citation Reports[®] cites the 2023 journal impact factor (JIF) for WJGS as 1.8; JIF without journal self cites: 1.7; 5-year JIF: 1.9; JIF Rank: 123/290 in surgery; JIF Quartile: Q2; and 5-year JIF Quartile: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Zi-Hang Xu; Production Department Director: Xiang Li; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Gastrointestinal Surgery	https://www.wignet.com/bpg/gcrinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 1948-9366 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
November 30, 2009	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Monthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Peter Schemmer	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/1948-9366/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE June 27, 2024	STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2024 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com

S WO

World Journal of Gastrointestinal Surgery

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Surg 2024 June 27; 16(6): 1845-1856

DOI: 10.4240/wjgs.v16.i6.1845

ISSN 1948-9366 (online)

META-ANALYSIS

Compare clinical efficacy and safety of neoadjuvant therapy and neoadjuvant chemoradiotherapy for locally advanced rectal cancer: Meta-analysis

Ying Wang, Yan Yang, Qi-Qi Liu, Shao-Zhao Wang

Specialty type: Gastroenterology and hepatology	Ying Wang, Department of Anus Intestinal Surgery, Feicheng People's Hospital, Feicheng 271600, Shandong Province, China
Provenance and peer review: Unsolicited article; Externally peer reviewed.	Yan Yang, Department of Gastroenterology, Qingdao Hospital of University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266011, Shandong Province, China
Peer-review model: Single blind	Qi-Qi Liu , Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
Peer-review report's classification	
Scientific Quality: Grade C Novelty: Grade C	Shao-Zhao Wang , Department of Anorectal Words, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, Shandong Province, China
Creativity or Innovation: Grade C	Corresponding author: Shao-Zhao Wang, MM, Doctor, Department of Anorectal Words,
Scientific Significance: Grade C	Central Hospital Affiliated Shandong First Medical University, No. 105 Jiefang Road, Jinan
P-Reviewer: Ong H, Malaysia	250013, Shandong Province, China. wangsztcm@163.com
Received: January 19, 2024	Abstract
Revised: April 1, 2024	BACKGROUND
Accepted: April 28, 2024 Published online: June 27, 2024	To compare the efficacy and safety of total neoadjuvant therapy (TNT) and
Processing time: 162 Days and 23	neoadjuvant chemoradiotherapy (nCRT) in the treatment of middle and low
Hours	locally advanced rectal cancer. Our study will systematically collect and integrate studies to evaluate the ability of these two treatments to improve tumor shrinkage
	rates, surgical resection rates, tumor-free survival, and severe adverse events.
	AIM
国际结构的	To provide clinicians and nations with more reliable treatment options to

To provide clinicians and patients with more reliable treatment options to optimize treatment outcomes and quality of life for patients with locally advanced rectal cancer by comparing the advantages and disadvantages of the two treatment options.

METHODS

A full search of all clinical studies on the effectiveness and safety of TNT and nCRT for treating locally advanced rectal cancer identified in Chinese (CNKI, Wanfang, China Biomedical Literature Database) and English (PubMed, Embase) databases was performed. Two system assessors independently screened the studies according to the inclusion and exclusion criteria. Quality evaluation and

WJGS https://www.wjgnet.com

data extraction were performed for the included literature. We used RevMan 5.3 software to perform a metaanalysis of the pathologic complete response (pCR) rate, T stage degradation rate, resection 0 (R0) rate, anal grade 3/4 acute toxicity rate, perioperative complications, overall survival (OS), and disease-free survival (DFS) in the TNT and nCRT groups.

RESULTS

Finally, 14 studies were included, six of which were randomized controlled studies. A total of 3797 patients were included, including 1865 in the TNT group and 1932 in the nCRT group. The two sets of baseline data were comparable. The results of the meta-analysis showed that the pCR rate [odds ratio (OR) = 1.57, 95% confidence interval (CI): 1.30-1.90, P < 0.00001], T stage degradation rate (OR = 2.16, 95% CI: 1.63-2.57, P < 0.00001), and R0 resection rate (OR = 1.42, 95% CI: 1.09-1.85, P = 0.009) were significantly greater in the nCRT group than in the nCRT group. There was no significant difference in the incidence of grade 3/4 acute toxicity or perioperative complications between the two groups. The 5-year OS [hazard ratio (HR) = 0.84, 95% CI: 0.69-1.02, P = 0.08] and DFS (HR = 0.94, 95% CI: 0.03-1.39, P = 0.74) of the TNT group were similar to those of the nCRT group.

CONCLUSION

TNT has greater clinical efficacy and safety than nCRT in the treatment of locally advanced rectal cancer.

Key Words: Neoadjuvant therapy; Neoadjuvant chemoradiotherapy; Advanced rectal cancer; Clinical efficacy; Meta-analysis

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The main aim of this study was to perform a meta-analysis and compare the clinical efficacy and safety of neoadjuvant therapy and neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. We will collect and synthesize relevant research data to evaluate the performance of the two treatments in terms of the tumor shrinkage rate, surgical resection rate, tumor-free survival rate and other clinical indicators and analyze the safety differences between the two treatments in terms of the incidence of serious adverse events and other aspects. Through in-depth exploration of the advantages and disadvantages of the two treatment schemes, the aim is to provide more guiding treatment suggestions for clinicians to optimize the choice of treatment schemes for patients and improve the treatment effect and quality of life.

Citation: Wang Y, Yang Y, Liu QQ, Wang SZ. Compare clinical efficacy and safety of neoadjuvant therapy and neoadjuvant chemoradiotherapy for locally advanced rectal cancer: Meta-analysis. *World J Gastrointest Surg* 2024; 16(6): 1845-1856 **URL:** https://www.wjgnet.com/1948-9366/full/v16/i6/1845.htm **DOI:** https://dx.doi.org/10.4240/wjgs.v16.i6.1845

INTRODUCTION

Neoadjuvant chemoradiotherapy (nCRT), total mesorectal excision (TME), and postoperative adjuvant chemotherapy are the standard treatment strategies for low- and medium-locally advanced rectal cancer[1]. The diagnosis and treatment mode of "nCRT + TME + postoperative adjuvant chemotherapy" have significantly improved the local control rate of tumors, and the local recurrence rate of rectal cancer after surgery has decreased from 35% to 5%-10%, but the distant metastasis rate is still as high as 25%-30%, and it is the main factor affecting the survival prognosis. The CAO/ARO/AIO-94 study and the EORTC22921 study both showed that nCRT did not improve the long-term survival prognosis of patients with rectal cancer, and patients' compliance with postoperative adjuvant chemotherapy was poor[2-5].

To further reduce the rate of distant metastasis in patients with rectal cancer and improve survival, some scholars have proposed an "intensive treatment" program[6]. One is to increase the dose of radiotherapy, and the second is to add another cytotoxic drug, such as oxaliplatin, to the 5-fluorouracil-based synchronous chemotherapy regimen[7]. The third is postoperative adjuvant chemotherapy before TME, that is, total neoadjuvant therapy (TNT). TNT has two modes of induction chemotherapy, in which several cycles of systemic chemotherapy are administered before nCRT and consolidation chemotherapy is administered between nCRT and the TME. The National Comprehensive Cancer Care Consortium listed TNT as one of the recommended treatment strategies for locally advanced rectal cancer[8-10]. This study aimed to determine how well TNTs work and how long people are likely to live. The safety and effectiveness of TNT and nCRT for treating low to medium locally advanced rectal cancer will be compared.

