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Abstract
Premature trypsinogen activation and production of 
oxygen free radicals (OFR) are early pathogenic events 
which occur within acinar cells and trigger acute 
pancreatitis (AP). OFR exert their harmful effects on 
various cell components causing lipid peroxidation, 
disturbances in calcium homeostasis and DNA damage, 
which lead to increased cell injury and eventually cell 
death. This review presents the most recent data 
concerning the effects of N-Acetylcysteine (NAC), in 
the treatment of AP. NAC is an antioxidant capable of 
restoring the levels of Glutathione, the most important 
cellular antioxidant. Studies show the beneficial effects 
of NAC treatment in preventing OFR production and 
therefore attenuating oxidative damage. Additionally, 
NAC treatment has been shown to prevent the 
increase in cytosolic Ca2+ concentration and reduce 
the accumulation of enzymes in acinar cells during AP. 
The prevention, by NAC, of these pathological events 
occurring within acinar would contribute to reducing 
the severity of AP. NAC is also capable of reducing the 
activation of transcription factors especially sensitive to 
the cellular redox state, such as Nuclear factor-κB, signal 
transducer and activator of transcription-3 and mitogen-
activated protein kinase. This leads to a down-regulation 
of cytokines, adhesion molecules and chemokine 
expression in various cell types during AP. These findings 

point to NAC as a powerful therapeutic treatment, 
attenuating oxidative-stress-induced cell injury and other 
pathological events at early stages of AP, and potentially 
contributing to reducion in the severity of disease.
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INTRODUCTION
Acute pancreatitis (AP) is an inflammatory disease whose 
pathophysiology remains poorly understood. It is usually 
considered to be an autodigestive disease. In addition to 
premature intracellular protease activation[1], mechanisms 
such as oxidative stress have also been shown to be involved 
in the development of  the disease[2,3]. Since Sanfey et al[4] 
suggested the possible role of  oxygen free radicals (OFR) 
in AP, many studies have been carried out in order to inves­
tigate the role of  oxidative stress in different experimental 
models of  AP[5,6]. Under healthy conditions, OFR are 
generated in eukaryotic cells but they are quickly removed 
by a system of  enzymatic and non-enzymatic antioxidants 
within the cell. If  OFR production overwhelms the cellular 
antioxidant defense systems, oxidative stress develops. This 
leads to disturbances in cellular homeostasis since these 
OFR can cause biochemical and functional alterations 
at different cellular levels, including lipid peroxidation[7], 
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protein oxidation[8] and DNA damage[9], among other toxic 
effects. Glutathione (GSH) is one of  the most important 
cellular antioxidants[10] and is generally depleted under 
situations in which OFR production is enhanced, such as 
in AP[6]. For this reason, the oxidative state of  the pancreas 
is routinely evaluated by indirect measurements on extracts 
of  tissue. Pancreatic GSH levels and the concentration 
of  malondialdehyde, a product of  membrane lipid 
peroxidation[11], are widely considered as indices of  the 
cellular redox estate. Most recently, analysis carried out by 
flow cytometry showed the time course of  OFR production 
in individual acinar cells during AP[12].

A number of  antioxidant therapies have been shown, 
to varying extents, to improve different AP models[3,5,6,13]. 
These antioxidants include N-Acetylcysteine (NAC), a 
thiol-containing compound used in the clinic for treatment 
of  congestive and obstructive lung disease, paracetamol 
intoxication and more recently in the treatment of  pulmo­
nary oxygen toxicity and adult respiratory distress syndrome. 
A wide range of  NAC doses and administration protocols 
have been reported in clinical applications while in experi­
mental studies of  AP, NAC dosages varying between 10 
to 1000 mg/kg have been administered by infusion or 
intraperitoneal injections. The extensive use of  NAC is due 
to the multifaceted chemical properties of  the cysteinyl 
thiol of  the molecule. This confers antioxidant capacity 
by interacting directly with OFR and facilitating GSH 
biosynthesis, since Cys bioavailability appears to be a limiting 
factor for GSH synthesis[14], a process that may be induced 
in the exocrine pancreas under conditions of  stress[15].

