FIELD OF VISION
2053 Personalized treatment - which interaction ingredients should be focused to capture the unconscious
Steinmair D, Löffler-Stastka H

MINIREVIEWS
2063 Patterns of liver profile disturbance in patients with COVID-19
Shousha HI, Ramadan A, Lithy R, El-Kassas M

ORIGINAL ARTICLE
Clinical and Translational Research
2072 Prognostic and biological role of the N-Myc downstream-regulated gene family in hepatocellular carcinoma
Yin X, Yu H, He XK, Yan SX

Case Control Study
2087 Usefulness of the acromioclavicular joint cross-sectional area as a diagnostic image parameter of acromioclavicular osteoarthritis
Joo Y, Moon JY, Han JY, Bang YS, Kang KN, Lim YS, Choi YS, Kim YU

Retrospective Study
2095 Correlation between betatrophin/angiogenin-likeprotein3/lipoprotein lipase pathway and severity of coronary artery disease in Kazakh patients with coronary heart disease
Qin L, Rehemuding R, Ainiwaer A, Ma X

Clinical Trials Study
2106 Postoperative adverse cardiac events in acute myocardial infarction with high thrombus load and best time for stent implantation
Zhuo MF, Zhang KL, Shen XB, Lin WC, Hu B, Cui HP, Huang G

2115 Develop a nomogram to predict overall survival of patients with borderline ovarian tumors
Gong XQ, Zhang Y

2127 Diagnostic performance of Neutrophil CD64 index, procalcitonin, and C-reactive protein for early sepsis in hematological patients

2138 Previously unexplored etiology for femoral head necrosis: Metagenomics detects no pathogens in necrotic femoral head tissue
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 7 March 6, 2022

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational Study</td>
<td></td>
</tr>
<tr>
<td>Association of types of diabetes and insulin dependency on birth outcomes</td>
<td>2147</td>
</tr>
<tr>
<td>Pathological pattern of endometrial abnormalities in postmenopausal women with bleeding or thickened endometrium</td>
<td>2159</td>
</tr>
<tr>
<td>Xue H, Shen WJ, Zhang Y</td>
<td></td>
</tr>
<tr>
<td>In vitro maturation of human oocytes maintaining good development potential for rescue intracytoplasmic sperm injection with fresh sperm</td>
<td>2166</td>
</tr>
<tr>
<td>Dong YQ, Chen CQ, Huang YQ, Liu D, Zhang XQ, Liu FH</td>
<td></td>
</tr>
<tr>
<td>Ultrasound-guided paravertebral nerve block anesthesia on the stress response and hemodynamics among lung cancer patients</td>
<td>2174</td>
</tr>
<tr>
<td>Zhen SQ, Jin M, Chen YX, Li JH, Wang H, Chen HX</td>
<td></td>
</tr>
<tr>
<td>META-ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>Prognostic value of YKL-40 in colorectal carcinoma patients: A meta-analysis</td>
<td>2184</td>
</tr>
<tr>
<td>Wang J, Qi S, Zhu YB, Ding L</td>
<td></td>
</tr>
<tr>
<td>Prognostic value of neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte ratios and Glasgow prognostic score in osteosarcoma: A meta-analysis</td>
<td>2194</td>
</tr>
<tr>
<td>Peng LP, Li J, Li XF</td>
<td></td>
</tr>
<tr>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td>Endovascular stent-graft treatment for aortoesophageal fistula induced by an esophageal fishbone: Two cases report</td>
<td>2206</td>
</tr>
<tr>
<td>Quetiapine-related acute lung injury: A case report</td>
<td>2216</td>
</tr>
<tr>
<td>Huang YX, He GX, Zhang WJ, Li BW, Weng HX, Luo WC</td>
<td></td>
</tr>
<tr>
<td>Primary hepatic neuroendocrine neoplasm diagnosed by somatostatin receptor scintigraphy: A case report</td>
<td>2222</td>
</tr>
<tr>
<td>Akabane M, Kobayashi Y, Kinowaki K, Okubo S, Shindoh J, Hashimoto M</td>
<td></td>
</tr>
<tr>
<td>Multidisciplinary non-surgical treatment of advanced periodontitis: A case report</td>
<td>2229</td>
</tr>
<tr>
<td>Li LJ, Yan X, Yu Q, Yan FH, Tan BC</td>
<td></td>
</tr>
<tr>
<td>Flip-over of blood vessel intima caused by vascular closure device: A case report</td>
<td>2247</td>
</tr>
<tr>
<td>Sun LX, Yang XS, Zhang DW, Zhao B, Li LL, Zhang Q, Hao QZ</td>
<td></td>
</tr>
<tr>
<td>Huge gastric plexiform fibromyxoma presenting as pyemia by rupture of tumor: A case report</td>
<td>2253</td>
</tr>
<tr>
<td>Zhang R, Xia LG, Huang KB, Chen ND</td>
<td></td>
</tr>
<tr>
<td>Intestinal intussusception caused by intestinal duplication and ectopic pancreas: A case report and review of literature</td>
<td>2261</td>
</tr>
<tr>
<td>Wang TL, Gong XS, Wang J, Long CY</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>2275</td>
<td>Y-shaped shunt for the treatment of Dandy-Walker malformation combined with giant arachnoid cysts: A case report</td>
</tr>
<tr>
<td>2281</td>
<td>Posterior reversible encephalopathy syndrome in a patient with metastatic breast cancer: A case report</td>
</tr>
<tr>
<td>2286</td>
<td>Multiple skin abscesses associated with bacteremia caused by Burkholderia gladioli: A case report</td>
</tr>
<tr>
<td>2294</td>
<td>Giant infected hepatic cyst causing exclusion pancreatitis: A case report</td>
</tr>
<tr>
<td>2301</td>
<td>Cutaneous leishmaniasis presenting with painless ulcer on the right forearm: A case report</td>
</tr>
<tr>
<td>2315</td>
<td>Breast and dorsal spine relapse of granulocytic sarcoma after allogeneic stem cell transplantation for acute myelomonocytic leukemia: A case report</td>
</tr>
<tr>
<td>2322</td>
<td>Synchronous but separate neuroendocrine tumor and high-grade dysplasia adenoma of the gall bladder: A case report</td>
</tr>
<tr>
<td>2336</td>
<td>Acute esophageal obstruction after ingestion of psyllium seed husk powder: A case report</td>
</tr>
<tr>
<td>2341</td>
<td>Spontaneous dissection of proximal left main coronary artery in a healthy adolescent presenting with syncope: A case report</td>
</tr>
<tr>
<td>2351</td>
<td>Relationship between treatment types and blood-brain barrier disruption in patients with acute ischemic stroke: Two case reports</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of *World Journal of Clinical Cases*, Feng Yin, MD, PhD, Assistant Professor, Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO 65212, United States.
fengyin@health.missouri.edu