Raishideng® WJGS | https://www.wjgnet.com

MATERIALS AND METHODS

Document inclusion criteria

Literature type: Clinical studies related to TNT in the treatment of locally advanced rectal cancer, limited to Chinese and English; study subjects: Patients with middle and low locally advanced rectal cancer confirmed by colonoscopy pathology; intervention measures: Experimental group received TNT, control group received nCRT; outcome measures: (1) Main index: Pathologic complete response (pCR) rate, R0 resection rate, incidence of grade 3/4 acute toxicity, 5-year overall survival (OS) and disease-free survival (DFS); and (2) Secondary index: Tumor down phase rate, anal preservation rate, perioperative complication rate, local recurrence and distant metastasis rate, *etc*.

Document exclusion criteria

Single-arm study; reviews, case reports or summaries of meetings; biological therapy, such as cetuximab, bevacizumab, *etc.*; no studies on any of these outcomes.

Search strategy

Chinese databases (CNKI, Wanfang, China Biomedical Literature Database) and English databases (PubMed, Embase) were comprehensively searched. The search strategy used was "neoadjuvant chemoradiotherapy" OR "total neoadjuvant therapy" OR "induction therapy" OR "consolidation therapy" AND "rectal cancer" OR "rectal tumor". To avoid bias caused by language limitations, this study searched both English studies. To avoid missing relevant studies, relevant references listed in the articles and conference abstracts found in the search were traced (Figure 1).

Data collection and data extraction

Literature screening was performed by two independent researchers according to the inclusion and exclusion criteria[11-14]. Disagreements over the search results were resolved through discussion. If there was still a dispute after negotiation, it was resolved by a third researcher[15]. Data extraction was carried out in strict accordance with the designed table[16]. The main contents included author, publication year, country, study type, baseline data, observation indicators, *etc.*

Literature quality evaluation

The quality of randomized controlled studies was assessed using bias assessment tools recommended by the Cochrane Collaboration, including six aspects: Randomization, assignment concealment, blindness, integrity of results, selective reporting of findings, and other sources of bias. Each indicator was evaluated as "low risk", "unclear" or "high risk". The Newcastle-Ottawa Scale (NOS) was selected for the methodological evaluation of nonrandomized controlled studies[17-20]. The evaluation included four aspects: Population selection, comparability, exposure and result evaluation. The NOS uses a semiquantitative star system, with a full score of 9 stars and a score greater than 5 points included in the analysis [21].

Bias analysis

Heterogeneity between studies was assessed using l^2 statistics, with 25%, 50%, and 75% representing low, medium and high heterogeneity, respectively; $l^2 < 50\%$ and P > 0.1 between studies using fixed effect models; and $l^2 > 50\%$ and P < 0.1 from χ^2 analysis indicating study heterogeneity[22-24]. Meta-analysis by random effects models was performed, and possible heterogeneity was determined by subgroup analysis. The sensitivity analysis removed the included studies one by one to determine whether the pooled effect values were stable or reliable.

Statistical analysis

The Cochrane Collaboration provided RevMan 5.3 software for the statistical analysis. The odds ratio (OR) and 95% confidence interval (CI) of the binary measurement data were calculated. The hazard ratio (HR) and 95% CI of the survival data were calculated. For heterogeneity tests, the statistics I^2 and Q tests were selected. An $I^2 > 0.5$ indicated that the heterogeneity was high, and a random effects model was selected. If $I^2 < 0.5$, the fixed effects model was chosen. A funnel plot was constructed for publication-offset analysis of the included studies. P < 0.05 indicated that the difference was statistically significant.

RESULTS

Literature retrieval results and included research characteristics

A total of 14 studies meeting the criteria were included in the study, including 6 randomized controlled studies, 5 retrospective case-control studies, and 3 prospective studies (Figure 1). A total of 3797 patients with rectal cancer were included, including 1865 in the TNT group and 1932 in the nCRT group. The general characteristics of the included studies are shown in Table 1, and the chemoradiotherapy protocols adopted in each study are shown in Table 2. The quality evaluation results of randomized controlled studies are shown in Figure 2, and the quality evaluation scores of nonrandomized controlled studies were no less than 5 points.

Zaishidena® WJGS | https://www.wjgnet.com

Table 1 General characteristics of included studies

D -(0	Oferstanting	0	Sam	ple size	Inclusion in research quality system
Ref.	Country	Study type	Cases	TNT	nCRT	Inclusion in research quality evaluation
Garcia-Aguilar et al[9], 2015	America	Prospective study	259	199	60	6
Zhai <i>et al</i> [11], 2020	China	Retrospective study	134	79	55	6
Cercek <i>et al</i> [12], 2018	America	Retrospective study	628	308	320	8
Markovina <i>et al</i> [13], 2017	America	Prospective study	138	69	69	6
Zhu et al[14], 2019	America	Retrospective study	1079	372	707	8
Fernandez-Martos et al[15], 2015	America	Randomized controlled study	103	54	49	7
Maréchal et al[18], 2012	Belgium	Randomized controlled study	57	28	29	8
Calvo <i>et al</i> [19], 2014	Spain	Retrospective study	335	207	128	7
Bhatti <i>et al</i> [20], 2015	Pakistan	Retrospective study	154	93	61	7
Bujko <i>et al</i> [<mark>21</mark>], 2016	Poland	Randomized controlled study	515	261	254	8
Kim <i>et al</i> [22], 2018	South Korea	Randomized controlled study	110	54	56	7
Liang <i>et al</i> [23], 2019	China	Prospective study	156	76	80	5
Moore <i>et al</i> [24], 2017	Australia	Randomized controlled study	49	25	24	8
Wu et al[25], 2022	China	Randomized controlled study	80	40	40	8

TNT: Total neoadjuvant therapy; nCRT: Neoadjuvant chemoradiotherapy.

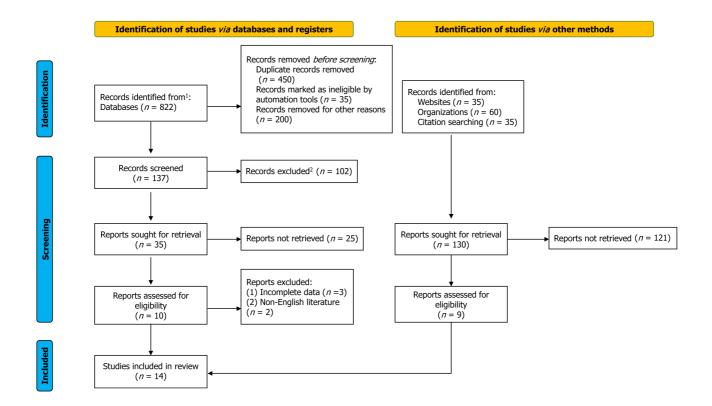


Figure 1 Flow chart of the literature screening. ¹Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers). ²If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

Raishideng® WJGS | https://www.wjgnet.com

TNT safety evaluation analysis

Grade 3/4 acute toxic reactions: A total of 10 studies reported the incidence of grade 3/4 acute toxic reactions during the TNT or nCRT stage [9,11,13,15,18,19,21-23,25]. There was great heterogeneity among the studies ($l^2 = 80\%$), so the random effects model was selected. The results of the meta-analysis showed that there was no significant difference in the incidence of grade 3/4 acute toxicity between the TNT group and the nCRT group (OR = 0.79, 95% CI: 0.47-1.32, P = 0.36) (Figure 3A).

Perioperative complications: A total of 10 studies reported perioperative complications [7,11,15-19,21,23,24]. There was little heterogeneity among the studies (P = 0.62, $I^2 = 0\%$), and the fixed-effects model was chosen. The results of the metaanalysis showed that there was no significant difference in the incidence of perioperative complications between the two groups (OR = 1.02, 95%CI: 0.78-1.33, *P* = 0.87) (Figure 3B).

