REVIEW

5070 Strategies and challenges in the treatment of chronic venous leg ulcers

5086 Peripheral nerve tumors of the hand: Clinical features, diagnosis, and treatment
Zhou HY, Jiang S, Ma FX, Lu H

MINIREVIEWS

5099 Treatment strategies for gastric cancer during the COVID-19 pandemic
Kang WZ, Zhong YX, Ma FH, Liu H, Ma S, Li Y, Hu HT, Li WK, Tian YT

ORIGINAL ARTICLE

Retrospective Cohort Study

5104 Oncological impact of different distal ureter managements during radical nephroureterectomy for primary upper urinary tract urothelial carcinoma

5116 Clinical characteristics and survival of patients with normal-sized ovarian carcinoma syndrome: Retrospective analysis of a single institution 10-year experiment
Yu N, Li X, Yang B, Chen J, Wu MF, Wei JC, Li KZ

Retrospective Study

5128 Assessment of load-sharing thoracolumbar injury: A modified scoring system
Su QH, Li YC, Zhang Y, Tan J, Cheng B

5139 Accuracy of endoscopic ultrasound-guided needle aspiration specimens for molecular diagnosis of non-small-cell lung carcinoma
Su W, Tian XD, Liu P, Zhou DJ, Cao FL

5149 Application of hybrid operating rooms for clipping large or giant intracranial carotid-ophthalmic aneurysms
Zhang N, Xin WQ

5159 Magnetic resonance imaging findings of carcinoma arising from anal fistula: A retrospective study in a single institution
Zhu X, Zhu TS, Ye DD, Liu SW

5172 Efficacy and safety of S-1 maintenance therapy in advanced non-small-cell lung cancer patients
Cheng XW, Leng WH, Ma CL
Contents

World Journal of Clinical Cases
Semimonthly Volume 8 Number 21 November 6, 2020

5180 Analysis of 234 cases of colorectal polyps treated by endoscopic mucosal resection
Yu L, Li N, Zhang XM, Wang T, Chen W

5188 Epidemiological and clinical characteristics of fifty-six cases of COVID-19 in Liaoning Province, China

5203 Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans

5213 Influence of transitional nursing on the compliance behavior and disease knowledge of children with purpura nephritis
Li L, Huang L, Zhang N, Guo CM, Hu YQ

Randomized Controlled Trial

5221 Wavelet and pain rating index for inhalation anesthesia: A randomized controlled trial
Zhang JW, Lv ZG, Kong Y, Han CF, Wang BG

SYSTEMATIC REVIEWS

5235 Essential phospholipids for nonalcoholic fatty liver disease associated with metabolic syndrome: A systematic review and network meta-analysis
Dajani AI, Popovic B

5250 Cardiovascular impact of COVID-19 with a focus on children: A systematic review
Rodriguez-Gonzalez M, Castellano-Martinez A, Cascales-Poyatos HM, Perez-Reviriego AA

5284 Anterior bone loss after cervical disc replacement: A systematic review
Wang XF, Meng Y, Liu H, Hong Y, Wang BY

CASE REPORT

5296 Submicroscopic 11p13 deletion including the elongator acetyltransferase complex subunit 4 gene in a girl with language failure, intellectual disability and congenital malformations: A case report
Toral-Lopez J, Gonzalez Huerta LM, Messina-Baas O, Cuevas-Covarrubias SA

5304 Pancreatic panniculitis and elevated serum lipase in metastasized acinar cell carcinoma of the pancreas: A case report and review of literature
Miksch RC, Schiergens TS, Weniger M, Ilmer M, Kazmierczak PM, Gaba MO, Angele MK, Werner J, D’Haese JG

5313 Diffusion-weighted imaging might be useful for reactive lymphoid hyperplasia diagnosis of the liver: A case report
Tanaka T, Saito K, Yunaiyama D, Matsubayashi J, Nagakawa Y, Tanigawa M, Nagao T