AIMS AND SCOPE
The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Lin-Yu Tong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Usefulness of the acromioclavicular joint cross-sectional area as a diagnostic image parameter of acromioclavicular osteoarthritis

Young Joo, Jee Youn Moon, Jung Youn Han, Yun-Sic Bang, Keum Nae Kang, Young Su Lim, Young-Soon Choi, Young-Uk Kim

BACKGROUND
Acromioclavicular joint (ACJ) space narrowing has been considered to be an important diagnostic image parameter of ACJ osteoarthritis (ACJO). However, the morphology of the ACJ space is irregular because of osteophyte formation, subchondral irregularity, capsular distention, sclerosis, and erosion. Therefore, we created the ACJ cross-sectional area (ACJCSA) as a new diagnostic image parameter to assess the irregular morphologic changes of the ACJ.

AIM
To hypothesize that the ACJCSA is a new diagnostic image parameter for ACJO.

METHODS
ACJ samples were obtained from 35 patients with ACJO and 30 healthy individuals who underwent shoulder magnetic resonance (S-MR) imaging that revealed no evidence of ACJO. Oblique coronal, T2-weighted, fat-suppressed S-
MR images were acquired at the ACJ level from the two groups. We measured the ACJCSA and the ACJ space width (ACJSW) at the ACJ on the S-MR images using our imaging analysis program. The ACJCSA was measured as the cross-sectional area of the ACJ. The ACJSW was measured as the narrowest point between the acromion and the clavicle.

RESULTS
The average ACJCSA was $39.88 \pm 10.60 \text{ mm}^2$ in the normal group and $18.80 \pm 5.13 \text{ mm}^2$ in the ACJO group. The mean ACJSW was $3.51 \pm 0.58 \text{ mm}$ in the normal group and $2.02 \pm 0.48 \text{ mm}$ in the ACJO group. ACJO individuals had significantly lower ACJCSA and ACJSW than the healthy individuals. Receiver operating characteristic curve analyses demonstrated that the most suitable ACJCSA cutoff score was 26.14 mm^2, with 91.4% sensitivity and 90.0% specificity.