Evaluation of the perioperative efficacy of TNT

pCR rate analysis: A total of 14 studies used pCR as the main outcome index[11-18,20-25]. There was little heterogeneity among the studies (P = 0.54, $I^2 = 0\%$), and the fixed-effects model was chosen. The results of the meta-analysis showed that the pCR rate in the TNT group was significantly greater than that in the nCRT group (OR = 1.57, 95% CI: 1.30-1.90, P < 0.00001) (Figure 3C).

Analysis of the tumor downphase rate: A total of 6 studies reported the T stage regression rate[13,18,19,22,23,25]. There was little heterogeneity among the studies (P = 0.26, P = 24%), and the fixed-effects model was chosen. The results of the meta-analysis showed that the T stage decline rate in the TNT group was significantly greater than that in the nCRT group (OR = 2.16, 95%CI: 1.63-2.57, *P* < 0.00001) (Figure 3D).

R0 removal rate analysis: A total of 14 studies reported R0 removal rates after TNT or nCRT[7,11,14-25]. There was little heterogeneity among the studies (P = 0.10, $I^2 = 38\%$), and the fixed-effects model was chosen. The results of the metaanalysis showed that the R0 removal rate in the TNT group was significantly greater than that in the nCRT group (OR = 1.42, 95%CI: 1.09-1.85, *P* = 0.009) (Figure 3E).

Anal retention rate analysis: A total of 14 studies reported anal preservation rates after TNT or nCRT[7,11-13,15-24]. There was little heterogeneity among the studies (P = 0.08, $I^2 = 41\%$), and the fixed-effects model was chosen. The results of the meta-analysis showed that there was no significant difference in the anal preservation rate between the TNT and nCRT groups (OR = 0.99, 95%CI: 0.82-1.19, *P* = 0.88) (Figure 3F).

TNT survival prognosis analysis

Analysis of local recurrence and distant metastasis: Local recurrence and distant metastasis were reported in four studies each during the follow-up period[16,20,23,25], as was distant metastasis[16,20,22,25]. There was little heterogeneity among the studies (both $l^2 = 0\%$), and the fixed-effects model was selected. The results of the meta-analysis showed that there was no statistically significant difference in local recurrence rates between the TNT group and the nCRT group (OR = 0.89, 95% CI: 0.47-1.69; *P* = 0.73) (Figure 3G). The rates of distant metastasis were similar between the two groups (OR = 1.11, 95%CI: 0.81-1.52; *P* = 0.5) (Figure 3H).

OS and DFS analysis: Seven studies reported 5-year OS in both groups[13-15,20,21,23,25]. There was little heterogeneity among the studies (P = 0.24, $I^2 = 25\%$), and the fixed-effects model was chosen. The results of the meta-analysis showed that there was no significant difference in 5-year OS between the TNT group and the nCRT group (HR = 0.84, 95%CI: 0.69-1.02; P = 0.08) (Figure 4A). Four studies reported 5-year DFS in the TNT and nCRT groups[13,15,20,23]. There was little heterogeneity among the studies (P = 0.95, $I^2 = 0\%$), and the fixed-effects model was selected. Meta-analysis revealed no significant difference in 5-year DFS between the two groups (HR = 0.94, 95%CI: 0.03-1.39, P = 0.74) (Figure 4B).

Literature publication bias analysis: A funnel plot was used to analyze the publication bias of the included studies for each outcome index, and it was found that the distributions on both sides of the funnel plot were basically symmetrical with no significant publication bias, indicating good stability. Taking pCR as an example, the funnel plot of the 4 included studies was basically distributed within the 95% CI, indicating no significant publication bias (Figure 5).

DISCUSSION

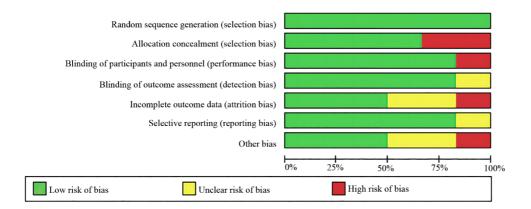

A number of studies have shown that TNT can significantly improve the treatment compliance of rectal cancer patients; increase the pCR rate, tumor down phase rate, and R0 resection rate; increase the anal preservation rate and organ retention rate; eliminate occult micrometastases; shorten the duration of surgery; and further reduce the rate of local recurrence and distant metastasis by increasing the local control of tumors[26-28]. In addition, these treatments improve long-term survival outcomes. In this study, the pCR rate, R0 removal rate, and T stage degradation rate in the TNT group were significantly greater than those in the nCRT group, while the incidences of grade 3/4 acute toxic reactions and perioperative complications were similar to those in the nCRT group[29]. There were no significant differences in the local recurrence rate, distant metastasis rate, 5-year OS, or DFS between the two groups. Compared with nCRT, TNT did not significantly increase the rate of grade 3/4 acute toxic reactions or perioperative complications[30]. The incidence of grade 3/4 acute toxic reactions reported during TNT treatment ranged from 4% to 55%, mainly diarrhea and hematological toxicity (neutropenia, thrombocytopenia, etc.). Overall, the incidence of toxic reactions with TNT (27%) was similar

Table 2 Radiochemotherapy regimens and specific doses for total neoadjuvant therapy and neoadjuvant chemoradiotherapy groups

	TNT			nCRT	
Ref.	IT/CT Chemotherapy		Dose	Radiation therapy	Synchronous chemotherapy
Garcia-Aguilar <i>et al</i> [9], 2015	СТ	mFOFLOX	5-FU 400 mg/m²; LV 200 mg/m²; OX 85 mg/m²	45.0 Gy/25 f	5-FU 225 mg/m ²
Zhai et al[11], 2020	СТ	CAPEOX	CAP 1000 mg/m ² ; OX 130 mg/m ²	50.4 Gy/28f	CAP 850 mg/m ²
Cercek <i>et al</i> [12], 2018	IT	mFOFLOX	5-FU 400 mg/m²; LV 200 mg/m²; OX 85 mg/m²	45.0 Gy/25 f	5-FU 225 mg/m ² /CAP 850 mg/m ²
Markovina <i>et al</i> [<mark>13</mark>], 2017	IT	mFOFLOX FOFLOX	5-FU/LV/OX	45.0 Gy/25 f, 45.0 Gy/25 f	5-FU/CAP
Zhu et al[<mark>14</mark>], 2019	IT	CAPEOX		50.4 Gy/25-28 f	
Fernandez-Martos <i>et al</i> [15], 2015	IT	CAPEOX	CAP/OX	45.0 Gy/25 f	CAP
Maréchal <i>et al</i> [18], 2012	IT	mFOFLOX	5-FU 400 mg/m²; LV 400 mg/m²; OX 100 mg/m²	45.0 Gy/25 f	5-FU 225 mg/m ²
Calvo et al[19], 2014	IT	mFOFLOX	5-FU 400 mg/m²; LV 200 mg/m²; OX 85 mg/m²	45.0 Gy/25 f	5-FU 425 mg/m ²
Bhatti <i>et al</i> [20], 2015	IT	CAPEOX	CAP 1000 mg/m ² ; OX 130 mg/m ²	50.4 Gy/25-28 f	CAP 825 mg/m ²
Bujko <i>et al</i> [<mark>21</mark>], 2016	СТ	mFOFLOX	5-FU/LV/OX	50.4 Gy/25-28 f	5-FU 325 mg/m ² /LV 20 mg/m ²
Kim et al[22], 2018	СТ	CAPEOX, CAPEOX	CAP 1700 mg/m ² ; OX 100 mg/m ²	50.4 Gy/25-28 f	CAP
Liang <i>et al</i> [23], 2019	CT	FOFLOX	CAP 1000 mg/m²; OX 130 mg/m²; 5- FU 400 mg/m²; LV 400 mg/m²; OX 85 mg/m²	50.4 Gy/25-28 f	CAP 825 mg/m ²
Moore <i>et al</i> [24], 2017	СТ	5-FU/LV	5-FU 450 mg/m ² ; LV 50 mg/m ²	45.0 Gy/25 f	5-FU 225 mg/m ²
Wu et al[25], 2022	СТ	FOFLOX	5-FU 400 mg/m²; LV200 mg/m²; OX 85 mg/m²	50.4 Gy/25-28 f	5-FU 225 mg/m ²

IT: Immunotherapy; CT: Chemotherapy; TNT: Total neoadjuvant therapy; nCRT: Neoadjuvant chemoradiotherapy; 5-FU: 5-fluorouracil; CAPEOX: Capecitabine; CAP: Community-acquired pneumonia; OX: Oxaliplatin; LV: Leucovorin; FOFLOX: Fluorouracil, oxaliplatin, leucovorin; mFOFLOX: Modified fluorouracil, oxaliplatin, leucovorin.