5320 Nafamostat mesylate-induced hyperkalemia in critically ill patients with COVID-19: Four case reports
Okajima M, Takahashi Y, Kaji T, Ogawa N, Mouri H
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5326</td>
<td>Arthroscopic treatment of iliopsoas tendinitis after total hip arthroplasty with acetabular cup malposition: Two case reports</td>
<td>Won H, Kim KH, Jung JW, Kim SY, Baek SH</td>
</tr>
<tr>
<td>5341</td>
<td>Donepezil-related inadequate neuromuscular blockade during laparoscopic surgery: A case report</td>
<td>Jang EA, Kim TY, Jung EG, Jeong S, Bae HB, Lee S</td>
</tr>
<tr>
<td>5347</td>
<td>Successful treatment of relapsed acute promyelocytic leukemia with arsenic trioxide in a hemodialysis-dependent patient: A case report</td>
<td>Lee HJ, Park SG</td>
</tr>
<tr>
<td>5353</td>
<td>Treatment of afferent loop syndrome using fluoroscopic-guided nasointestinal tube placement: Two case reports</td>
<td>Hu HT, Ma FH, Wu ZM, Qi XH, Zhong YX, Xie YB, Tian YT</td>
</tr>
<tr>
<td>5361</td>
<td>Emergency surgical workflow and experience of suspected cases of COVID-19: A case report</td>
<td>Wu D, Xie TY, Sun XH, Wang XX</td>
</tr>
<tr>
<td>5371</td>
<td>Seven-year follow-up of the nonsurgical expansion of maxillary and mandibular arches in a young adult: A case report</td>
<td>Yu TT, Li J, Liu DW</td>
</tr>
<tr>
<td>5389</td>
<td>Early ultrasound diagnosis of conjoined twins at eight weeks of pregnancy: A case report</td>
<td>Liang XW, Cai YY, Yang YZ, Chen YZ</td>
</tr>
<tr>
<td>5394</td>
<td>Supermicroscopy and arterio-venolization for digit replantation in young children after traumatic amputation: Two case reports</td>
<td>Chen Y, Wang ZM, Yao JH</td>
</tr>
<tr>
<td>5401</td>
<td>Candidal periprosthetic joint infection after primary total knee arthroplasty combined with ipsilateral intertrochanteric fracture: A case report</td>
<td>Xin J, Guo QS, Zhang HY, Zhang ZY, Talmy T, Han YZ, Xie Y, Zhong Q, Zhou SR, Li Y</td>
</tr>
<tr>
<td>5415</td>
<td>Large and unusual presentation of gallbladder adenoma: A case report</td>
<td>Cao LL, Shan H</td>
</tr>
<tr>
<td>5420</td>
<td>Rare narrow QRS tachycardia with atrioventricular dissociation: A case report</td>
<td>Zhu C, Chen MX, Zhou GJ</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>5426</td>
<td>Synchronous parathyroid adenoma, papillary thyroid carcinoma and thyroid adenoma in pregnancy: A case report</td>
<td>Li Q, Xu XZ, Shi JH</td>
</tr>
<tr>
<td>5432</td>
<td>Pseudohyperkalemia caused by essential thrombocythemia in a patient with chronic renal failure: A case report</td>
<td>Guo Y, Li HC</td>
</tr>
<tr>
<td>5439</td>
<td>Acute leukemic phase of anaplastic lymphoma kinase-anaplastic large cell lymphoma: A case report and review of the literature</td>
<td>Zhang HF, Guo Y</td>
</tr>
<tr>
<td>5446</td>
<td>Chinese patient with cerebrotendinous xanthomatosis confirmed by genetic testing: A case report and literature review</td>
<td>Cao LX, Yang M, Liu Y, Long WY, Zhao GH</td>
</tr>
<tr>
<td>5457</td>
<td>Fanconi-Bickel syndrome in an infant with cytomegalovirus infection: A case report and review of the literature</td>
<td>Xiong LJ, Jiang ML, Du LN, Yuan L, Xie XL</td>
</tr>
<tr>
<td>5454</td>
<td>Benign symmetric lipomatosis (Madelung’s disease) with concomitant incarcerated femoral hernia: A case report</td>
<td>Li B, Rang ZX, Weng JC, Xiong GZ, Dai XP</td>
</tr>
<tr>
<td>5467</td>
<td>Potential protection of indocyanine green on parathyroid gland function during near-infrared laparoscopic-assisted thyroidectomy: A case report and literature review</td>
<td>Peng SJ, Yang P, Dong YM, Yang L, Yang ZY, Hu XE, Rao GQ</td>
</tr>
</tbody>
</table>

CORRECTION

5494 Erratum: Author’s Affiliation Correction. Type II human epidermal growth factor receptor heterogeneity is a poor prognosticator for type II human epidermal growth factor receptor positive gastric cancer (World J Clin Cases 2019; Aug 6; 7 (15): 1964-1977)

Kaito A, Kawata T, Tokunaga M, Shitara K, Sato R, Akimoto T, Kinoshita T
ABOUT COVER