CONCLUSION
The optimal ACJSW cutoff score was 2.37 mm, with 88.6% sensitivity and 96.7% specificity. Even though both the ACJCSA and ACJSW were significantly associated with ACJO, the ACJCSA was a more sensitive diagnostic image parameter.

Key Words: Acromioclavicular joint; Osteoarthritis; Cross-sectional area; Diagnosis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: An acromioclavicular joint (ACJ) space narrowing has been considered to be an important diagnostic image parameter of ACJ osteoarthritis. However, the morphology of ACJ space is irregular, because of osteophyte formation, subchondral irregularity, capsular distention, sclerosis, and erosions. Therefore, we created the ACJ cross-sectional area as a new diagnostic image parameter to assess the irregular morphologic change of ACJ.

Citation: Joo Y, Moon JY, Han JY, Bang YS, Kang KN, Lim YS, Choi YS, Kim YU. Usefulness of the acromioclavicular joint cross-sectional area as a diagnostic image parameter of acromioclavicular osteoarthritis. *World J Clin Cases* 2022; 10(7): 2087-2094

DOI: https://dx.doi.org/10.12998/wjcc.v10.i7.2087

INTRODUCTION

Acromioclavicular joint osteoarthritis (ACJO) is frequently diagnosed in patients older than the fifth decade[1-4]. ACJO is the main cause of shoulder pain relating to the acromioclavicular joint (ACJ). Clinically, the relevance of ACJ abnormalities is tested by the body cross-test and palpation. The body cross-test is performed by elevating the affected arm on the same side. The physician adducts the arm across the body and takes the patient’s elbow. Positive results on this test reproduce pain around the ACJ. Some pathologic and radiographic studies also have been performed to evaluate symptomatic ACJO. However, investigations using shoulder magnetic resonance (S-MR) scans have usually focused on disorders of the labrum and rotator cuff tears but rarely on the ACJ[1,2,5,6]. Only a few studies have been conducted to assess S-MR findings in symptomatic ACJO. However, the research findings varied. Shubin Stein al[6] reported that bone edema at the distal clavicle or acromion was related to symptomatic ACJO whereas. In another study, S-MR findings were not related to symptomatic ACJO[7]. We think this discrepancy may be because the previous studies assessed ACJ space narrowing using only a single measurement called the ACJ space width (ACJSW) at the approximate halfway point of the ACJ[8]. However, partial narrowing and irregular osteophyte formation could occur anywhere. Thus, measurement mistakes can occur at any time. We think that it may be worthwhile to reconsider the morphological value of S-MR findings in the diagnosis of symptomatic ACJO.

Thus, to assess irregular narrowing of the ACJ, we devised the ACJ cross-sectional area (ACJCSA) as a new diagnostic image parameter. Contrast with the ACJSW, the ACJCSA does not influenced by measurement mistakes because the ACJCSA measures the entire irregular area of the ACJ. We hypothesized that the ACJCSA is an important diagnostic image parameter in ACJO diagnosis. Therefore, we used S-MR images to compare the ACJCSA and ACJSW between patients with ACJO and normal controls.
Patients
This original study was approved by the Catholic Kwandong University (Incheon, South Korea) Institutional Research Board (CKUIRB). The retrospective data used to support the findings of this research may be released upon application to the CKUIRB. A total of 35 patients with radiologically confirmed ACJO from January 2015 to October 2019 were enrolled in the study. The inclusion criteria of the ACJO group were as follows: (1) A history of pain and tenderness in the front of the shoulder around the ACJ; (2) A positive cross-arm adduction test; or (3) A positive active compression test. We excluded subjects if they had the following disorders: (1) history of shoulder infection; (2) inflammatory arthritis; (3) acute clavicle fracture; (4) humerus bone fracture, or (5) any history of shoulder surgery.

There were 14 (40.0%) men and 21 (60.0%) women with an average age of 60.60 ± 9.31 years (range, 45 to 80 years) in the study (Table 1). We enrolled normal individuals to compare to the ACJO patients. The normal group was people who voluntary wanted to undergo S-MR imaging for an exact diagnosis of shoulder pain but no evidence of ACJO. In the normal group, 30 subjects (9 males and 21 females) were enrolled with an average age of 57.30 ± 7.56 years (range, 40 to 69 years).

