REVIEW
1604 Advances in postoperative adjuvant therapy for primary liver cancer
Zeng ZM, Mo N, Zeng J, Ma FC, Jiang YF, Huang HS, Liao XW, Zhu GZ, Ma J, Peng T

1622 Immunotherapy for nonalcoholic fatty liver disease-related hepatocellular carcinoma: Lights and shadows
Costante F, Airola C, Santopao F, Gasbarrini A, Pompili M, Ponziani FR

1637 Emerging role of caldesmon in cancer: A potential biomarker for colorectal cancer and other cancers

MINIREVIEWS
1654 Liquid biopsy to detect resistance mutations against anti-epidermal growth factor receptor therapy in metastatic colorectal cancer
Valenzuela G, Burotto M, Marcelain K, González-Montero J

1665 Implication of gut microbiome in immunotherapy for colorectal cancer

ORIGINAL ARTICLE
Basic Study
1675 Potential of six-transmembrane epithelial antigen of the prostate 4 as a prognostic marker for colorectal cancer
Fang ZX, Li CL, Chen WJ, Wu HT, Liu J

Case Control Study
1689 Inverse relations between Helicobacter pylori infection and risk of esophageal precancerous lesions in drinkers and peanut consumption

Retrospective Cohort Study
1699 Prognostic impact of tumor deposits on overall survival in colorectal cancer: Based on Surveillance, Epidemiology, and End Results database
Wu WX, Zhang DK, Chen SX, Hou ZY, Sun BL, Yao L, Jie JZ

1711 Consolidation chemotherapy with capecitabine after neoadjuvant chemoradiotherapy in high-risk patients with locally advanced rectal cancer: Propensity score study
Contents

Retrospective Study

1727 Efficacy and safety of computed tomography-guided microwave ablation with fine needle-assisted puncture positioning technique for hepatocellular carcinoma

Hao MZ, Hu YB, Chen QZ, Chen ZX, Lin HL

1739 Clinicopathological characterization of ten patients with primary malignant melanoma of the esophagus and literature review

1758 Endoscopic debulking resection with additive chemoradiotherapy: Optimal management of advanced inoperable esophageal squamous cell carcinoma

Ren LH, Zhu Y, Chen R, Shrestha Sachin M, Lu Q, Xie WH, Lu T, Wei XY, Shi RH

1771 Nomogram for predicting the prognosis of tumor patients with sepsis after gastrointestinal surgery

Chen RX, Wu ZQ, Li ZY, Wang HZ, Ji JF

1785 Efficacy and safety of laparoscopic radical resection following neoadjuvant therapy for pancreatic ductal adenocarcinoma: A retrospective study

He YG, Huang XB, Li YM, Li J, Peng XH, Huang W, Tang YC, Zheng L

Observational Study

1798 To scope or not - the challenges of managing patients with positive fecal occult blood test after recent colonoscopy

Rattan N, Willmann L, Aston D, George S, Bassan M, Abi-Hanna D, Anandabaskaran S, Ermerak G, Ng W, Koo JH

1808 Clinical implications of interleukins-31, 32, and 33 in gastric cancer

Liu QH, Zhang JW, Xia L, Wise SG, Hambly BD, Tao K, Bao SS

1823 Construction and analysis of an ulcer risk prediction model after endoscopic submucosal dissection for early gastric cancer

Gong SD, Li H, Xie YB, Wang XH

1833 Percutaneous insertion of a novel dedicated metal stent to treat malignant hilar biliary obstruction

Cortese F, Acquafredda F, Mardighian A, Zurlo MT, Ferraro V, Memeo R, Spiliopoulos S, Inchingolo R

EVIDENCE-BASED MEDICINE

1844 Prediction of gastric cancer risk by a polygenic risk score of *Helicobacter pylori*

META-ANALYSIS

1856 Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data

1874 Prognostic and clinicopathological value of Twist expression in esophageal cancer: A meta-analysis

Song WP, Wang SY, Zhou SC, Wu DS, Xie JY, Liu TT, Wu XZ, Che GW
LETTIS TO THE EDITOR

