Contents

EDITORIAL

1934 Topic highlight on texture and color enhancement imaging in gastrointestinal diseases
Toyoshima O, Nishizawa T, Hata K

1941 Immune checkpoint inhibitor-associated gastritis: Patterns and management
Lin J, Lin ZQ, Zheng SC, Chen Y

1949 Liver biopsy in the post-hepatitis C virus era in Japan
Ikura Y, Okubo T, Sakai Y

1958 Current status of liver transplantation for human immunodeficiency virus-infected patients in mainland China
Tang JX, Zhao D

1963 Bowel function and inflammation: Is motility the other side of the coin?
Panarese A

REVIEW

1968 Necroptosis contributes to non-alcoholic fatty liver disease pathoetiology with promising diagnostic and therapeutic functions

MINIREVIEWS

1982 Omics-based biomarkers as useful tools in metabolic dysfunction-associated steatotic liver disease clinical practice: How far are we?
Trinks J, Mascardi MF, Gadano A, Marciano S

ORIGINAL ARTICLE

Retrospective Study

1990 Characteristics of early gastric tumors with different differentiation and predictors of long-term outcomes after endoscopic submucosal dissection
Zhu HY, Wu J, Zhang YM, Li FL, Yang J, Qin B, Jiang J, Zhu N, Chen MY, Zou BC

Observational Study

2006 Preoperative albumin-bilirubin score and liver resection percentage determine postoperative liver regeneration after partial hepatectomy
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Study</td>
<td>Fusobacterium nucleatum-induced imbalance in microbiome-derived butyric acid levels promotes the occurrence and development of colorectal cancer**</td>
<td>Wu QL, Fang XT, Wan XX, Ding QY, Zhang YJ, Ji L, Lou YL, Li X</td>
</tr>
<tr>
<td>2038</td>
<td>Comparative transcriptomic analysis reveals the molecular changes of acute pancreatitis in experimental models</td>
<td>Zheng P, Li XY, Yang XY, Wang H, Ding L, He C, Wan JH, Ke HJ, Lu NH, Li NS, Zhu Y</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Gastroenterology, Sandro Contini, MD, Former Associate Professor, Department of Surgical Sciences, University of Parma, Parma 43123, Italy. sandrocontini46@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now abstracted and indexed in Science Citation Index Expanded (SCIE), MEDLINE, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJG as 4.3; Quartile category: Q2. The WJG’s CiteScore for 2021 is 8.3.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski

EXECUTIVE ASSOCIATE EDITORS-IN-CHIEF
Xian-Jun Yu (Pancreatic Oncology), Jian-Gao Fan (Chronic Liver Disease), Hou-Bao Liu (Biliary Tract Disease)

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
April 14, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

PUBLISHING PARTNER
Shanghai Pancreatic Cancer Institute and Pancreatic Cancer Institute, Fudan University
Biliary Tract Disease Institute, Fudan University

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

POLICY OF CO-AUTHORS
https://www.wjgnet.com/bpg/gerinfo/310

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

PUBLISHING PARTNER’s OFFICIAL WEBSITE
https://www.shca.org.cn
https://www.zs-hospital.sh.cn

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: office@baishideng.com https://www.wjgnet.com
Immune checkpoint inhibitor-associated gastritis: Patterns and management

Jing Lin, Zhong-Qiao Lin, Shi-Cheng Zheng, Yu Chen

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
- Grade A (Excellent): A
- Grade B (Very good): 0
- Grade C (Good): 0
- Grade D (Fair): 0
- Grade E (Poor): 0

P-Reviewer: Verma V, United States

Received: December 15, 2023

Peer-review started: December 15, 2023

First decision: February 19, 2024

Revised: February 23, 2024

Accepted: March 28, 2024

Article in press: March 28, 2024

Published online: April 14, 2024

Abstract

Immune checkpoint inhibitors (ICIs) are widely used due to their effectiveness in treating various tumors. Immune-related adverse events (irAEs) are defined as adverse effects resulting from ICI treatment. Gastrointestinal irAEs are a common type of irAEs characterized by intestinal side effects, such as diarrhea and colitis, which may lead to the cessation of ICIs. Although irAE gastritis is rarely reported, it may lead to serious complications such as gastrorrhagia. Furthermore, irAE gastritis is often difficult to identify early due to its diverse symptoms. Although steroid hormones and immunosuppressants are commonly used to reverse irAEs, the best regimen and dosage for irAE gastritis remains uncertain. In addition, the risk of recurrence of irAE gastritis after the reuse of ICIs should be considered. In this editorial, strategies such as early identification, pathological diagnosis, management interventions, and immunotherapy rechallenge are discussed to enable clinicians to better manage irAE gastritis and improve the prognosis of these patients.