NAC AND INTRACELLULAR EVENTS 
DURING AP
Besides OFR generation, exocytosis blockade[16] and cy­
tosolic calcium rise[17,18] have been considered as the earliest 
intracellular events that lead to the premature activation of  
trypsinogen which triggers AP. NAC administration at a 
dose of  100 mg/kg has been shown effectively to prevent 
the cytosolic calcium increase found in acinar cells from 
early pancreatic duct obstruction (PDO) onwards[19]. In­
creases in intracellular Ca2+ concentration evoked by OFR 
have been reported in acinar cells[20], mainly caused by Ca2+ 
mobilization from intracellular stores and a further partial 
influx across the plasma membrane. It seems likely that 
disturbances in calcium homeostasis are due to alterations 
in the mechanisms responsible for maintaining low intra­
cellular Ca2+ levels as these require ATP, whose pancreatic 
levels have been found reduced in AP[6] as a result of  GSH 
depletion. Because oxidative stress is avoided at early AP 
stages by NAC administration, these mechanisms may not 
be affected. Consequently, normal cytosolic Ca2+ levels are 
in fact maintained during PDO and cell damage and death 
is prevented[21]. On the other hand, premature intracellular 
activation of  digestive zymogens is highly dependent on 
increased cytosolic Ca2+ concentrations[17,18]. In parallel with 
an intracellular redistribution of  cathepsin B and preced­
ing GSH depletion, intrapancreatic activation of  digestive 
enzymes has been found 15-30 min after inducing AP by 

supramaximal stimulation with caerulein[22]. On this basis, 
the occurrence of  intracellular zymogen activation under 
NAC treatment cannot be discounted. However, data 
strongly suggest that by limiting OFR-evoked increases in 
acinar cells Ca2+ levels, NAC prevents the progressive auto­
digestion of  the pancreatic tissue which would be initiated 
inside acinar cells at early stages of  AP. As a result, NAC 
treatment reduces the pancreatic damage induced by PDO 
AP. Accordingly, oxidative stress is clearly involved in the 
genesis of  the tissue lesions induced in this model of  AP.

On the other hand, NAC treatment also seems to 
prevent cytoskeletal disruption, a structural alteration 
associated with increased cytosolic Ca2+ concentration[23] 
and related to the blockade of  enzyme secretion in AP[24]. 
Significant decreases in plasma amylase activity as well 
as the lower quantities of  enzymes stored in acinar cells 
strongly suggest that NAC administration mitigates the 
exocytosis blockade in AP, in turn reducing the risk of  
intracellular activation of  digestive enzymes.

In summary, OFR neutralization at early AP stages by 
NAC treatment has been shown to prevent the increase in 
cytosolic Ca2+ concentrations and reduce the accumulation 
of  enzymes in acinar cells[23,24], thus limiting the activation 
of  digestive zymogens inside acinar cells. The prevention 
of  major intracellular pathological mechanisms by NAC 
administration consequently contributes to ameliorating 
the severity of  AP.

NAC AND CELL CYCLE
Besides their harmful effects, an increasing body of  evi­
dence supports the involvement of  OFR in transduction 
cascades which act as signalling molecules in the regulation 
of  physiological processes such as cell arrest, proliferation, 
senescence and cell death[25,26]. The signalling pathways 
by which OFR regulate cell growth have not been clearly 
established, although a large family of  serine/threonine 
kinases referred to as mitogen-activated protein kinases 
(MAPKs), has been identified as a key mediator in this 
regulation[26,27]. Activation of  MAPKs is elicited in re­
sponse to stimuli such as cytokines, growth factors, tumour 
promoters, hormones and oxidants[26], and is required for 
cells to overcome the cell cycle checkpoint in the transition 
from G0/G1 into S-phase[27]. It is widely accepted that the 
exposure of  mammalian cells to a prooxidant environ­
ment leads to mitogenic activation[28]. OFR would exert 
their effect both by direct oxidative modification of  signal 
transduction molecules and indirectly by altering the gen­
eral redox state of  the cell[25]. In this regard, increased OFR 
generation in acinar cells and subsequent oxidative dam­
age[12], as well as activated cellular proliferation[29] have been 
found at early stages of  AP. NAC has been demonstrated 
to inhibit cell growth[30,31] and to exert a palliating effect on 
AP symptoms, when administered at early stages[32]. 