1886 Nutrition deprivation affects the cytotoxic effect of CD8 T cells in hepatocellular carcinoma

Zhang CY, Liu S, Yang M
ABOUT COVER
Editorial Board Member of World Journal of Gastrointestinal Oncology, Luigi Marano, MD, PhD, Associate Professor, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena 53100, Italy. luigi.marano@unisi.it

AIMS AND SCOPE
The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING
The WJGO is now abstracted and indexed in PubMed, PubMed Central, Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJGO as 3.404; IF without journal self cites: 3.357; 5-year IF: 3.250; Journal Citation Indicator: 0.53; Ranking: 162 among 245 journals in oncology; Quartile category: Q3; Ranking: 59 among 93 journals in gastroenterology and hepatology; and Quartile category: Q3. The WJGO’s CiteScore for 2021 is 3.6 and Scopus CiteScore rank 2021: Gastroenterology is 72/149; Oncology is 203/360.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Gastrointestinal Oncology

ISSN
ISSN 1948-5204 (online)

LAUNCH DATE
February 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Monjur Ahmed, Florin Burada

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
September 15, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Case Control Study

Inverse relations between Helicobacter pylori infection and risk of esophageal precancerous lesions in drinkers and peanut consumption

Da Pan, Gui-Ju Sun, Ming Su, Xin Wang, Qing-Yang Yan, Guang Song, Yuan-Yuan Wang, Deng-Feng Xu, Nian-Nian Wang, Shao-Kang Wang

Specialty type: Oncology
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C, C
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Chen LW, Taiwan; Reshetnyak VI, Russia
Received: April 7, 2022
Peer-review started: April 7, 2022
First decision: June 2, 2022
Revised: June 16, 2022
Accepted: August 5, 2022
Article in press: August 5, 2022
Published online: September 15, 2022

Abstract

BACKGROUND
Helicobacter pylori (H. pylori) is a Gram-negative bacterium found in the upper digestive tract. Although H. pylori infection is an identified risk factor for gastric cancer, its role in esophageal squamous cell carcinoma (ESCC) remains a topic of much debate.

AIM
To evaluate the association between H. pylori infection and the risk of precancerous lesions of ESCC, and further explore the association between dietary factors and the risk of H. pylori infection.

METHODS
Two hundred patients with esophageal precancerous lesions (EPL) aged 63.01 ± 6.08 years and 200 healthy controls aged 62.85 ± 6.03 years were included in this case-control study. Epidemiological data and qualitative food frequency data were investigated. Enzyme-linked immunosorbent assay measuring serum immunoglobulin G antibodies was used to determine H. pylori seropositivity. An unconditional logistic regression model was used to assess the association between H. pylori infection and EPL risk dichotomized by gender, age, and the use of tobacco and alcohol, as well as the association between dietary factors and the
risk of *H. pylori* infection.

RESULTS
A total of 47 (23.5%) EPL cases and 58 (29.0%) healthy controls had positive *H. pylori* infection. An inverse relation between *H. pylori* infection and the risk of EPL was found in the group of drinkers after adjustment for covariates [odds ratio (OR) = 0.32, 95% confidence interval (95%CI): 0.11-0.95]. Additionally, peanut intake was significantly associated with a decreased risk of *H. pylori* infection (OR = 0.39, 95%CI: 0.20-0.74).

CONCLUSION
Our study suggested that *H. pylori* infection may decrease the risk of EPL for drinkers in a rural adult Chinese population, and the consumption of peanut may reduce the risk of *H. pylori* infection. These findings should be framed as preliminary evidence, and further studies are required to address whether the mechanisms are related to the localization of lesions and alcohol consumption.

Key Words: *Helicobacter pylori*; Esophageal precancerous lesions; Peanut consumption; Esophageal squamous cell carcinoma

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The association between *Helicobacter pylori* (*H. pylori*) infection and esophageal squamous cell carcinoma (ESCC) remains a topic of much debate. This study aimed to evaluate the association between *H. pylori* infection and the risk of precancerous lesions of ESCC, and further explore the association between dietary intake and the risk of *H. pylori* infection. Our findings suggested an inverse association between *H. pylori* infection and the risk of esophageal precancerous lesions in the group of drinkers [odds ratio (OR) = 0.32, 95% confidence interval (95%CI): 0.11-0.95]. Additionally, peanut consumption was significantly associated with a reduced risk of *H. pylori* infection (OR = 0.39, 95%CI: 0.20-0.74).