Key Words: Immunotherapy; Immune checkpoint inhibitor; Immune-related adverse events; Immune checkpoint inhibitor-related gastritis

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Immune checkpoint inhibitor (ICI)-related gastritis is rare but may lead to serious complications such as gastrorrhagia. Biopsy under esophagastroduodenoscopy is the gold standard for diagnosis. Specifically, this article discusses strategies for treating ICI-related gastritis, including early recognition, pathological diagnosis, management interventions, and rechallenge with immunotherapy, providing clinicians with valuable consultations to enable cancer patients to benefit early from treatment.

Citation: Lin J, Lin ZQ, Zheng SC, Chen Y. Immune checkpoint inhibitor-associated gastritis: Patterns and management. World J Gastroenterol 2024; 30(14): 1941-1948
URL: https://www.wjgnet.com/1007-9327/full/v30/i14/1941.htm

INTRODUCTION

Immunotherapy has been shown to have great efficacy in treatment of multiple kinds of cancers by inhibiting the downregulation of T-cell-mediated destruction and promoting the patient’s immune system to target and destroy cancer cells. Immune checkpoint inhibitors (ICIs), which are programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitors, are common pharmacotherapeutics for immunotherapy and improve survival across a range of malignancies. While the inhibition of these proteins reinvigorates the host antitumor immune response, broad inhibition of these central immune regulators leads to a unique spectrum of immune-related adverse events (irAEs), and gastrointestinal (GI)-irAEs are among the most common toxicities of current ICIs. The side effects affecting the distal gastrointestinal tract, including colitis and diarrhea, are well recognized. However, gastritis induced by immune checkpoint inhibitors has also been described. Gastritis is a broad category of diagnosis that stems from inflammation to the gastric mucosa that can lead to nausea, vomiting, abdominal pain, and weight loss. This editorial focuses on early identification, pathological diagnosis, management interventions, and immunotherapy rechallenge of irAE gastritis to enable clinicians to better manage irAE gastritis and improve the prognosis of these patients.

INCIDENCE, TIME-TO-ONSET AND SEVERITY

Overall, GI-irAEs occurred in approximately 6.5% to 8.4% of patients receiving monotherapy ICIs[1,2]. ICI-related gastritis has a lower occurrence. Several retrospective studies based on large samples have reported an incidence of approximately 0.35%-1.46%[3-6]. The time-to-onset is highly variable, with a wide range of 2 wk to 156 wk, and the median time was calculated as 29.3 wk[7]. The incidence of GI-irAEs of ICI combined therapy occurred at 6-8 wk after the start of ICI treatment, which was much earlier than ICI monotherapy[8]. Furthermore, combined therapy with anti-PD1/PD-L1 and anti-CTLA-4 agents led to higher rates of GI-irAEs than anti-PD1/PD-L1 or anti-CTLA-4 monotherapy (15% vs 4% and 12%, respectively)[9-13]. There was also a positive association between increasing doses of ICIs and the incidence and severity of GI-irAEs, especially in anti-CTLA-4 monotherapy and combined therapy of anti-PD1/PD-L1 and anti-CTLA-4 agents[14-17]. The severity grades of ICI-related gastritis are based on the Common Terminology Criteria for Adverse Events (CTCAE)[18]. In patients with grade 1 gastritis, upper gastrointestinal symptoms are not obvious and are often detected inadvertently. ICI-related gastritis of CTCAE grade 2-3 has been reported most often (more than 75%), requiring the cessation of ICIs and steroid intervention[19].