Peer-reviewer for World Journal of Clinical Cases, Dr. Karayiannakis is Professor of Surgery at the Medical School of Democritus University of Thrace. He received his MD from the Medical Academy, Sofia, Bulgaria (1985), an MSc in Surgical Science from University of London (1996), and a PhD from National and Kapodistrian University of Athens (NKUA) (1993). After completing training at the NKUA Medical School in 1993, Dr. Karayiannakis undertook postgraduate training at St George’s and Hammersmith Hospitals (London), the Institute for Digestive Diseases (Serbia), the University of Verona (Italy), and the Technical University of Munich (Germany). His clinical practice interests and research emphasis are in the field of hepato-pancreato-biliary diseases and gastrointestinal tract surgery, surgical oncology and laparoscopic surgery. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Semimonthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
November 6, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.ijpublishing.com
Submicroscopic 11p13 deletion including the elongator acetyltransferase complex subunit 4 gene in a girl with language failure, intellectual disability and congenital malformations: A case report

Jaime Toral-Lopez, Luz María González Huerta, Olga Messina-Baas, Sergio A Cuevas-Covarrubias

ORCID number: Jaime Toral-Lopez 0000-0003-0324-7351; Luz María González Huerta 0000-0002-8065-0382; Olga Messina-Baas 0000-0002-4957-2849; Sergio A Cuevas-Covarrubias 0000-0002-5962-4913.

Author contributions: Toral-Lopez J was the patient’s geneticist doctor, reviewed the literature, designed the study and contributed to manuscript drafting; Gonzalez-Huerta LM, analyzed and interpreted the molecular karyotyping and contributed to manuscript drafting; Messina Baas O performed the ophthalmologist analyses and contributed to manuscript drafting and Cuevas Covarrubias SA was responsible for the revision of the manuscript for final edition; all authors read and approved the final manuscript.

Supported by PAEP, 2018 and PAPIIT IN219419, DGAPA, Universidad Nacional Autónoma de México, No. IN219419.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The

Abstract

BACKGROUND
We described the main features of an infant diagnosed with facial dysmorphic, language failure, intellectual disability and congenital malformations to strengthen our understanding of the disease. Currently, treatment is only rehabilitation and surgery for cleft lip and palate.

CASE SUMMARY
The proband was a 2-years-8-months-old girl. Familial history was negative for congenital malformations or intellectual disability. The patient had microcephaly, upward-slanting palpebral fissures, depressed nasal bridge, bulbous nose and
bilateral cleft lip and palate. Brain magnetic resonance imaging showed cortical atrophy and band heterotopia. Her motor and intellectual development is delayed. A submicroscopic deletion in 11p13 involving the elongator acetyltransferase complex subunit 4 gene (ELP4) and a loss of heterozygosity in Xq25-q26.3 were detected.

CONCLUSION
There is no treatment for the ELP4 deletion caused by a submicroscopic 11p3 deletion. We describe a second case of deletion of the ELP4 gene without aniridia, which confirms the association between ELP4 gene with several defects and absence of this ocular defect. Additional clinical data in the deletion of the ELP4 gene as cleft palate, facial dysmorphism, and changes at level brain could be associated to this gene or be part of the effect of the recessives genes involved in the loss of heterozygosity region of Xq25-26.3.

Key Words: Submicroscopic 11p13 deletion; Elongator acetyltransferase complex subunit 4 gene; Language failure; Intellectual disability; Congenital malformations; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We report a case diagnosed with submicroscopic 11p13 deletion. The main clinical characteristics and elongator acetyltransferase complex subunit 4 gene deletion, and treatments were assessed and a review of the related literature was performed. Very important, this is the second case of deletion of the elongator acetyltransferase complex subunit 4 gene without aniridia.

URL: https://www.wjgnet.com/2307-8960/full/v8/i21/5296.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i21.5296

INTRODUCTION
The elongator acetyltransferase complex subunit 4 gene (ELP4; MIM #606985) encodes the protein 4 of the elongator complex of ribonucleic acid polymerase II. ELP4 protein is composed of 424 amino acids and plays a role in transcriptional elongation, transfer ribonucleic acid modification, polarized exocytosis, and multiple types of cell migration. The failure of any member of the family of elongators, including ELP4, can be associated with different neurological disorders[8-11]. Twenty-five submicroscopic deletions, including the ELP4 gene and the adjacent sequences (excluding the PAX6 gene, the neighboring gene related to aniridia), have been associated with intellectual disability, language development failure, autism spectrum disorder, and epilepsy with aniridia[12-14] or without aniridia[15]. The ELP4 gene is 273.9 kb in size and encompasses 12 exons. Interestingly, inside the ultraconserved large intronic region between exons 9 to 12 of the ELP4 gene, there is a long-range cis-regulatory enhancer element located 25 to 150 kb downstream of the PAX6 gene, which controls its expression[16,17]. In the present study, we described a girl with dysmorphia, language failure, intellectual disability, and congenital malformations without aniridia, and with a submicroscopic deletion in 11p13 affecting the ELP4 gene.