INTRODUCTION
Esophageal cancer and gastric cancer are upper gastrointestinal cancers that share many risk factors[1-3]. However, their associations with *Helicobacter pylori* (*H. pylori*) infection can be completely different. It has been determined that *H. pylori* infection is an identified risk factor for gastric cancer[4], whereas the role of *H. pylori* in the risk of esophageal cancer remains controversial. Previous meta-analyses summarized that *H. pylori* infection is likely to be related to a reduced risk of esophageal adenocarcinoma (EAC)[5-9]. One of the reliable assumptions related to this phenomenon is that *H. pylori* infection causes gastric atrophy and parietal cell loss, thus leading to alleviated reflux and consequently, a decreased incidence of reflux esophagitis and Barrett’s esophagus (precursor for EAC)[10-12]. However, the impact of *H. pylori* infection on esophageal squamous cell carcinoma (ESCC) is not well understood, and research is inconclusive as to what population may be significantly influenced[9,13-15]. Previous meta-analyses also reported that in the general population, no significant association was found between *H. pylori* infection and ESCC risk[6-8], whereas an inverse association was observed in the Middle East[9]. In the other populations, the inverse relationship was found to be highly associated with age, smoking status, and drinking status[15].

H. pylori is a Gram-negative bacterium found in the upper digestive tract. In spite of the fact that *H. pylori* infection may reduce the risk of EAC, it may also cause an adverse effect on human health. Apart from the elevated risk of gastric cancer, *H. pylori* infection is also etiologically related to peptic ulcers, atrophic and non-atrophic gastritis, and lymphoma associated with gastric mucosa, and is able to induce reduced bioavailability and malabsorption of nutrients including iron and vitamin B12[16-18]. This case-control study aimed to investigate the association between *H. pylori* infection and the risk of precancerous lesions of ESCC, which is an identified early stage of carcinogenesis, and further examine the association between dietary factors and the risk of *H. pylori* infection.
MATERIALS AND METHODS

This study was carried out in a high-incidence area for ESCC located in Huai’an District, Huai’an City, Jiangsu Province, China, where the crude incidence rate from 1998 to 2016 was 91.85/100,000[19]. As described in our previous studies[20-22], the Early Diagnosis and Early Treatment Project of Esophageal Cancer (EDETPEC) supported by the government and Cancer Foundation of China has been carried out in the endemic regions including Huai’an District since 2010. Local residents were required to undergo routine endoscopies. A detailed introduction to esophageal precancerous lesions (EPL) based on histological criteria for dysplasia and methods for EPL diagnosis has already been given in a previous study[21]. The localization of EPL was based on the definition of upper thoracic esophagus (from thoracic inlet to level of tracheal bifurcation; 18-23 cm from incisors), mid thoracic esophagus (from tracheal bifurcation midway to gastroesophageal junction; 24-32 cm from incisors), and lower thoracic esophagus (from midway between tracheal bifurcation and gastroesophageal junction to gastroesophageal junction, including abdominal esophagus; 32-40 cm from incisors)[23]. Figure 1 shows the flowchart of the study population and data collection process. This study included 200 EPL cases aged 62.85 ± 6.03 years and 200 healthy controls aged 63.01 ± 6.08 years matched by gender, age (± 2 years), and villages. The collection of epidemiological data and dietary intake data based on questionnaire method has been introduced in detail previously[21]. Subjects were required to provide the amount of beer/wine/liquor/any other alcoholic drinks consumed per day, which meant that the average alcohol units consumed per day could be estimated. Separated serum samples were obtained by centrifuging collected fasting blood samples at 3000 rpm for 5 min. Enzyme-linked immunosorbent assay (ELISA, KingMed Diagnostics Group Co., Ltd. Guangzhou, China) measuring serum immunoglobulin G (IgG) antibodies was used to determine H. pylori seropositivity. Sensitivity of the ELISA test was 97.9% [95% confidence interval (95%CI): 88.9%-99.9%] and specificity was 100% (95%CI: 86.8%-100%). EpiData version 3.1 (EpiData Association, Odense, Denmark) was used for inputting and validating the epidemiological data and dietary intake data. Then, SPSS version 22.0 (SPSS, Chicago, IL, United States) was used to establish a database and perform statistical analyses. Two independent samples t-test and conditional logistic regression model were used to evaluate the differences in general characteristics and potential factors between healthy controls and EPL cases, wherever appropriate. The Fisher’s exact test was used to analyze the difference in localization of EPL and H. pylori infection. An unconditional logistic regression model was used to assess the association between H. pylori infection and EPL risk dichotomized by gender, age, and tobacco and alcohol use, as well as the association between dietary factors and H. pylori infection. Covariates including gender, age, body mass index (BMI), education level, annual income, number of cigarettes per day, and alcohol units consumed per day were adjusted in the logistic regression model. Meanwhile, odds ratio (OR) and 95%CI were calculated accordingly. Statistical significance was defined as P < 0.05 (two-tailed).