Patients with a history of gastrointestinal disease are more likely to develop ICI-related gastritis after immunotherapy. One study revealed that in 54 patients with ICI-related gastritis, thirteen (24%) had a history of gastroesophageal and liver disorders, and nine of thirteen had former gastroesophageal reflux disease[4]. Previous medications that potentially damage the stomach should be assessed in patients with ICI-related gastritis. In a total of 25 patients with ICI-related gastritis, 3 (12%) patients had a history of nonsteroidal anti-inflammatory drug (NSAID) use, and 11 (44%) patients had received chemotherapy, radiation, or combined therapy[3]. A shorter onset time of 2.0 wk was observed in those patients, and they all had grade-2 or higher adverse events (AEs) that required prednisolone (PSL) therapy.

SYMPTOMS AND CLINICAL EXAMINATIONS

Clinical symptoms of ICI-related gastritis are diverse; they can be covered by the delayed or cumulative effect of previous treatment lines or can be neglected when coexisting with other lower GI tract toxicities, which makes diagnosis challenging. Nausea/vomiting and abdominal pain are most commonly seen in patients with ICI-related gastritis. High-dose, short-interval administration of pembrolizumab increases the frequency of nausea and vomiting[20]. Sometimes, nausea/vomiting may be the only discomfort, digestive discomfort may be absent, so the occurrence of ICI-related gastritis should be determined in patients receiving immunotherapy under this circumstance. Dyspepsia (38%) and bloating (25%) are also observed in patients with ICI-related gastritis. Compared with patients with concomitant
enteritis/colitis, patients with isolated gastritis were less likely to have diarrhea (13% vs 68%; P < 0.001) or abdominal pain (19% vs 47%; P = 0.07)[4].

In general, serological evidence is still insufficient. Laboratory findings for most patients were not clinically significant, or they had mild anemia and malnutrition. Elevated C-reactive protein (CRP) was observed in several patients, but their WBC counts were within normal limits. However, in two reported cases, patients with severe eosinophilia and increased IgE and IL-5 levels showed eosinophilic infiltration on histology. Several serum biomarkers have been shown to predict ICI-related colitis. An increase in the serum IL-17 concentration at baseline with an exponential elevation at six weeks is a good indicator for ICI-diarrhea/colicitis, and an decrease in the serum IL-17 concentration correlates with the resolution of symptoms, making it a valuable indicator of treatment response[21]. High sCTLA-4 serum levels might predict favorable clinical outcomes and greater risk of irAEs in MM patients treated with ipilimumab[22]. Currently, there is no specific index to demonstrate ICI-related gastritis in an early stage.

Abdominal computed tomography (CT) is often unremarkable, with only a few patients displaying thickening of the gastric wall[7]. PET-CT can reveal diffuse fluorodeoxyglucose accumulation in the stomach wall, but it is poorly distinguished from metastasis[23-25]. Esophagogastroduodenoscopy (EGD) can reveal gastritis, duodenitis [frequently without Helicobacter pylori (H. pylori) infection], esophageal or gastric ulcers, ileitis, or enterocolitis[11]. Erythema (64%-88%) and edema (46%-52%) of the gastric mucosa are typical findings under EGD[3,26]. In patients with grade-3 ICI gastritis, hemorrhagic and fragile mucosa, network-pattern erosion or ulcers in the antrum have also been observed[6,27]. However, histological examination or endoscopic ultrasonography may show prominent characteristics of autoimmune gastritis, although there are no typical gastrointestinal characteristics or clinical symptoms. Some reports have indicated a weak correlation between gastrointestinal and histological findings in PD-1-induced gastritis[28,29]. Approximately 10%-20% of patients have endoscopically normal gastric tissue despite biopsy–proven ICI-related gastritis[4]. Thus, in patients with suspected PD-1-induced gastritis, a complete workup is necessary for diagnosis, especially stomach biopsy. Furthermore, patients with isolated ICI-related gastritis exhibit a trend toward greater endoscopic severity of gastric inflammation (erosions/ulcerations/severe erythema vs mild erythema/normal) than those with concurrent enteritis/colicitis (P = 0.12)[4]. Gastric biopsies in patients with endoscopic lesions often show pathohistological manifestations of active gastritis or chronic active pan gastritis. Lymphoplasmacytic and granulocytic infiltration with scattered eosinophils in the lamina propria and epithelium, diffuse inflammation and crypt abscesses are usually observed[23,26,27,30-32]. Further immunohistochemical analysis demonstrated that the infiltrating lymphocytes were positive for CD3, with CD8+ prevailing over CD4+ but negative for CD20, and PD-L1 was positive in immune cells and/or epithelial cells[6,33]. The involvement of limited areas of the GI tract, such as the duodenum, stomach, ileum, or colon, suggests an underlying immune mechanism directed toward epitopes specific to this location.