Figure 2 Risk of bias graph of the literature quality evaluation chart.

to that with nCRT (31%). Some studies also reported that the incidence of toxic side effects of TNT is lower, possibly because patients have not yet received surgical treatment, the body's immune system and general condition are better, and the tolerance of systemic chemotherapy is better[31-34]. The results of this study revealed that the incidence of perioperative complications in the TNT group was similar to that in the nCRT group, which was consistent with the conclusions of most studies. Among these complications, incision complications and anastomosis-related complications (anastomotic leakage and anastomotic stenosis) were more common[35]. The above studies indicate that the safety of TNT and nCRT is comparable and that TNT may achieve better oncological efficacy without increasing the incidence of toxic

A	Study or subgroup	TN Events	-	NCF Events		l Weight	Odds ratio M-H, random, 95%	Odds ratio oCI M-H, random, 95%CI
	Bujko et al.2016	62	256	61	259	12.7%	1.04 [0.69, 1.56]	
	Calvo et al.2014	60	208	42	128	12.3%	0.83 [0.52, 1.34]	
	Garcia et al.2015	38	199	30	60	11.5%	0.24 [0.13, 0.44]	
	Liang et al.2019	42	76	30	80	11.4%	2.06 [1.09, 3.90]	
	Markovina et al.2019	26	69	22	69	11.0%	1.29 [0.64, 2.61]	
	Zhai Zhiwei, et al.2020	29	79	16	55	10.7%	1.41 [0.67, 2.96]	
	Li Leilei, et al.2017	15	40	24	40	9.7%	0.40 [0.16, 0.98]	
	Fernandez et al.2015	10	54	20	37	9.4%	0.19 [0.08, 0.50]	
	Maréchal et al.2012	8	28	2	29	5.7%	5.40 [1.03, 28.23]	
	Kim et al.2018	2	55	5	53	5.6%	0.36 [0.07, 1.95]	
	Total (95% CI)		1064		810	100.0%	0.79 [0.47, 1.32]	•
	Total events	292		252				
	Heterogeneity: Tau ² = 0.5	1: Chi ² =	45.94.	df = 9 (P	< 0.00	(0001) : $I^2 = 8$	- 0%	
	Test for overall effect: $Z =$,	,	(,, -		0.05 0.2 1 5 20 Favours [NCRT] Favours [TNT]

	TN	IT	NCF	RL		Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%	CI	M-H, fixed, 95%CI
Bujko et al.2016	35	178	37	172	27.9%	0.89 [0.53, 1.50]		
Calvo et al.2014	52	207	28	128	24.0%	1.20 [0.71, 2.02]		
Garcia et al.2015	15	199	10	69	12.7%	0.48 [0.21, 1.13]		
Liang et al.2019	13	76	12	80	9.0%	1.17 [0.50, 2.75]		
Fernandez et al.2015	24	52	16	46	8.5%	1.61 [0.71, 3.63]		
Zhai zhiwei,et al.2020	12	79	7	55	6.5%	1.23 [0.45, 3.35]		
Maréchal et al.2012	7	28	9	29	6.1%	0.74 [0.23, 2.37]		
Moore et al.2017	12	25	11	24	5.4%	1.09 [0.36, 3.35]		
Total (95% CI)		844		603	100.0%	1.02 [0.78, 1.33]		•
Total events	170		130					
Heterogeneity: Chi ² = 5.	33, <i>df</i> =7	(P = 0.	62); <i>I</i> ² = 0	%			+	
Test for overall effect: Z	= 0.16 (P	= 0.87)				0.02	0.1 1 10 Favours [NCRT] Favours [TNT]

С		TN	Т	NCF	RT		Odds ratio	Odds ratio	
_	Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%C	CI M-H, fixed, 95%CI	
	Cercek et al.2018	43	235	49	296	30.0%	1.13 [0.72, 1.77]		
	Bujko et al.2016	35	220	25	205	18.4%	1.36 [0.78, 2.37]		
	Garcia et al.2015	62	199	11	60	9.8%	2.02 [0.98, 4.14]		
	Bhatti et al.2015	28	91	12	61	8.4%	1.81 [0.84, 3.93]		
	Markovina et al.2019	19	69	11	69	6.7%	2.00 [0.87, 4.61]		
	Liang et al.2019	16	76	9	80	5.9%	2.10 [0.87, 5.10]		-
	Fernandez et al.2015	8	54	7	52	5.1%	1.12 [0.37, 3.34]		
	Maréchal et al.2012	7	27	8	29	4.8%	0.92 [0.28, 3.00]		
	Moore et al.2017	4	25	6	24	4.3%	0.57 [0.14, 2.35]		
	Zhai Zhiwei et al.2020	17	79	4	55	3.1%	3.50 [1.11, 11.05]		
	Kim et al.2018	6	44	3	52	2.0%	2.58 [0.61, 10.99]		
	Li Leilei et al.2017	8	40	2	40	1.4%	4.75 [0.94, 23.98]		
	Total (95% <i>CI</i>)		1159		1023	100.0%	1.55 [1.23, 1.95]	•	
	Total events	253		147					
	Heterogeneity: Chi ² = 10	0.84, df = 1	1 (P =	0.46); <i>I</i> ² :	= 0%		-		+
	Test for overall effect: Z	= 3.73 (<i>P</i>	= 0.00	02)				0.2 0.5 1 2 Favours [NCRT] Favours [TNT]	5

Study or subgroup	TN Events		NCR Events		Weight	Odds ratio M-H, fixed, 95%	ст	Odds ratio M-H, fixed, 95%CI
Calvo et al.2014	124	207	55	128	41.7%	1.98 [1.27, 3.10]	-	
Liang et al.2019	50	79	39	80	21.7%	1.81 [0.96, 3.42]		
Maréchal et al.2012	13	27	14	29	10.7%	0.99 [0.35, 2.84]		
Markovina et al.2019	52	69	28	69	10.5%	4.48 [2.16, 9.28]		
Kim et al.2018	16	44	11	52	9.8%	2.13 [0.86, 5.27]		
Li Leilei et al.2017	24	31	15	27	5.5%	2.74 [0.88, 8.52]		<u> </u>
Total (95% <i>CI</i>)		457		385	100.0%	2.16 [1.63, 2.87]		•
Total events	279		162					
Heterogeneity: Chi ² = 6	.55, <i>df</i> = 5	(P = 0	.26); <i>I</i> ² = 2	24%			0.02	
Test for overall effect: 2	r = 5.34 (P)	< 0.00	0001)				0.02	0.1 1 10 50 Favours [NCRT] Favours [TNT]