The study protocol was approved by the Institutional Review Board of Southeast University Zhongda Hospital (Approval No. 2016ZDKYSB017), and the written informed consent was obtained.

RESULTS

Two hundred EPL cases aged 63.01 ± 6.08 years and 200 healthy controls aged 62.85 ± 6.03 years were enrolled. Among the pairs, 100 were males and 100 were females. Table 1 shows that 47 (23.5%) and 58 (29.0%) out of 200 cases and 200 controls, respectively, had H. pylori infection. Two independent samples t-test and conditional logistic regression analysis indicated that there were no statistically significant differences in age, BMI, education level, annual income per person, current drinking status, or H. pylori infection between the two groups after adjustment for covariates (P > 0.05). Compared with nonsmokers, a smoking habit of more than 20 cigarettes a day was significantly associated with an elevated risk of EPL (P < 0.05).

Based on routine endoscopy examination, the study found that the number of cases whose EPL developed in upper, mid, and lower thoracic esophagus was 3, 130, and 67, respectively. Table 2 shows that the control group had the highest positive rate of H. pylori infection (29.0%), followed by EPL cases of upper and mid thoracic esophagus (24.8%) and EPL cases of lower thoracic esophagus (20.9%), but there was no statistically significant differences.

As shown in Table 3, when subjects were dichotomized according to gender, age, and the use of tobacco and alcohol, the protective effect of H. pylori infection against the risk of EPL was found in the group of drinkers after adjustment for covariates (OR = 0.32, 95%CI: 0.11-0.95). Supplementary Tables 1 and 2 shows that there may be a nonsignificant decreasing trend of H. pylori infection rate when alcohol consumption is increasing.

Figure 2 illustrates the association between dietary factors and the risk of H. pylori infection after the adjustment for covariates via the unconditional logistic regression model. The result indicated that peanut intake was significantly associated with a reduced risk of H. pylori infection (OR = 0.39, 95%CI 0.20-0.74). Supplementary Table 3 shows that there may be a significant positive association between peanut consumption and alcohol drinking (P for trend < 0.05).
Table 1 Characteristics and potential factors in cases with esophageal precancerous lesions and controls