Autoimmune gastritis or ICI-induced autoimmune-like gastritis need to be differentiated. A marked reduction in acid-secreting cells and destruction of the glands in the background of diffuse lymphoplasmacytic infiltration are typical manifestations of autoimmune gastritis under EGD[34]. In addition, peripheral blood is positive for B-cell antibodies, with concomitant pernicious anemia. ICI-associated immune gastritis also needs to be distinguished from H. pylori gastritis and cytomegalovirus gastritis. Unlike ICI-associated gastritis, H. pylori gastritis is characterized by significantly lower numbers of intraepithelial lymphocytes, more lamina propria inflammation, and more lymphoid aggregates[35]. However, lymphocyte phenotyping of H. pylori gastritis and nivolumab gastritis showed no difference in the number of lamina propria CD4+ cells or CD8+ cells[35]. A C-13 or C-14 blow test is a noninvasive method for differentiation of H. pylori infection. Cytomegalovirus (CMV) gastritis after immunotherapy has been reported, and a CMV inclusion body inside the cytoplasm is a hallmark[36]. Notably, autoimmune gastritis may be concurrent with H. pylori and/or CMV infection. For patients in whom H. pylori gastritis and CMV gastritis are initially excluded but symptoms worsen after steroid therapy, another EGD should be performed to exclude opportunistic H. pylori or CMV infection. In addition, gastric metastases can be seen as hemorrhagic, ulcer and fragile mucosa, which need to be differentiated from gastritis[37,38], and pathological biopsy to find tumor cells is well suited for identification.

POSSIBLE MECHANISM

The detailed mechanisms underlying ICI-related gastritis are poorly understood. A common view is that ICIs increase T-cell activation and proliferation, abrogate Treg functions, and possibly boost humoral autoimmunity, which results in irAEs[39]. Moreover, CTLA-4 inhibitors increase the number of circulating Th17 cells, decrease the number of circulating Tregs and contribute to irAEs[40-42]. PD-1/PD-L1 inhibitors regulate Tregs via deficient differentiation from Th1 cells to Tregs, reducing the immunosuppressive effect of Tregs and enhancing T-cell activation[33,43]. All these imbalances result in enhanced CD4+ and CD8+ T-cell activation and drive destruction of normal cells[44]. Furthermore, CTLA-4 and PD-1/PD-L1 inhibition results in increased cytokine production, such as TNF, IFN-γ and IL-17, which further leads to T-cell proliferation and activation as well as proinflammatory effects[39].

A common histological feature is an increase in CD8+ T cells but a decrease in CD4+ T cells. Hence, there is a hypothesis that PD-1 inhibitors promote gastritis through weak expression of CD4+ Treg cells and disturbed immune tolerance; strong expression of CD8+ T cells enhances the effect of cytotoxic T lymphocytes in attacking autologous organs[33]. Additionally, as PD-L1 is expressed in immune cells and/or epithelial cells, a novel hypothesis is that T cells actively attack antigens present on gastric epithelial cells, which exacerbates gastritis, but this needs to be assessed in a case-control study[6].
TREATMENTS FOR ICI-RELATED GASTRITIS