Imaging parameters
S-MR analysis was performed using a 3T magnetic resonance imaging Magnetom system (Siemens Medical care, Skyra, Germany) and 3T scanners (Philips, Healthcare, Angina, Netherlands). For all S-MR images, we acquired oblique coronal T2-weighted fat-suppressed turbo spin-echo imaging with a layer thickness of 3 mm, an intersection gap of 0.9 mm, a repetition time of 4010 ms, an echo time of 76 ms, a 512 × 256 matrix, a 150 cm × 150 cm field of view, and > 3 echo train length.

Image analysis
The ACJCSA and ACJSW data were acquired by the corresponding author who was blinded to the group of shoulder images. We obtained oblique coronal T2-weighted S-MR images at the narrowest visualization of the ACJ. We examined the ACJCSA and ACJSW on S-MR images using an image analysis program (INFINITT PACS; Incheon, South Korea) (Figures 1 and 2). We measured the ACJSW at the narrowest ACJ using the PACS system. The ACJCSA was examined as the cross-sectional whole area of the ACJ at the same point of the ACJSW.

Statistical analysis
We compared the ACJCSA and ACJSW between the ACJO and the normal group using unpaired t-tests. The predictive value of the ACJCSA and ACJSW in the diagnosis of ACJO was estimated by receiver operating characteristic (ROC) analysis. The area under the curve (AUC), sensitivity, and specificity were calculated. Statistical Package for Social Sciences (SPSS) version 22.0 software (SPSS Inc., Chicago, IL, USA) was used. P values of < 0.05 were considered statistically significant. All values are presented as the mean and standard deviation.

RESULTS
The mean ACJCSA was 39.88 ± 10.60 mm² in the normal group and 18.80 ± 5.13 mm² in the ACJO group. The mean ACJSW was 3.51 ± 0.58 mm in the normal group and 2.02 ± 0.48 mm in the ACJO group. The ACJO patients had significantly lower ACJCSA and ACJSW than the normal individuals (Table 1). The ROC analysis demonstrated that the most suitable ACJCSA cutoff value was 26.14 mm², with an AUC of 0.98 (95%CI: 0.94-1.00), 91.4% sensitivity, and 90.0% specificity (Table 2 and Figure 3). The best ACJSW cutoff score was 2.37 mm, with an AUC of 0.97 (95%CI: 0.92-1.00), 88.6% sensitivity, and 96.7% specificity (Table 3 and Figure 3).

DISCUSSION
ACJO is a disabling and painful disorder in association with the more common diagnosis of shoulder impingement syndrome[1,7,9,10]. Inferiorly protruding osteophytes as well as soft tissue hypertrophy of the ACJ accelerates narrowing of the supraspinatus outlet[11-13]. Narrowing of the outlet space, whose borders are formed by the coracoacromial ligament, coracoid process, anterior aspect of the acromion, and ACJ, has been reported as the primary cause for the development of rotator cuff tears and subsequent impingement syndrome[14-24]. Thus, positive associations regarding the incidence of rotator cuff tears and the severity of ACJ degeneration have been demonstrated. Clinically, the possibility of ACJ abnormalities is examined using the body cross-test and palpation[4,9,25]. The body cross-test is performed by elevating the affected arm on the same side. The physician adds the arm across the body and takes the patient’s elbow. Positive results on this test reproduce pain around the...
Table 1 Comparison of the demographic data of the control and acromioclavicular joint osteoarthritis groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group, n = 30</th>
<th>ACJO group, n = 35</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>9/21</td>
<td>14/21</td>
<td>NS</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>57.30 ± 7.56</td>
<td>60.60 ± 9.31</td>
<td>NS</td>
</tr>
<tr>
<td>ACJSW (mm)</td>
<td>3.51 ± 0.58</td>
<td>2.02 ± 0.48</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>ACJCSA (mm²)</td>
<td>39.88 ± 10.60</td>
<td>18.80 ± 5.13</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Location (Rt/Lt)</td>
<td>13/17</td>
<td>22/13</td>
<td>NS</td>
</tr>
</tbody>
</table>

ACJO: Acromioclavicular joint osteoarthritis; ACJSW: Acromioclavicular joint space width; ACJCSA: Acromioclavicular joint cross-sectional area; NS: Not statistically significant (P > 0.05).