<table>
<thead>
<tr>
<th>Category</th>
<th>Cases, n = 200</th>
<th>Controls, n = 200</th>
<th>Adjusted OR (95%CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr), mean ± SD</td>
<td>63.01 ± 6.08</td>
<td>62.85 ± 6.03</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²), mean ± SD</td>
<td>24.52 ± 3.33</td>
<td>24.36 ± 3.37</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>Normal (18.5-23.9)</td>
<td>82 (41.0%)</td>
<td>84 (42.0%)</td>
<td>0.95 (0.61-1.49)</td>
<td>0.836</td>
</tr>
<tr>
<td>Underweight (< 18.5)</td>
<td>4 (2.0%)</td>
<td>5 (2.5%)</td>
<td>0.61 (0.12-3.02)</td>
<td>0.545</td>
</tr>
<tr>
<td>Overweight (24.0-28.0)</td>
<td>84 (42.0%)</td>
<td>89 (44.5%)</td>
<td>0.95 (0.61-1.49)</td>
<td>0.836</td>
</tr>
<tr>
<td>Obese (> 28.0)</td>
<td>30 (15.0%)</td>
<td>22 (11.0%)</td>
<td>1.61 (0.83-3.12)</td>
<td>0.164</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>100 (50.0%)</td>
<td>96 (48.0%)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>Primary school education</td>
<td>74 (37.0%)</td>
<td>77 (38.5%)</td>
<td>0.79 (0.45-1.39)</td>
<td>0.413</td>
</tr>
<tr>
<td>Middle school education and higher</td>
<td>26 (13.0%)</td>
<td>27 (13.5%)</td>
<td>0.81 (0.36-1.79)</td>
<td>0.599</td>
</tr>
<tr>
<td>Annual income/person (RMB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5000</td>
<td>53 (26.5%)</td>
<td>42 (21.0%)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>5001-10000</td>
<td>88 (44.0%)</td>
<td>86 (43.0%)</td>
<td>0.75 (0.45-1.25)</td>
<td>0.267</td>
</tr>
<tr>
<td>> 10000</td>
<td>59 (29.5%)</td>
<td>72 (36.0%)</td>
<td>0.67 (0.37-1.21)</td>
<td>0.183</td>
</tr>
<tr>
<td>Current smoking status (number of cigarettes/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>126 (63.0%)</td>
<td>134 (67.0%)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>20 (10.0%)</td>
<td>17 (8.5%)</td>
<td>1.39 (0.67-2.87)</td>
<td>0.381</td>
</tr>
<tr>
<td>11-20</td>
<td>38 (19.0%)</td>
<td>41 (20.5%)</td>
<td>1.10 (0.61-1.97)</td>
<td>0.755</td>
</tr>
<tr>
<td>> 20</td>
<td>16 (8.0%)</td>
<td>8 (4.0%)</td>
<td>3.11 (1.00-9.63)</td>
<td>0.049</td>
</tr>
<tr>
<td>Current drinking status (alcohol units consumed/d, 1 unit is 8 g or 10 mL of pure alcohol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-drinker</td>
<td>147 (73.5%)</td>
<td>151 (75.5%)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>< 4</td>
<td>10 (5.0%)</td>
<td>10 (5.0%)</td>
<td>1.03 (0.41-2.59)</td>
<td>0.954</td>
</tr>
<tr>
<td>4-</td>
<td>26 (13.0%)</td>
<td>23 (11.5%)</td>
<td>1.02 (0.52-2.02)</td>
<td>0.946</td>
</tr>
<tr>
<td>8-</td>
<td>17 (8.5%)</td>
<td>16 (8.0%)</td>
<td>1.06 (0.47-2.42)</td>
<td>0.885</td>
</tr>
<tr>
<td>H. pylori infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>153 (76.5%)</td>
<td>142 (71.0%)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>47 (23.5%)</td>
<td>58 (29.0%)</td>
<td>0.75 (0.46-1.24)</td>
<td>0.265</td>
</tr>
</tbody>
</table>

*P value of two independent samples t-test.
1 Conditional logistic regression model with adjustment for gender, age, BMI, education level, annual income, number of cigarettes per day, and alcohol units consumed per day, except the specific variable itself.
H. pylori: Helicobacter pylori; BMI: Body mass index; OR: Odds ratio.