Zaisbideng® WJGS https://www.wjgnet.com

Ε		TN	т	NCR	T		Odds ratio		(Odds ra	atio		
_	Study or subgroup	Events	Total	Events	Гotal	Weight	M-H, fixed, 95%	CI	М-Н,	fixed,	95%CI		
	Bujko et al.2016	202	261	178	254	54.7%	1.46 [0.98, 2.17]			ł			
	Maréchal et al.2012	199	207	124	128	7.9%	0.80 [0.24, 2.72]						
	Li Leilei et al.2017	31	40	26	40	7.8%	1.85 [0.69, 4.97]			-	•		
	Fernandez et al.2015	48	54	45	46	7.2%	0.18 [0.02, 1.53]	←					
	Kim et al.2018	40	44	52	52	6.5%	0.09 [0.00, 1.64]	+-					
	Bhatti et al.2015	85	93	44	61	6.1%	4.11 [1.64, 10.26]						_
	Liang et al.2019	73	76	72	80	3.7%	2.70 [0.69, 10.60]			-+			_
	Garcia et al.2015	195	199	59	60	2.4%	0.83 [0.09, 7.54]						-
	Moore et al.2017	23	25	22	24	2.4%	1.05 [0.14, 8.08]						-
	Zhai Zhiwei et al.2020	78	79	54	55	1.1%	1.44 [0.09, 23.60]						
	Total (95% CI)		1078		800	100.0%	1.44 [1.08, 1.93]				•		
	Total events	974		676									
	Heterogeneity: Chi ² = 14	4.45, $df = 9$	P = 0	0.11); <i>I</i> ² =	38%			+		+ +	1	<u>+</u>	+
	Test for overall effect: Z	, ,	•	,.				0.1	0.2 0 Favours [1).5 1 NCRT]	2 Favours [1	5 [NT]	10

Study or subgroup	TN Events	-	NCI Events		Weight	Odds ratio M-H, fixed, 95%	CI	Odds M-H, fixed,	
Bujko et al.2016	138	220	122	205	21.6%	1.14 [0.77, 1.69]			-
Cercek et al.2018	184	235	228	296	20.1%	1.08 [0.71, 1.62]			-
Calvo et al.2014	142	207	81	128	14.4%	1.27 [0.80, 2.02]			
Bhatti et al.2015	53	93	45	61	10.7%	0.47 [0.23, 0.95]	←		
Zhai Zhiwei et al.2020	51	79	47	55	9.0%	0.31 [0.13, 0.75]	•		
Garcia et al.2015	144	199	46	60	9.0%	0.80 [0.41, 1.56]		•	
Liang et al.2019	52	76	53	80	7.5%	1.10 [0.56, 2.16]	-		•
Markovina et al.2019	52	69	50	69	5.6%	1.16 [0.54, 2.49]	_		
Moore et al.2017	18	25	15	24	2.0%	1.54 [0.46, 5.13]		_	
Kim et al.2018	52	52	41	43	0.2%	6.33 [0.30, 135.38]	•		
Total (95% <i>CI</i>)		1255		1021	100.0%	0.99 [0.82, 1.19]			
Total events	886		728						
Heterogeneity: Chi ² =	15.36, $df = 9$) (P =	0.08); [2 =	41%					
Test for overall effect:	Z= 0.15 (P	= 0.88	3)				0.5 Favo	0.7 ours [NCRT]	1 1.5 2 Favours [TNT]

3	٦	NT	NC	RT		Odds ratio		Odds	ratio	
Study or subgroup	Event	s Total	Events	Tota	l Weight	M-H, fixed, 95%	6CI	M-H, fixed	, 95%CI	
Bhatti et al.2015	12	65	11	47	52.1%	0.74 [0.29, 1.86]			<u> </u>	
Liang et al.2019	7	76	4	80	17.7%	1.93 [0.54, 6.87]				
Fernandez et al.2015	1	54	3	49	15.4%	0.29 [0.03, 2.88]		•		
Li Leilei et al.2017	3	31	3	26	14.7%	0.82 [0.15, 4.46]				
Total (95% <i>CI</i>)		226		202	100.0%	0.89 [0.47, 1.69]				
Total events	23		21							
Heterogeneity: Chi ² = 2.5	60, df = 3	(<i>P</i> = 0.4	8); [2 = 0	%						400
Test for overall effect: Z=							0.01	0.1 Favours [NCRT]	1 10 Favours [TNT]	100

H Study or subgroup	-	'NT s Total	NC Events		l Weight	Odds ratio M-H, fixed, 95%	CI		odds ratio fixed, 95%	CI	
Bujko et al.2016 Li Leilei et al.2017	75	261	63	254	60.8%	1.22 [0.83, 1.81]			-		
	10	40	15	40	15.0%	0.56 [0.21, 1.45]			-		
Bhatti et al.2015	16	65	12	47	14.0%	0.95 [0.40, 2.26]					
Fernandez et al.2015	15	54	10	49	10.1%	1.50 [0.60, 3.75]					
Total (95% <i>CI</i>)		420		390	100.0%	1.11 [0.81, 1.52]			•		
Total events	116		100								
Heterogeneity: Chi ² = 2.7	7. df = 3	(P = 0.4)	(3): $I^2 = 0$	%			<u> </u>		<u> </u>	<u> </u>	
Test for overall effect: Z =	5		,				0.05 F	0.2 avours [N	1 CRT] Favo	5 urs [TNT	20

Figure 3 Comparative analysis of acute grade 3/4 toxicity, perioperative complications, pathologic complete response rates, the rate of decrease in tumor T stage, the R0 removal rate, anal preservation rates, local recurrence, and distant metastasis between total neoadjuvant therapy and neoadjuvant chemoradiotherapy. A: Comparative analysis of acute grade 3/4 toxicity between total neoadjuvant therapy (TNT) and neoadjuvant chemoradiotherapy (nCRT); B: Comparative analysis of perioperative complications between the TNT and nCRT groups; C: Comparative analysis of pathologic complete response rates between the TNT and nCRT groups; D: Comparative analysis of the rate of decrease in tumor T stage between the TNT and nCRT groups; E: Comparative analysis of the R0 removal rate between the TNT and nCRT groups; F: Comparative analysis of anal preservation rates between the TNT and nCRT groups; G: Comparative analysis of local recurrence between the TNT and nCRT groups; H: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Comparative analysis of distant metastasis between the TNT and nCRT groups; H: Comparative analysis of distant metastasis between the TNT and nCRT groups; C: Confidence interval.

Baisbideng® WJGS | https://www.wjgnet.com

A Study or subgroup	TN Events			RT Total	0-Е	Variance	Weight	Hazard ratio Exp[(O-E)/V], fixed, 9	5%CI	Hazard ratio Exp[(O-E)/V], fixed, 95%C	1
Bhatti et al.2015	48	93	21	61	-0.75	9.09	9.3%	0.92 [0.48, 1.76	5]	-	
Bujko et al.2016	149	261	118	254	-5.02			0.87 [0.62, 1.21			
Fernandez et al.201	5 41	54	38	49	0.95	0.7	0.7%	3.89 [0.37, 40.44	-]		
Liang et al.2019	35	76	38	80	-2.65			0.49 [0.18, 1.36			
Markovina et al.201	7 47	69	44	69	-0.87	3.2	3.3%	0.76 [0.25, 2.28		<u> </u>	
Zhu et al.2019	185	372	359	707	-0.49	42.94	44.0%	0.99 [0.73, 1.33	5]		
Li Leilei et al.2017	24	40	19	40	-1.93	2.8	2.9%	0.50 [0.16, 1.62	2]		
Total (95% <i>CI</i>) Total events	529	965	637	1260			100.0%	0.90 [0.73, 1.09	9]	•	
Heterogeneity: Chi ² Test for overall effect	,	1.09 (<i>F</i>			= 0%			Hazard ratio	0.01 Fa	0.1 1 10 vours [NCRT] Favours [TN Hazard ratio	100 IT]
Study or subgroup	Events	Total	Events	Total	О-Е	Variance	Weight		5%CI	Exp[(O-E)/V], fixed, 95%C	I
Bhatti et al.2015 Fernandez et al.2015	23 5 32	93 54	17 31		0.11 1.05	9.15 5.43	37.8% 22.4%	1.01 [0.53, 1.93] 0.82 [0.36, 1.91]			
Liang et al.2019	28	76	27).19	6.42	26.5%	1.03 [0.48, 2.23]			
Markovina et al.2017	46	69	44		0.87	3.2	13.2%	0.76 [0.25, 2.28]			
Total (95% <i>CI</i>) Total events	129	292	2 119	59		100.	0%	0.94[0.63, 1.39]		•	
Heterogeneity: Chi ² =		H = 3		5) $I^2 =$	= 0%					-+ + +	
receivgeneity. Off-			-0.90	<i>, 1</i>	- 0 /0				0.05	0.2 1 5	20
Test for overall effect	+ 7 - 0	33 (D	-0.74							ours [NCRT] Favours [TNT	