In PDO-induced AP, a relationship between the ef­
fectiveness of  NAC treatment in preventing the genera­
tion of  OFR and the changes in the cell cycle pattern 
of  pancreatic acinar cells throughout the different AP 
stages[33] has been reported. The activation of  these 
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pathways is a key regulatory point in the cell cycle and 
is required for the cell to leave the quiescent state and 
enter S-phase[27]. It has been suggested that mitogenic 
stimulation, due both to enhanced plasma cholecysto­
kinin (CCK) concentrations and OFR overproduction 
in acinar cells following AP, might be inhibited by NAC 
administration. Both stimuli seem to make use of  OFR-
dependent MAPK activation in order to achieve the 
proliferative response. As a result, NAC has been shown 
to suppress the proliferative response after AP induction 
and promote cell arrest at early AP stages[33].

Additionally, it has been reported that cells were no 
longer active in proliferation 24 h after AP induction, 
probably because they were progressively damaged dur­
ing the course of  this pathology[33]. Pancreatic atrophy 
was reported 48 h after inducing AP by PDO, and led to 
increased proportions of  G0/G1-phase cells and apop­
tosis[29]. By contrast, Uruñuela et al[12,21] reported that cells 
from NAC-treated PDO rats remained active for DNA 
synthesis, probably because they were effectively preserved 
from damage during early stages when different pathologi­
cal mechanisms are involved in AP, Thus, cells could be 
freed from the arrest asserted by NAC at earlier AP stages 
and they may actively enter S-phase, probably in an attempt 
to restore the normal proliferation pattern. Mitosis might 
be expected at later stages when it would counteract the 
depletion of  acinar cells during AP[29]. This event could be 
favoured by CCK, whose plasma levels have been found 
to be increased for at least 3 d after the onset of  gallstone-
induced AP[34]. 

In conclusion, there is evidence that OFR play a critical  
role in the progression of  cell cycle phases in acinar cells. 
In parallel with the prevention of  OFR generation and, 
therefore, oxidative damage, NAC treatment has been 
reported to maintain acinar cells in a quiescent state at 
early AP. These effects may combine in the protection of  
the cells at early stages of  AP and consequently, would 
retain their ability to proliferate during the course of  AP. 

NAC AND OXIDATIVE STRESS-
SENSITIVE SIGNALLING PATHWAYS
OFR also act as mediators of  the activation of  transcrip­
tion factors[35]. Nuclear factor-κB (NF-κB) belongs to 
the Rel family of  transcription factors that regulate the 
expression of  genes related to stress, cytokines, and 
chemokines[36]. This factor is kept silent in the cytoplasm 
via interaction with inhibitory proteins of  the IκB family, 
that prevent nuclear translocation, and DNA binding of  
the transcription factor. Phosphorylation and subsequent 
polyubiquitination and degradation of  IκBα are redox-
regulated steps[37]. IκBα degradation has been reported 
to be slowly initiated 6 h after inducing AP and strongly 
maintained thereafter, leading to NF-κB activation. Al­
though intracellular OFR generation may not be required 
for NF-κB activation in all cell types[38], in the PDO-
induced AP model, NF-κB is activated in response to the 
oxidative stress developed within acinar cells, thereby re­

sulting in up-regulation of  tumour necrosis factor (TNF)-α 
from 6 h after inducing AP[39]. This notion is supported 
by the fact that the highest levels of  pancreatic GSH 
depletion and OFR production within acinar cells were 
reported at 6 h after induction of  AP[40]. NAC administra­
tion, by increasing the stores of  GSH in the pancreas, and 
preventing the overproduction of  OFR in acinar cells, was 
reported to delay NF-κB activation. Accordingly, acinar 
cells of  rats treated with NAC failed to produce TNF-α 
during AP. Inhibitory effects on pancreatic mRNA ex­
pression of  cytokines interleukin-6 and KC has also been 
reported in response to NAC treatment in caerulein[41] and 
sodium taurocholate[42] AP models. Because activation of  
p38-MAPK can occur in response to a variety of  stressful 
stimuli[43] and has been reported in some AP models[44,45], 
the role of  this MAPK as a potential upstream regulator 
of  TNF-α expression in acinar cells during AP has been 
investigated[39]. Interestingly, it has been suggested that 
the MAPK pathway may participate in NF-κB activation 
and, as such, cross-talk between the two pathways may be 
established[46]. The time course of  p38-MAPK phospho­
rylation during AP induced by PDO showed a peak 6 h 
after induction of  pancreatitis. Thereafter, activation of  
p38-MAPK was maintained but at lower levels. Phospho-
p38-MAPK was significantly attenuated by NAC admin­
istration[39]. This study reported maximal p38-MAPK acti­
vation at the time of  maximal intra-acinar oxidative stress 
during PDO-induced AP. Given that NF-κB activity was 
found to be significantly increased immediately afterwards, 
it is suggested that MAPK is likely to have regulated IκB 
degradation and consequently the activation of  NF-κB. 
Redox-sensitive pathways may activate MAPKs and NF-
κB in a coordinated fashion, suggesting that the activation 
of  MAPKs may be pivotal in “switching on” the cytokine 
cascade during AP induced by PDO.