DISCUSSION

This study revealed that in drinkers, there was an association between H. pylori infection and a reduced risk of EPL, which is an identified early stage of esophageal carcinogenesis. However, the relationship between H. pylori infection and ESCC is still subject to much discussion. Some researchers believed that infection with H. pylori can increase the risk of ESCC by causing gastric atrophy that promotes excessive bacterial growth and causes endogenous nitrosamine production[24-26]. However, other studies which held that H. pylori infection probably plays a protective role in ESCC postulated that the protection is mediated via gastric atrophy, whereas the mechanism is related to a reduced load of esophageal acid[27, 28]. Therefore, it is likely that ESCC might be affected in a double-edged manner by H. pylori infection, which is dependent on population and other possible external factors. For example, previous studies have indicated that acid regurgitation may be facilitated by the reduction in lower esophageal sphincter’s pressure and the retard of both esophageal motility and gastric emptying due to large consumption of alcoholic beverages[29-33]. Therefore, the current hypothesis is that H. pylori infection just alleviates esophageal reflux caused by alcohol to some extent, thus reducing the risk of esophageal...
Table 2 Difference in *Helicobacter pylori* infection among controls and cases with esophageal precancerous lesions

<table>
<thead>
<tr>
<th>Group</th>
<th>H. pylori infection</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Controls</td>
<td>142</td>
<td>58</td>
</tr>
<tr>
<td>EPL cases (upper and mid thoracic esophagus)</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>EPL cases (lower thoracic esophagus)</td>
<td>53</td>
<td>14</td>
</tr>
</tbody>
</table>

*P value of Fisher's exact test.

H. pylori: *Helicobacter pylori*.

Table 3 Association between *Helicobacter pylori* infection and esophageal precancerous lesion risk dichotomized by gender, age, cigarette smoking, and alcohol drinking

<table>
<thead>
<tr>
<th>Cases</th>
<th>Controls</th>
<th>Crude OR (95%CI)</th>
<th>P value</th>
<th>Adjusted OR (95%CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>n = 100</td>
<td>n = 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>78 (78.0%)</td>
<td>72 (72.0%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>22 (22.0%)</td>
<td>28 (28.0%)</td>
<td>0.73 (0.38-2.38)</td>
<td>0.328</td>
<td>0.64 (0.32-1.27)</td>
</tr>
<tr>
<td>Female</td>
<td>n = 100</td>
<td>n = 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>75 (75.0%)</td>
<td>70 (70.0%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>25 (25.0%)</td>
<td>30 (30.0%)</td>
<td>0.78 (0.42-1.45)</td>
<td>0.429</td>
<td>0.82 (0.42-1.58)</td>
</tr>
<tr>
<td>Age < 65 years</td>
<td>n = 107</td>
<td>n = 107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>76 (71.0%)</td>
<td>73 (68.2%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>31 (29.0%)</td>
<td>34 (31.8%)</td>
<td>0.88 (0.49-1.57)</td>
<td>0.656</td>
<td>0.89 (0.47-1.67)</td>
</tr>
<tr>
<td>Age ≥ 65 years</td>
<td>n = 93</td>
<td>n = 93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>77 (82.8%)</td>
<td>69 (74.2%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>16 (17.2%)</td>
<td>24 (25.8%)</td>
<td>0.60 (0.29-1.22)</td>
<td>0.156</td>
<td>0.59 (0.27-1.28)</td>
</tr>
<tr>
<td>Cigarette smoking (-)</td>
<td>n = 126</td>
<td>n = 134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>97 (77.0%)</td>
<td>93 (69.4%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>29 (23.0%)</td>
<td>41 (30.6%)</td>
<td>0.68 (0.39-1.18)</td>
<td>0.170</td>
<td>0.74 (0.42-1.32)</td>
</tr>
<tr>
<td>Cigarette smoking (+)</td>
<td>n = 74</td>
<td>n = 66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>56 (75.7%)</td>
<td>49 (74.2%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>18 (24.3%)</td>
<td>17 (25.8%)</td>
<td>0.93 (0.43-1.99)</td>
<td>0.845</td>
<td>0.80 (0.34-1.86)</td>
</tr>
<tr>
<td>Alcohol drinking (-)</td>
<td>n = 147</td>
<td>n = 151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>109 (74.1%)</td>
<td>109 (72.2%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>38 (25.9%)</td>
<td>42 (27.8%)</td>
<td>0.91 (0.54-1.51)</td>
<td>0.702</td>
<td>0.94 (0.55-1.61)</td>
</tr>
<tr>
<td>Alcohol drinking (+)</td>
<td>n = 53</td>
<td>n = 49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori (-)</td>
<td>44 (83.0%)</td>
<td>33 (67.3%)</td>
<td>1.00 (reference)</td>
<td>-</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>H. pylori (+)</td>
<td>9 (17.0%)</td>
<td>16 (32.7%)</td>
<td>0.42 (0.17-1.07)</td>
<td>0.070</td>
<td>0.32 (0.11-0.95)</td>
</tr>
</tbody>
</table>