Figure 4 Comparative analysis of 5-year overall survival and disease-free survival between the total neoadjuvant therapy and neoadjuvant chemoradiotherapy groups. A: 5-year overall survival; B: 5-year disease-free survival. TNT: Total neoadjuvant therapy; nCRT: Neoadjuvant chemoradiotherapy; CI: Confidence interval.

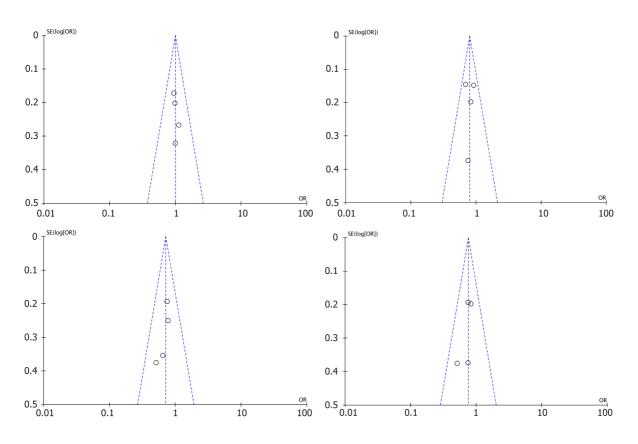


Figure 5 Publication bias of included studies. OR: Odds ratio.

side effects or postoperative complications.

As shown in the results of this study[36], the total pCR rate in the TNT group was 21.3%, which was significantly greater than that in the nCRT group (13.9%, P < 0.05), which was consistent with the results of the meta-analysis (22.4% *vs* 13.7%, P = 0.01). TNT can significantly increase the pCR rate of patients with locally advanced rectal cancer. Another study divided patients with locally advanced rectal cancer into four groups who received 0, 2, 4, or 6 wk of "mFOLFOX6" consolidation chemotherapy between nCRT and the TME and achieved pCR rates of 18%, 25%, 30%, and 38%, respectively. This showed that the pCR rate increased with an increase in the number of TNT cycles[37]. A retrospective

study from Memorial Sloan-Kettering Cancer Center showed that pCR rates were significantly greater in the TNT group than in the nCRT group (35.7% *vs* 21.3%, *P* < 0.05)[38]. However, other studies, such as the GCR-3 study and the EXPECT-C study, have shown that TNT does not significantly improve the pCR rate of patients with rectal cancer.

The opposite conclusions of different studies may be related to the time interval between the end of neoadjuvant therapy and the time before radical surgery[39-41]. The Lyon R90-01 study showed that the efficacy of TNT was time dependent, and the pCR rate increased with increasing time intervals. After this time interval is significantly extended, the tumor tissue will have enough time to shrink to achieve better tumor reduction and down phase effects and a higher pCR rate. However, the time interval of the EXPECT C study was only 5-6 wk, which is significantly lower than the 8-12 wk of other studies, which may be the main reason why the pCR rate of this study was not significantly improved[42].

This study showed that although there was no statistically significant difference in the operative anal preservation rate between the two groups, the time to return to the stoma was significantly shorter in the TNT group. The study revealed that 87.5% and 85.5% of patients in the TNT and nCRT groups, respectively, received protective ostomies after low anterior resection. Within six months after surgery, the reduction rate was significantly greater in the TNT group than in the nCRT group (71.9% *vs* 8.8%, P < 0.001). Patients in the nCRT group usually needed to complete postoperative adjuvant chemotherapy before the stoma was restored, while patients in the TNT group mostly completed systemic chemotherapy before surgery and could generally restore the stoma within six months. Therefore, TNT significantly shortened the duration of ostomy restoration and significantly improved the postoperative quality of life of patients with rectal cancer. Domestic studies also suggested that TNT did not significantly improve the survival prognosis of rectal cancer patients. A subgroup analysis of several studies showed that the OS and DFS of pCR patients were much better than those of nonpCR patients[43,44]. This suggests that the survival prognosis of rectal cancer patients may be linked to local tumor control. Some studies have also shown that TNT can significantly eliminate occult micrometastases and improve the survival of patients with rectal cancer. Among the 14 studies included in this paper, only 4 discussed the long-term efficacy of TNT, with a small sample size and mainly retrospective studies, which may have led to a large bias in the results of this study.

This meta-analysis also has certain limitations: (1) Only six randomized controlled studies were included in this study, and the sample size was relatively small, which may have deficiencies such as publication bias; and (2) The included studies mainly reported the short-term efficacy and safety of TNT, such as pCR, clinical complete response, and the R0 resection rate. Few studies on long-term survival prognosis exist, and most of them were retrospective studies.

CONCLUSION

In summary, TNT has the advantages of eliminating occult micrometastases, shortening the time of ostomy restoration, improving treatment compliance in patients with rectal cancer, significantly increasing the pCR rate of locally advanced rectal cancer, and improving the R0 resection rate and tumor downphase rate. Follow-up studies on TNT after long-term survival preconditioning, such as the RAPIDO, NCT03177382, and NCT02031939 studies, are underway, and it is expected that the results of these studies can further clarify the clinical efficacy of TNT.

FOOTNOTES

Author contributions: Wang Y wrote the manuscript; Yang Y and Liu QQ collected the data; Wang SZ guided the study; and all authors reviewed, edited, and approved the final manuscript and revised it critically for important intellectual content, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Qi-Qi Liu 0000-0101-1212-4566; Shao-Zhao Wang 0009-0006-1877-1278.