Table 2 Sensitivity and specificity of each acromioclavicular joint cross-sectional area cutoff point

<table>
<thead>
<tr>
<th>ACJCSA (mm²)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.75</td>
<td>2.9</td>
<td>100</td>
</tr>
<tr>
<td>15.55</td>
<td>22.9</td>
<td>100</td>
</tr>
<tr>
<td>18.43</td>
<td>60.0</td>
<td>100</td>
</tr>
<tr>
<td>26.14</td>
<td>91.4</td>
<td>90.0</td>
</tr>
<tr>
<td>29.32</td>
<td>94.3</td>
<td>76.7</td>
</tr>
<tr>
<td>40.08</td>
<td>100</td>
<td>46.7</td>
</tr>
</tbody>
</table>

*The most suitable cutoff point in the receiver operating characteristic curve. ACJCSA: Acromioclavicular joint cross-sectional area.

Table 3 Sensitivity and specificity of each acromioclavicular joint space width cutoff point

<table>
<thead>
<tr>
<th>ACJSW (mm)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.41</td>
<td>8.6</td>
<td>100</td>
</tr>
<tr>
<td>1.86</td>
<td>34.3</td>
<td>100</td>
</tr>
<tr>
<td>2.04</td>
<td>54.3</td>
<td>100</td>
</tr>
<tr>
<td>2.37</td>
<td>88.6</td>
<td>96.7</td>
</tr>
<tr>
<td>3.32</td>
<td>97.1</td>
<td>60.0</td>
</tr>
<tr>
<td>3.68</td>
<td>100</td>
<td>33.3</td>
</tr>
</tbody>
</table>

*The most suitable cutoff value in the receiver operating characteristic curve. ACJSW, acromioclavicular joint space width.

ACJ[2]. S-MR imaging and plain X-rays have been used to assess the severity and presence of ACJO[6]. Although plain shoulder X-rays are the first-choice imaging modality for the diagnosis of ACJ pathology, an exact diagnosis is impossible. The severity of ACJO has frequently been judged differently, with S-MR imaging compared to conventional radiography[1,11,12,26]. In S-MR imaging, the excellent soft tissue contrast and the associated benefits of multiplanar acquisition have optimized the assessment of ACJO. Subchondral bone marrow edema, osteophytes, sclerosis, subchondral cysts, and soft-tissue abnormalities (joint effusion and capsular hypertrophy) and may also be seen on S-MR images[1]. However, only a few studies have been performed to assess the predictability of S-MR findings in diagnosing symptomatic ACJO. Moreover, the previous conclusions of these studies varied. Gordon et al[8] insisted that ACJO may mimic the clinical symptoms of rotator cuff disorder. Several S-MR features are common to distal clavicle osteolysis, os acromiale. Shubin Stein et al[6] reported that bone edema at the distal clavicle or acromion was related to symptomatic ACJO. Hawkins et al[7] insisted that any S-MR findings were not related to symptomatic ACJO. Moreover, previous studies only investigated ACJ space narrowing using a single measurement called the ACJSW at the approximate halfway point of the ACJ. However, partial narrowing and irregular osteophyte formation can occur at any time. Thus, measurement mistakes could occur at any time.
Measurement of both the acromioclavicular joint space width (A) and acromioclavicular joint cross-sectional area (B) in the normal control group was carried out on coronal T2-weighted shoulder-MR acromioclavicular joint images.

In the acromioclavicular joint osteoarthritis group, both the acromioclavicular joint space width (A) and acromioclavicular joint cross-sectional area (B) were measured on coronal T2-weighted shoulder-MR images.

Receiver operating characteristic curve of both the acromioclavicular joint cross-sectional area and the acromioclavicular joint space width to detect acromioclavicular joint osteoarthritis. The most suitable acromioclavicular joint cross-sectional area cutoff point was 26.14 mm2 vs 2.37 mm for the acromioclavicular joint space width, with 91.4% sensitivity vs 88.6%, and 90.0% specificity vs 96.7%, respectively.

We think it can be worthwhile to reconsider the morphological value of S-MR findings in the diagnosis of symptomatic ACJO. Thus, to evaluate the irregular narrowing of the ACJ, we devised the ACJCSA as a new morphological parameter. Compared to the ACJSW, the ACJCSA does not influenced by these measurement biases because the ACJCSA measures the entire cross-sectional area of the ACJ. Eventually, we concluded that the ACJCSA was better than the ACJSW as a diagnostic image parameter of ACJO. In this research, we demonstrated that the ACJCSA had 91.4% sensitivity, and an AUC of 0.98 to evaluate ACJO. The ACJSW had 88.6% sensitivity, and an AUC of 0.97. Our results suggest that the
ACJCSA was a better morphological parameter of ACJO than the ACJSW. We hope our results will help to improve the quality of ACJO diagnosis.