*Adjustment for gender, age, BMI, education level, annual income, number of cigarettes per day, and alcohol units consumed per day.

H. pylori: *Helicobacter pylori*; 95%CI: 95% confidence interval; OR: Odds ratio.

carcinogenesis caused by acid reflux. Our results also reported that EPL cases of lower thoracic esophagus had the lowest positive rate of *H. pylori* infection, which may support the hypotheses to some extent, although the difference was not statistically significant. In addition, there is more data indicating the positive role of this bacterium for humans. For example, a recent review considered the data on *H. pylori* and suggested that *H. pylori* may be a latent or opportunistic pathogen rather than a true pathogen.
of some diseases, and is possibly part of the normal human microbiome as a commensal or even a symbiont organism[34]. However, it was reported that a regular but moderate alcohol intake could possibly facilitate elimination of *H. pylori* infection[35]. Supplementary material also shows a nonsignificant decreasing trend of *H. pylori* infection rate when alcohol consumption is increasing. This partly supports the hypothesis that there is a possibility that drinkers without *H. pylori* infection could have more alcohol consumption. In other words, the decreased EPL risk in drinkers with *H. pylori* infection is possibly related to a lower alcohol consumption. However, because the result was not statistically significant, and there was no significant association between alcohol consumption and EPL risk in Huai’an in both this study and the previous epidemiological investigation[21], it is hard to address whether the reduced risk of EPL in drinkers with *H. pylori* infection was related to a reduced alcohol intake.

Additionally, the present study reported that the consumption of peanuts may provide protection from *H. pylori* infection. Since peanuts are high in fat, the duodenal mucosa secretes the hormone enterogastrone when fatty food is present in the stomach or small intestine[36]. Enterogastrone inhibits gastric movements and secretion of gastric acid, possibly by blocking the production or activity of gastrin, the hormone that initially leads to these functions[37]. Therefore, the reduced amount of acid produced may influence the growth of *H. pylori*, as *H. pylori* is dependent on acidity to survive for a long time[38]. In addition, in China, people are likely to drink and eat peanuts at the same time, and Supplementary material shows that there was a positive association between peanut consumption and alcohol drinking. Therefore, the inverse association between the consumption of peanut and the risk of *H. pylori* infection may be mediated by alcohol drinking. However, there is still a lack of evidence to verify the above hypotheses, thus further researches are required to evaluate the relationship between peanut consumption and *H. pylori* infection.

At present, about 50% of the global population and more than 70% of the population in some developing countries are infected by *H. pylori*[39]. However, this study reported that the positive rates of *H. pylori* infection were only 23.5% and 29.0% in EPL cases and healthy controls. In an early study conducted by Gao *et al*[40], Huai’an, Jiangsu Province was selected as a high incidence area of upper digestive tract cancers, and Pizhou, Jiangsu Province was selected as a low incidence area. They used ELISA and latex agglutinate test for the detection of *H. pylori* infection, and found that the prevalence of *H. pylori* infection among the gastric cancer group/upper digestive tract cancer group in the low incidence area of Pizhou (66.67%/63.46%) was significantly higher than that in the high incidence area of Huai’an (38.64%/39.33%). However, in the high incidence area of Huai’an, the prevalence of *H. pylori* infection in non-cancer controls and the healthy family members of the cancer cases was higher than that of cases. Therefore, the previous study and our study found that the prevalence of *H. pylori* infection in Huai’an may be much lower than that in other areas, and the prevalence in upper digestive tract cancers or EPL cases can be lower than that in non-cancer population in this region.
CONCLUSION