CASE PRESENTATION

Chief complaints
Registering a cleft lip and palate at 26 wk of gestation and delayed motor development at 2 years of age.

Registering a cleft lip and palate at 26 wk of gestation and delayed motor development at 2 years of age.
History of present illness
The patient, a 2-year-and-8-month-old Mexican girl, was brought by her parents for evaluation because of delays in her motor and language development and congenital malformations. Currently, her motor development is abnormal without head control, she still does not sit down. She also does not speak any words and often becomes ill from the respiratory tract without any serious complications.

History of past illness
The proband was the third child of two healthy, unrelated, and young parents (27 and 26 years old at the time of delivery). Their familial history was negative for congenital malformations or intellectual disability. The mother had prenatal care, registering a cleft lip and palate at 26 wk of gestation. The proband was born by cesarean section at 38 wk of gestation with a weight of 3035 g (25th percentile), a length of 50 cm (25th-50th percentile), an OFC of 33 cm (10th percentile), and Apgar scores of 8 and 9. She did not require neonatal management.

Personal and family history
Their familial history was negative for congenital malformations or intellectual disability.

Physical examination
Upon physical examination, her weight was 9.2 kg (< 3rd percentile), her length was 87 cm (3rd-10th percentile), and her OFC was 46 cm (< 3rd percentile). She had microcephaly, upward-slanting palpebral fissures, a depressed nasal bridge, a bulbous nose, and a bilateral cleft lip and palate (Figure 1A).

Laboratory examinations
Blood, urine, and thyroid profile analyses were normal. The karyotype was 46, XX.

Imaging examinations
The abdominal ultrasound was normal. The brain magnetic resonance imaging showed cortical atrophy, pachygyria, microgyria and band heterotopia (Figure 1B).

MULTIDISCIPLINARY EXPERT CONSULTATION
The auditory study detected neurosensory hearing loss. The ophthalmic and cardiological assessments were normal.

Deoxyribonucleic acid analysis Cytoscan High Definition Array
Genomic deoxyribonucleic acid from the proband and her parents was isolated from peripheral blood samples using the Gentra Pure Gene Blood Kit and Qiagen extraction kits. The oligonucleotide-single nucleotide polymorphism (SNP) array analysis with the GeneChip Human Cytoscan high definition was carried out for the patient and her parents following the provided protocol (Affymetrix, Santa Clara, Calif., United States) and using the Affymetrix GeneChip Scanner 3000 7G. The data were analyzed using GTYPE (GeneChip Genotyping Analysis Software, version 1.0.12) to detect copy number aberrations. The resolution of this procedure was estimated at 1.15 kb with 2.67 million probes. Copy number variation (CNV) breakpoints were determined by inspecting the log2 intensity ratios of SNPs within and flanking the detected regions of gain or loss.

Clinical interpretation
The interpretation of the clinical significance of all the observed CNVs was compared with the database of genomic variants (https://projects.tcag.ca/variation/), the University of California Santa Cruz genome browser (http://genome.ucsc.edu/), Ensembl Resources, Online Mendelian Inheritance of human (OMIM), ClinGen, and ClinVar. The gene content of the CNVs of interest was determined with the University of California Santa Cruz browser based on the reference of the human genome national center of biotechnology information build 38 (hg38). For putative candidate regions containing at least one gene, the assessment included searches for similar cases in DECIPHER (https://decipher.sanger.ac.uk/) and a review in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). The CNV pathogenicity was assessed using the described guidelines[13,14]. The interpretation
Figure 1 Patient at 1-year-old. A: Microcephaly, upward-slanting palpebral fissures, depressed nasal bridge, bulbous nose, bilateral cleft lip, and palate are showed; B: The brain magnetic resonance scan (at five months) shows cortical atrophy, simplified gyral cortical patterns (orange arrow) and band heterotopia (arrow ahead).

depended on whether a given CNV overlapped with a known genomic disorder or was present in a patient with a similar phenotype or who was reported on the database of genomic variants database.

FINAL DIAGNOSIS

Submicroscopic 11p13 deletion involving the *ELP4* gene with loss of heterozygosity in Xq25-26.3.

TREATMENT

There is no specific treatment for the deletion of the *ELP4* gene, the patient was managed with rehabilitation and surgery for cleft lip and palate.

OUTCOME AND FOLLOW-UP

No improvement or progress was observed as a result of the rehabilitation.