The current research had several limitations. There are several isolated ACJ pathologies in symptomatic shoulders such as distal clavicle osteolysis, acromiale syndrome, and ACJO. However, we only focused on ACJO because the ACJ is the most commonly damaged area. Second, some different methods to assess ACJO, such as subchondral bone marrow edema, osteophytes, subchondral cysts, sclerosis, and soft-tissue abnormalities, have been reported to be effective in discriminating ACJO. However, in this research, we only analyzed the ACJCSA and ACJSW measurements on S-MR images. Third, we enrolled a relatively small sample. Fifth, this study was retrospective in nature.

CONCLUSION
We demonstrated the optimal ACJCSA cutoff value as 26.14 mm², with 91.4% sensitivity and 90.0% specificity. The best ACJSW cutoff value was 2.37 mm, with 88.6% sensitivity and 96.7% specificity. When evaluating patients with ACJO, physicians should carefully assess the ACJCSA rather than the ACJSW.

ARTICLE HIGHLIGHTS

Research background
Acromioclavicular joint (ACJ) space narrowing has been considered to be an important diagnostic image parameter of ACJ osteoarthritis (ACJO).

Research motivation
The morphology of the ACJ space is irregular because of osteophyte formation, subchondral irregularity, capsular distention, sclerosis, and erosion. Therefore, we created the ACJ cross-sectional area (ACJCSA) as a new diagnostic image parameter to assess the irregular morphologic changes of the ACJ.

Research objectives
To hypothesize that the ACJCSA is a new diagnostic image parameter for ACJO.

Research methods
ACJ samples were obtained from 35 patients with ACJO and 30 healthy individuals who underwent shoulder magnetic resonance (S-MR) imaging that revealed no evidence of ACJO. Oblique coronal, T2-weighted, fat-suppressed S-MR images were acquired at the ACJ level from the two groups. We measured the ACJCSA and ACJ space width (ACJSW) at the ACJ on S-MR images using our imaging analysis program. The ACJCSA was measured as the cross-sectional area of the ACJ. The ACJSW was measured as the narrowest point between the acromion and the clavicle.

Research results
The average ACJCSA was 39.88 ± 10.60 mm² in the normal group and 18.80 ± 5.13 mm² in the ACJO group. The mean ACJSW was 3.51 ± 0.58 mm in the normal group and 2.02 ± 0.48 mm in the ACJO group. ACJO individuals had significantly lower ACJCSA and ACJSW than the healthy individuals. Receiver operating characteristic curve analysis demonstrated that the most suitable ACJCSA cutoff score was 26.14 mm², with 91.4% sensitivity and 90.0% specificity.

Research conclusions
The optimal ACJSW cutoff score was 2.37 mm, with 88.6% sensitivity and 96.7% specificity. Even though both the ACJCSA and ACJSW were significantly associated with ACJO, the ACJCSA was a more sensitive diagnostic image parameter.

Research perspectives
We enrolled a relatively small sample.

ACKNOWLEDGEMENTS
All authors thank International St. Mary’s Hospital.
FOOTNOTES

Author contributions: Kim Y and Joo Y designed the experiment; Moon JY, Han JY, Bang Y, Choi Y, and Lim YS collected the data; Kim Y, Joo Y, and Kang KN analyzed and interpreted data; Kim Y and Joo Y wrote the article.

Institutional review board statement: This retrospective study was approved by the Ethics Committee of The Catholic Kwandong Medical School, No. IRB21RISI0048.

Informed consent statement: Patients were not required to give informed consent to this study because the retrospective analysis used anonymous data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: The authors declare no conflicts of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: South Korea

ORCID number: Young Joo 0000-0001-5104-9486; Jee Youn Moon 0000-0001-5551-7750; Jung Youn Han 0000-0001-5695-3781; Yun-Sic Bang 0000-0002-0930-4313; Keum Nae Kang 0000-0002-1135-6403; Young Su Lim 0000-0001-6882-3415; Young-Soon Choi 0000-0002-3819-0271; Young-Uk Kim 0000-0003-4977-5272.

S-Editor: Chang KL
L-Editor: A
P-Editor: Chang KL

REFERENCES

13 Lawrence RL, Braman JP, Laprade RF, Ludewig PM. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints. J Orthop