Because of the scarcity of prospective trials on drug immunosuppression in the setting of ICI-related gastritis, no guidelines exist for management, and clinicians can only seek information from small series studies and case reports on how to handle these challenging cases. Treatment decisions for ICI-related gastritis are based on individual clinical presentations. A wait and watch approach can be used for patients with EGD without symptoms[45]. Immunotherapy is often stopped after 2 grade 2 gastritis occurs[7,46]. In several patients with isolated gastritis, symptoms have improved after PPI treatment alone[4]. However, in most cases, steroids are the first-line empirical agent. Indeed, early use and high doses of prednisone (1-2 mg/kg/d) lead to a favorable prognosis, with only 16.7% clinical recurrence[19]. Steroids can attenuate the CD28 signaling pathway and CD80 co-stimulation that partly impairs T-cell function[47]. With ICI cessation, use of prednisone and proton pump inhibitors, symptoms of ICI-related gastritis can rapidly subside within a week, but complete resolution under EGD will take months[3,31,48,49], and the longest remission is reported at 66 wk[50]. The use of steroids, most commonly prednisone, begins to taper when clinical symptoms reduce to grade 1, and Pneumocystis Carinii pneumonia and Fungal infections should be necessarily prevented for long-term steroid therapy (≥ 4 wk)[51-53]. For patients who have concomitant CMV infection, symptom improvement can be achieved with active antiviral treatment[49]. If no improvement is noted within 2 to 3 d on intravenous steroids (1-2 mg/kg/d), immunosuppression agents, such as TNF-α (e.g., infliximab) or integrin blockers (e.g., vedolizumab), can be used for this type of steroid-resistant gastritis. Retrospective data from a large cohort study of cancer patients administered ipilimumab reported that 103 (35%) of 298 patients received corticosteroids to manage an irAE and that 29 (10%) of 298 needed additional immunosuppressive drugs[54]. Vedolizumab can be used in treating steroid-refractory GI-irAEs. One study showed that 24 of 28 patients with steroid-resistant ICI-related colitis who received vedolizumab achieved clinical remission; 12 patients with EGD monitoring had nonulcerative inflammation or no signs by the last repeat EGD[55]. Patients with GI-irAEs who were initiated on infliximab within 14 d of starting steroids had good resolution, and the average time to infliximab response was 17 d[56]. Infliximab has been reported to be effective against steroid-resistant gastritis in several case reports[25,26,57], such as one patient whose symptoms did not resolve after 6 d of high-dose steroid treatment but improved significantly after 2 doses of infliximab (2-wk regimen)[25]. The duration of therapy with a TNF-α blocker (infliximab) or an integrin blocker (vedolizumab) is not clearly defined. Evidence supports use of up to 3 doses (at weeks 0, 2, and 6) to reduce risk of recurrence and increase the likelihood of endoscopic/histologic remission[58]. In addition, active parenteral nutrition, such as water and electrolyte balance and energy supplementation, preventive anti-infection treatment when needed, and symptomatic management, are important.

Despite the lack of prospective data, retrospective studies have shown that the use of steroids and immunosuppressants after irAEs does not reduce the efficacy of ICIs[53]. In 54 patients with ICI-related gastritis, the overall response rate and disease control rate were 52% and 74%, respectively, after immunotherapy[4]. Patients who developed GI-irAEs experienced a better response to ICI therapy than those who did not develop GI-irAEs (41% vs 27%, P = 0.003)[52]. Development of GI-irAEs was also associated with better overall survival[5]. However, for ICI-related gastritis, it is still unclear whether the occurrence of ICI-related gastritis correlates positively with better outcomes. Nevertheless, there was no clear correlation between the endoscopic severity or extent of inflammation and the response to ICIs (P = 0.85 and P = 0.44, respectively)[4]. More evidence is needed for better support.