S-Editor: Wang JJ L-Editor: A P-Editor: Zhang YL

Saisbideng® WJGS | https://www.wjgnet.com

REFERENCES

- 1 Boublikova L, Novakova A, Simsa J, Lohynska R. Total neoadjuvant therapy in rectal cancer: the evidence and expectations. Crit Rev Oncol Hematol 2023; 192: 104196 [PMID: 37926376 DOI: 10.1016/j.critrevonc.2023.104196]
- Kasi A, Abbasi S, Handa S, Al-Rajabi R, Saeed A, Baranda J, Sun W. Total Neoadjuvant Therapy vs Standard Therapy in Locally Advanced 2 Rectal Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3: e2030097 [PMID: 33326026 DOI: 10.1001/jamanetworkopen.2020.30097
- 3 Body A, Prenen H, Lam M, Davies A, Tipping-Smith S, Lum C, Liow E, Segelov E. Neoadjuvant Therapy for Locally Advanced Rectal Cancer: Recent Advances and Ongoing Challenges. Clin Colorectal Cancer 2021; 20: 29-41 [PMID: 33531256 DOI: 10.1016/j.clcc.2020.12.005]
- 4 Narang AK, Meyer J. Neoadjuvant Short-Course Radiation Therapy for Rectal Cancer: Trends and Controversies. Curr Oncol Rep 2018; 20: 68 [PMID: 29978358 DOI: 10.1007/s11912-018-0714-x]
- Ominelli J, Valadão M, Araujo ROC, Cristina de Melo A, Araujo LH. The Evolving Field of Neoadjuvant Therapy in Locally-advanced Rectal 5 Cancer: Evidence and Prospects. Clin Colorectal Cancer 2021; 20: 288-298 [PMID: 34340916 DOI: 10.1016/j.clcc.2021.06.005]
- Salem ME, Hartley M, Unger K, Marshall JL. Neoadjuvant Combined-Modality Therapy for Locally Advanced Rectal Cancer and Its Future 6 Direction. Oncology (Williston Park) 2016; 30: 546-562 [PMID: 27306709]
- 7 Stepanyan A, Fassan M, Spolverato G, Castagliuolo I, Scarpa M, Scarpa M; IMMUNOREACT Study Group. IMMUNOREACT 0: Biopsybased immune biomarkers as predictors of response to neoadjuvant therapy for rectal cancer-A systematic review and meta-analysis. Cancer Med 2023; 12: 17878-17890 [PMID: 37537787 DOI: 10.1002/cam4.6423]
- 8 Guida AM, Sensi B, Formica V, D'Angelillo RM, Roselli M, Del Vecchio Blanco G, Rossi P, Capolupo GT, Caricato M, Sica GS. Total neoadjuvant therapy for the treatment of locally advanced rectal cancer: a systematic minireview. Biol Direct 2022; 17: 16 [PMID: 35698084 DOI: 10.1186/s13062-022-00329-71
- 9 Garcia-Aguilar J, Chow OS, Smith DD, Marcet JE, Cataldo PA, Varma MG, Kumar AS, Oommen S, Coutsoftides T, Hunt SR, Stamos MJ, Ternent CA, Herzig DO, Fichera A, Polite BN, Dietz DW, Patil S, Avila K; Timing of Rectal Cancer Response to Chemoradiation Consortium. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial. Lancet Oncol 2015; 16: 957-966 [PMID: 26187751 DOI: 10.1016/S1470-2045(15)00004-2]
- Yuval JB, Garcia-Aguilar J. Watch-and-wait Management for Rectal Cancer After Clinical Complete Response to Neoadjuvant Therapy. Adv 10 Surg 2021; 55: 89-107 [PMID: 34389102 DOI: 10.1016/j.yasu.2021.05.007]
- Zhai ZW, Zhang KN, Wang C, Han JG, Ma HC, Wei GH, Yang Y, Wang ZJ. [Comparison of short-term efficacy and perioperative safety 11 between neoadjuvant therapy and total neoadjuvant therapy in patients with locally advanced rectal cancer]. Zhonghua Wei Chang Wai Ke Za Zhi 2020; 23: 274-280 [PMID: 32192307 DOI: 10.3760/cma.j.cn.441530-20190819-00312]
- Cercek A, Roxburgh CSD, Strombom P, Smith JJ, Temple LKF, Nash GM, Guillem JG, Paty PB, Yaeger R, Stadler ZK, Seier K, Gonen M, 12 Segal NH, Reidy DL, Varghese A, Shia J, Vakiani E, Wu AJ, Crane CH, Gollub MJ, Garcia-Aguilar J, Saltz LB, Weiser MR. Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA Oncol 2018; 4: e180071 [PMID: 29566109 DOI: 10.1001/jamaoncol.2018.0071
- 13 Markovina S, Youssef F, Roy A, Aggarwal S, Khwaja S, DeWees T, Tan B, Hunt S, Myerson RJ, Chang DT, Parikh PJ, Olsen JR. Improved Metastasis- and Disease-Free Survival With Preoperative Sequential Short-Course Radiation Therapy and FOLFOX Chemotherapy for Rectal Cancer Compared With Neoadjuvant Long-Course Chemoradiotherapy: Results of a Matched Pair Analysis. Int J Radiat Oncol Biol Phys 2017; 99: 417-426 [PMID: 28871992 DOI: 10.1016/j.ijrobp.2017.05.048]
- Zhu S, Brodin NP, English K, Ohri N, Chuy JW, Rajdev LN, Narang R, Kalnicki S, Guha C, Garg MK, Kabarriti R. Comparing outcomes 14 following total neoadjuvant therapy and following neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer. *EClinicalMedicine* 2019; **16**: 23-29 [PMID: 31832617 DOI: 10.1016/j.eclinm.2019.09.009]
- 15 Fernandez-Martos C, Garcia-Albeniz X, Pericay C, Maurel J, Aparicio J, Montagut C, Safont MJ, Salud A, Vera R, Massuti B, Escudero P, Alonso V, Bosch C, Martin M, Minsky BD. Chemoradiation, surgery and adjuvant chemotherapy versus induction chemotherapy followed by chemoradiation and surgery: long-term results of the Spanish GCR-3 phase II randomized trial[†]. Ann Oncol 2015; 26: 1722-1728 [PMID: 25957330 DOI: 10.1093/annonc/mdv223]
- Rödel C, Trojan J, Bechstein WO, Woeste G. Neoadjuvant short- or long-term radio(chemo)therapy for rectal cancer: how and who should be 16 treated? Dig Dis 2012; 30 Suppl 2: 102-108 [PMID: 23207941 DOI: 10.1159/000342038]
- Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment 17 of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY) 2021; 13: 10833-10852 [PMID: 33879634 DOI: 10.18632/aging.202860]
- Maréchal R, Vos B, Polus M, Delaunoit T, Peeters M, Demetter P, Hendlisz A, Demols A, Franchimont D, Verset G, Van Houtte P, Van de 18 Stadt J, Van Laethem JL. Short course chemotherapy followed by concomitant chemoradiotherapy and surgery in locally advanced rectal cancer: a randomized multicentric phase II study. Ann Oncol 2012; 23: 1525-1530 [PMID: 22039087 DOI: 10.1093/annonc/mdr473]
- Calvo FA, Sole CV, Serrano J, Del Valle E, Rodriguez M, Muñoz-Calero A, García-Sabrido JL, Garcia-Alfonso P, Peligros I, Alvarez E. 19 Preoperative chemoradiation with or without induction oxaliplatin plus 5-fluorouracil in locally advanced rectal cancer. Long-term outcome analysis. Strahlenther Onkol 2014; 190: 149-157 [PMID: 24306062 DOI: 10.1007/s00066-013-0469-0]
- Bhatti AB, Waheed A, Hafeez A, Akbar A, Syed AA, Khattak S, Kazmi AS. Can induction chemotherapy before concurrent chemoradiation 20 impact circumferential resection margin positivity and survival in low rectal cancers? Asian Pac J Cancer Prev 2015; 16: 2993-2998 [PMID: 25854395 DOI: 10.7314/apjcp.2015.16.7.2993]
- Bujko K, Wyrwicz L, Rutkowski A, Malinowska M, Pietrzak L, Kryński J, Michalski W, Olędzki J, Kuśnierz J, Zając L, Bednarczyk M, 21 Szczepkowski M, Tarnowski W, Kosakowska E, Zwoliński J, Winiarek M, Wiśniowska K, Partycki M, Bęczkowska K, Polkowski W, Styliński R, Wierzbicki R, Bury P, Jankiewicz M, Paprota K, Lewicka M, Ciseł B, Skórzewska M, Mielko J, Bębenek M, Maciejczyk A, Kapturkiewicz B, Dybko A, Hajac Ł, Wojnar A, Leśniak T, Zygulska J, Jantner D, Chudyba E, Zegarski W, Las-Jankowska M, Jankowski M, Kołodziejski L, Radkowski A, Żelazowska-Omiotek U, Czeremszyńska B, Kępka L, Kolb-Sielecki J, Toczko Z, Fedorowicz Z, Dziki A, Danek A, Nawrocki G, Sopyło R, Markiewicz W, Kędzierawski P, Wydmański J; Polish Colorectal Study Group. Long-course oxaliplatin-based preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for cT4 or fixed cT3 rectal cancer: results of a randomized phase III study. Ann Oncol 2016; 27: 834-842 [PMID: 26884592 DOI: 10.1093/annonc/mdw062]
- 22 Kim SY, Joo J, Kim TW, Hong YS, Kim JE, Hwang IG, Kim BG, Lee KW, Kim JW, Oh HS, Ahn JB, Zang DY, Kim DY, Oh JH, Baek JY. A