The role of  oxidative stress in leukocyte recruitment 
during AP still remains controversial. In vitro studies have 
shown that OFR function as important messengers for 
intercellular adhesion molecule (ICAM)-1 expression in 
endothelial cells, at least in part through the activation 
of  NF-κB[47]. Telek et al[48] have reported a chronological 
and topographical overproduction of  OFR and ICAM-1 
upregulation during AP. On this basis, several antioxidants 
have been used in in vivo and in vitro studies to interfere with 
the expression of  ICAM-1 and divergent results have been 
reported[49-51]. According to another report[51], no reduction 
of  ICAM-1 was found either in acinar cells or plasma, in 
rats with PDO-induced AP treated with single doses of  
NAC[52]. This treatment had previously been proven to be 
capable of  abolishing the overproduction of  OFR in acinar 
cells of  rats subjected to this AP model[21]. These results 
suggest that OFR are not important factors in mediating 
ICAM-1 expression. Nevertheless, NAC has been shown to 
reduce the overexpression of  CD11b/CD18 in neutrophils, 
monocytes and pancreatic infiltration[52]. This finding 
reinforces the notion that ICAM-1 may not be the main 
molecule involved in the adhesion of  leukocytes during 
PDO-induced AP, since NAC treatment has been shown 
to significantly protect the pancreas from inflammation 
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sources overwhelms the antioxidant capability of  NAC 
treatment in severe AP. As a result, NAC has been shown 
to fail to hinder the redox-sensitive chemokine expression 
and its downstream signal pathways. These findings sug­
gest that damaged acinar cells contribute to chemokine 
production from early stages of  AP by activating oxidant 
dependent signalling mechanisms. Only in mild AP, with 
lower oxidative stress, were these down-regulated by NAC 
administration. By contrast, NAC treatment has been 
shown to exert no inhibitory effect on the overexpression 
of  chemokines found in pancreatic tissue from 3 h after 
inducing AP. This result suggests that in addition to acinar 
cells, other cell types resident in the pancreas with the ca­
pability of  producing chemokines, such as endothelial vas­
cular cells[58], stellate cells[59] and infiltrated leukocytes[60] are 
also producing MCP-1 and CINC by mechanisms resistant 
to the antioxidant treatment. 

Furthermore, NAC treatment has not been shown to 
reduce the high MCP-1 and CINC concentrations found in 
plasma of  rats with PDO- and NaTc-induced AP[56]. These 
increased systemic chemokine levels could be the result 
of  the outpouring of  chemokines from the pancreas and 
from inflammatory cells. Since a similar chemokine profile 
in response to NAC treatment was found in pancreas and 
plasma, it is suggested that cell sources other than acini 
must be contributing to increasing the circulating levels of  
MCP-1 and CINC[56]. 

In summary, different results indicate that oxidative 
stress may trigger the overexpression of  MCP-1 and 
CINC in acinar cells of  rats with AP by activating MAPK, 
NF-κB and STAT3, as oxidant-sensitive downstream 
signalling pathways. The antioxidant capability of  NAC 
has only been shown to avoid the acinar chemokine 
expression in mild AP and it was ineffective in severe 
AP. In addition, NAC failed to prevent the chemokine 
increase in pancreatic tissue and plasma, even in mild 
AP, suggesting that additional stimuli, such as cytokines, 
activate molecular pathways leading to upregulation of  
chemokines in non-acinar cell sources.

Given the pathogenic role of  the oxidative stress 
in AP, more basic research on the potential therapeutic 
effects of  individual of  combined antioxidant products 
will be necessary.
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