RECHALLENGING IMMUNE CHECKPOINT INHIBITORS

After the complete resolution of irAEs, resumption of immunotherapy is of crucial importance for treatment and patient prognosis, as is the risk of relapse of irAEs. The recurrence rate of all kinds of irAEs is reported to be 28.6% after anti-PD-1 monotherapy resumption, 47.4% after anti-CTLA-4 monotherapy resumption, and 43.5% after combination therapy resumption in patients with various cancers[59]. A retrospective study reported that a lower recurrence rate of GI-IrAEs was found in 23.1% (6/26) of patients receiving another course of ICIs, 95% (25/26) of patients treated with anti-PD-1 as second-line therapy had no relapse within 3 months, and 88% (23/26) of patients had no relapse within one year[8]. Among the six patients who relapsed with the second ICU, the recurrence severity was grade I for 2/6 (33%), grade II for 2/6 (33%) and grade IV for 2/6 (33%); the outcome was favorable with medical treatment[8]. However, the incidence of recurrent ICI-related gastritis remains uncertain. Two studies demonstrated that 5 patients who recovered from ICI-related gastritis restarted immunotherapy without any recurrence of irAEs[60,61]. There is also a report of two patients who experienced recurrence of ICI gastritis at 10 to 12 wk after rechallenge with anti-PD-1 monotherapy, and EGD findings indicated milder lesions than those occurred during the first time (erythematous and edematous vs. network-pattern erosion or ulceration and fragile mucosa)[6]. A high possibility is increased awareness of ICI-related gastritis and EGD performed at an earlier stage. Moreover, it should be noted that patients with irAEs may experience autoimmune damage in other systems after restarting immunotherapy. According to a pharmacovigilance database review, when rechallenged after ICI discontinuation for irAEs ≥ grade 2, 39% experienced another ≥ grade 2 irAE at relapse[62].

In general, whether and when to restart ICI treatment should be based on the conditions. Limited data are available to support clinicians’ decisions. Available data on the timing of ICI resumption after the first ICI show that it ranges from a median of 14 d to 60 wk[63]. One study involving ten patients with ICI-related gastritis found a median time of 2.8 months (range: 1.0-35.8) between treatment discontinuation and resumption of ICIs[27]. However, as complete resolution of symptoms will require a couple of months and the longest duration for resolution of inflammation is reported to be 66 wk, a new EGD examination or biopsy needs to be performed for confirmation before resumption of ICI treatment. Furthermore, the duration of steroid tapering, severity of initial irAEs and use of additional immunosuppressants do not
predict toxicity upon rechallenge, but patients who remain on steroid therapy at the time of anti-PD-1 therapy resumption have high rates of toxicity (55% vs 31%, \(P = 0.03\))\[64\]. Moreover, the time of the first appearance of irAEs may help to predict their recurrence. Compared with the nonrecurrent group, the recurrent group had a shorter average time to first irAEs (9 wk vs 15 wk)\[65\]. Fecal calprotectin and lactoferrin are good biomarkers for monitoring irAE-colitis with rechallenge ICI therapy, but there is no biomarker to predict recurrence of ICI-related gastritis at present\[66\].

CONCLUSION

In conclusion, ICI-related gastritis is rare and should be suspected in patients with recurrent upper gastrointestinal symptoms and a history of immunotherapy. Adopting a proactive monitoring strategy is expected to reduce the occurrence of severe immune gastritis. EGD examination and biopsy are needed to confirm ICI-related gastritis. Early and adequate glucocorticoids can improve prognosis, and recommendation for re-examination of EGD before restarting ICI therapy. Furthermore, proper management of severe irAEs requires the efficient response and concerted decision of multidisciplinary teams. Such efforts will ensure that patients with cancer benefit from the highest quality of care as immunotherapy continues to evolve.

FOOTNOTES

Co-first authors: Jing Lin and Zhong-Qiao Lin.

Author contributions: Lin J and Lin ZQ contributed equally to this work; Lin J designed the study and revised the manuscript; Lin ZQ performed the research and wrote the manuscript; Zheng SC wrote the manuscript and contributed on funding; Chen Y revised and supervised the manuscript, and contributed on funding; All authors have read and approve the final manuscript.

Supported by: Joint Funds for the Innovation of Science and Technology, Fujian Province, China, No. 2021Y9227; Natural Science Foundation of Fujian Province, China, No. 2023J011254; The Science Foundation for The Excellent Youth Scholars of Fujian Provincial Health Commission, China, No. 2022ZQNZD009; The Special Research Funds for Local Science and Technology Development Guided by Central Government, Fujian Province, China, No. 2023J0202; and Fujian Medical University Student Innovation and Entrepreneurship Training Project, China, No. JC2023191.

Conflict-of-interest statement: All authors have no conflicts of interests.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Jing Lin 0000-0002-9025-1721; Zhong-Qiao Lin 0000-0002-5539-1526; Yu Chen 0000-0003-4293-1324.

S-Editor: Gong ZM

L-Editor: A

P-Editor: Yuan YY

REFERENCES

Lin J et al. Management strategies for ICI-related gastritis