In summary, our study suggested that *H. pylori* infection is likely to decrease EPL risk in drinkers for a rural adult Chinese population, and the consumption of peanuts may be related to a reduced risk of *H. pylori* infection. However, the sample size used is a limitation of the study, which may bring difficulties to evaluate statistical significance in some statistical analyses, thus the findings should be framed as preliminary evidence. A case-control study might be difficult to determine causality, so the statement of “protective role” might be overestimated. Hence, it is necessary to design a large-scale prospective cohort study to address the impact of *H. pylori* infection on ESCC, the localization of lesions, and the association with dietary intake and the use of alcohol in the future. Additionally, the low prevalence of *H. pylori* infection in Huai’an is a peculiar finding, which implies that further investigations are recommended.

Figure 2 Association between dietary intake and the risk of *Helicobacter pylori* infection after adjustment for covariates via unconditional logistic regression model. BMI: Body mass index; OR: Odds ratio.
ARTICLE HIGHLIGHTS

Research background
The role of Helicobacter pylori (H. pylori) infection in esophageal squamous cell carcinoma (ESCC) remains a topic of much debate.

Research motivation
To assess the relationship between H. pylori infection and the risk of precancerous lesions of ESCC, which is an identified early stage of carcinogenesis.

Research objectives
This study aimed to evaluate the association between H. pylori infection and the risk of esophageal precancerous lesions (EPL) in a high-incidence area in Huai’an, and further explore the association between dietary factors and the risk of H. pylori infection.

Research methods
The study was based on a case-control design. Epidemiological data were collected and H. pylori seropositivity was tested. An unconditional logistic regression model was used to analyze the association between H. pylori infection and EPL risk with adjustment for confounders, as well as the association between dietary factors and risk of H. pylori infection.

Research results
The control group had the highest positive rate of H. pylori infection (29.0%), followed by EPL cases of upper and mid thoracic esophagus (24.8%) and EPL cases of lower thoracic esophagus (20.9%). The protective effect of H. pylori infection against the risk of EPL was observed in the group of drinkers after adjustment for covariates [odds ratio (OR) = 0.32, 95% confidence interval (95%CI): 0.11-0.95]. Peanut intake was significantly associated with a reduced risk of H. pylori infection (OR = 0.39, 95%CI: 0.20-0.74).

Research conclusions
H. pylori infection may decrease the risk of EPL in drinkers for a rural adult Chinese population, and the consumption of peanuts may be related to a reduced risk of H. pylori infection.

Research perspectives
A well-designed prospective cohort study is required to address the impact of H. pylori infection on ESCC, the localization of lesions, and the association with dietary intake and alcohol drinking. Additionally, the low prevalence of H. pylori infection in Huai’an is a peculiar finding, which implies that further investigations are recommended.

ACKNOWLEDGEMENTS
Thanks to all the subjects and researchers for their contributions and hard work. We really appreciate Mr Rob Unwin’s assistance in polishing the manuscript.

FOOTNOTES
Author contributions: Pan D, Wang SK, and Sun GJ designed the research; Pan D, Su M, Yan QY, Song G, Wang YY, Xu DF, and Wang NN conducted the research; Wang SK, Su M, Wang X, and Sun GJ provided essential materials; Pan D analyzed the data and wrote the manuscript; Wang SK had primary responsibility for final content; all authors read and approved the final manuscript.

Supported by the Fellowship of China Postdoctoral Science Foundation, No. 2022M710675; the National Natural Science Foundation of China, No. 81673147; and the Danone Dietary Nutrition Research and Education Foundation, No. DIC2020-08.

Institutional review board statement: The study was reviewed and approved by the Institutional Review Board of Southeast University Zhongda Hospital (No. 2016ZDKYSB017).

Informed consent statement: Written informed consent was obtained from all subjects.

Conflict-of-interest statement: There are no conflicts of interest to report.
REFERENCES

Pan et al. H. pylori infection and esophageal cancer