Randomized Phase 2 Trial of Consolidation Chemotherapy After Preoperative Chemoradiation Therapy Versus Chemoradiation Therapy Alone for Locally Advanced Rectal Cancer: KCSG CO 14-03. Int J Radiat Oncol Biol Phys 2018; 101: 889-899 [PMID: 29976501 DOI: 10.1016/j.ijrobp.2018.04.013]

- Liang HQ, Dong ZY, Liu ZJ, Luo J, Zeng Q, Liao PY, Wu DH. Efficacy and safety of consolidation chemotherapy during the resting period in 23 patients with local advanced rectal cancer. Oncol Lett 2019; 17: 1655-1663 [PMID: 30675225 DOI: 10.3892/ol.2018.9804]
- Moore J, Price T, Carruthers S, Selva-Nayagam S, Luck A, Thomas M, Hewett P. Prospective randomized trial of neoadjuvant chemotherapy 24 during the 'wait period' following preoperative chemoradiotherapy for rectal cancer: results of the WAIT trial. Colorectal Dis 2017; 19: 973-979 [PMID: 28503826 DOI: 10.1111/codi.13724]
- Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival 25 and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines 2022; 10 [PMID: 36140350 DOI: 10.3390/biomedicines10092248]
- Johnson D, Li L, Lee KC, Lam KO, Wong KH, Ho WM, Ma B. Total Neoadjuvant Therapy for High Risk Rectal Cancer in Western and 26 Asian Populations - Current Evidence and Clinical Applications. Clin Colorectal Cancer 2022; 21: 45-54 [PMID: 35033429 DOI: 10.1016/j.clcc.2021.12.004]
- Kokaine L, Gardovskis A, Gardovskis J. Evaluation and Predictive Factors of Complete Response in Rectal Cancer after Neoadjuvant 27 Chemoradiation Therapy. Medicina (Kaunas) 2021; 57 [PMID: 34684080 DOI: 10.3390/medicina57101044]
- Borelli B, Germani MM, Carullo M, Mattioni R, Manfredi B, Sainato A, Rossi P, Vagli P, Balestri R, Buccianti P, Morelli L, Antoniotti C, 28 Cremolini C, Masi G, Moretto R. Total neoadjuvant treatment and organ preservation strategies in the management of localized rectal cancer: A narrative review and evidence-based algorithm. Crit Rev Oncol Hematol 2023; 186: 103985 [PMID: 37059274 DOI: 10.1016/j.critrevonc.2023.103985
- Ludmir EB, Palta M, Willett CG, Czito BG. Total neoadjuvant therapy for rectal cancer: An emerging option. Cancer 2017; 123: 1497-1506 29 [PMID: 28295220 DOI: 10.1002/cncr.30600]
- Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines 30 in Tumor Immunity. Vaccines (Basel) 2024; 12 [PMID: 38400169 DOI: 10.3390/vaccines12020186]
- Battersby NJ, Moran B, Yu S, Tekkis P, Brown G. MR imaging for rectal cancer: the role in staging the primary and response to neoadjuvant 31 therapy. Expert Rev Gastroenterol Hepatol 2014; 8: 703-719 [PMID: 24954622 DOI: 10.1586/17474124.2014.906898]
- Kimura C, Crowder SE, Kin C. Is It Really Gone? Assessing Response to Neoadjuvant Therapy in Rectal Cancer. J Gastrointest Cancer 2023; 32 54: 703-711 [PMID: 36417142 DOI: 10.1007/s12029-022-00889-x]
- 33 Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines 2023; 11 [PMID: 37509501 DOI: 10.3390/biomedicines11071861
- Massaras D, Pantiora E, Sotirova E, Dellaportas D, Dafnios N, Zygogianni A, Theodosopoulos T. Neoadjuvant chemoradiotherapy in rectal 34 cancer and anorectal sphincter dysfunction: Review of the literature. J BUON 2020; 25: 35-39 [PMID: 32277612]
- Recio-Boiles A, Hammad H, Howell K, Kalb BT, Nfonsam VN, Scott AJ, Babiker HM, Elquza E. Locally Advanced Rectal Cancer Evaluation 35 by Magnetic Resonance Imaging after Neoadjuvant Therapy on Decision Making: Cancer Center Experience and Literature Review. J Gastrointest Cancer 2020; 51: 254-259 [PMID: 31054106 DOI: 10.1007/s12029-019-00246-5]
- Franke AJ, Parekh H, Starr JS, Tan SA, Iqbal A, George TJ Jr. Total Neoadjuvant Therapy: A Shifting Paradigm in Locally Advanced Rectal 36 Cancer Management. Clin Colorectal Cancer 2018; 17: 1-12 [PMID: 28803718 DOI: 10.1016/j.clcc.2017.06.008]
- Gefen R, Garoufalia Z, Horesh N, Freund MR, Emile SH, Parlade A, Berho M, Allende D, DaSilva G, Wexner SD. How reliable is restaging 37 MRI after neoadjuvant therapy in rectal cancer? Colorectal Dis 2023; 25: 1631-1637 [PMID: 37376824 DOI: 10.1111/codi.16641]
- Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of 38 patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs 2022; 33: e590-e603 [PMID: 34338240 DOI: 10.1097/CAD.00000000001189]
- De Paoli A, Innocente R, Buonadonna A, Boz G, Sigon R, Canzonieri V, Frustaci S. Neoadjuvant therapy of rectal cancer new treatment 39 perspectives. Tumori 2004; 90: 373-378 [PMID: 15510978 DOI: 10.1177/030089160409000402]
- Petrelli F, Trevisan F, Tomasello G, De Stefani A, Viti M, Garrone O, Luciani A, Ghidini M. Different neoadjuvant therapies for locally 40 advanced rectal cancer: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2022; 180: 103853 [PMID: 36252747 DOI: 10.1016/j.critrevonc.2022.103853]
- De Felice F, Musio D, Tombolini V, Cortesi E. Neoadjuvant Therapy for Rectal Cancer: Updates From the UNICANCER-PRODIGE 23 Trial. 41 Clin Colorectal Cancer 2022; 21: e21 [PMID: 34949551 DOI: 10.1016/j.clcc.2021.11.005]
- Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of 42 immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs 2022; 33: 943-959 [PMID: 35946526 DOI: 10.1097/CAD.00000000001319]
- Bedrikovetski S, Traeger L, Vather R, Moore JW, Sammour T. Clinical and biochemical predictors of tumor response after neoadjuvant 43 therapy in rectal cancer. Asia Pac J Clin Oncol 2023; 19: 365-373 [PMID: 36305516 DOI: 10.1111/ajco.13877]
- Zhao Y, Zhu J, Yang B, Gao Q, Xu Y, Wei X, Kong D, Ji S, Fei B. Retrospective study of total neoadjuvant therapy for locally advanced 44 rectal cancer. Future Oncol 2022; 18: 691-700 [PMID: 34878307 DOI: 10.2217/fon-2021-0644]

WJGS | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