DISCUSSION

In many patients, the clinical presentation is not fully consistent with the syndrome under consideration and laboratory confirmation rates are low. In this study, we describe the use of molecular karyotype by SNP high definition arrays to investigate the presence of pathogenic CNV in a patient with several findings consistent with a syndrome of unknown etiology. A submicroscopic deletion of 31 kb was found to be present. This CNV was located in a region with recurrent submicroscopic deletions involving the *ELP4* gene and subjacent regions (Figure 2). The *ELP4* gene has been associated with intellectual disability, language development failure, autism spectrum disorder, epilepsy, and aniridia\(^{3-9}\). Our patient presented intellectual disability and language development failure but not autism spectrum disorder, epilepsy, or aniridia. These clinical data resemble those reported in a previous case with *ELP4* gene deletion without aniridia. In this previous case, the family had a submicroscopic deletion of 163 kb in the *ELP4* gene due to a pericentric inversion of chromosome 11p13. The patient presented intellectual disability, speech abnormalities, and autistic behaviors\(^{10}\). In
Figure 2 CytoScan high definition array and schematic representation of the result. The figure shows chromosome 11p13 and the relative positions of the MPPED2, DCDC5, DCDC1, DNAJC24, IMMP1L, ELP4, and PAX6 genes within the deleted interval. A partial molecular karyotype of the submicroscopic on chromosome 11 detected with the CytoScan high definition array is also illustrated. A single copy of the 40 Kb region was identified on log2 ratio analysis. Some affected patients with deletions in the 11p13 region are also shown.

another report, two families with bilateral aniridia, cataracts, and glaucoma had a deletion of 235 kb in the ELP4 gene. Davis et al also reported the case of a patient with aniridia, autism, and intellectual disability due to a 1354 kb deletion involving the ELP4 gene, whereas Bayraklı et al, studied a family with isolated aniridia that showed a deletion of 406 kb involving the ELP4 gene. A study in various members of a family with aniridia showed a 566 kb deletion involving the ELP4 gene, and Zhang et al described a family with bilateral aniridia and congenital cataracts but without intellectual disability or other abnormalities due to a 525 kb deletion involving the ELP4 gene. Simioni et al reported on a child with developmental delay, bilateral strabismus, aniridia, and nystagmus. The propositus showed a deletion of 49 kb in the ELP4 gene. Finally, Addis et al made a comparison between 7235 cases and 11252 controls. The cases had language impairment, developmental delay, autism, and epilepsy. Thirteen cases presented submicroscopic deletions in 11p13. These researchers reviewed DECIPHER and found 5 other cases with deletion, all overlapping with the ELP4 gene and suggesting a strong association between these deletions and neurodevelopmental disorders. All of these previous cases had deletions with a minimum distance of 10 kb and a maximum of 240 kb from the most proximal breakpoint to the 3’ end of the PAX6 gene, with an average of 103 kb (Figure 2).

Aniridia 2 is caused by mutations affecting a long-range cis-regulatory enhancer element of PAX6 expression inside of an ultra-conserved large intronic region between exons 9 to 12 of the ELP4 gene, located 25 to 150 kb downstream of the PAX6 gene. These variants inside the ELP4 gene do not alter its normal expression and function. The deletion in our patient did not include this region. Probably for this reason, the patient did not present aniridia, similar to the case of Balay et al. Interestingly, the phenotypes of microcephaly, facial dysmorphia, cleft lip/palate, neuromigration defect, and intellectual disability of our patient has been observed in the Baraitser-Winter cerebrofrontofacial syndrome 1 and 2 [OMIM 243310; BRWS1, 614583; BRWS2] but the ACTB and ACTG1 genes of Baraitser-Winter cerebrofrontofacial syndrome 1 and Baraitser-Winter cerebrofrontofacial syndrome 2 were not involved in
the deletion or duplication regions or loss of heterozygosity (LOH) of our patient. In a study of 117 cases with mental delay and/or congenital malformations, 434 CNVs (195 Losses and 239 gains), including 18 pathogenic and 9 potentially pathogenic, were found to be present. Interestingly, two patients with thrombocytopenia-absent-radius syndrome were not suspected by the clinicians, possibly because of the presence of atypical features. Two patients showed a pathogenic CNV with a syndrome that was neither manifesting nor suspected, demonstrating the difficulty in making accurate clinical diagnoses in some patients with classic microdeletion and microduplication syndromes and exemplifying an unexpected discovery of non-penetrant or presymptomatic conditions. In the aforementioned study, segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. An analysis of microsatellite markers within the segments of LOH was carried out in some cases, confirming homozygosity of biparental origin for these regions.

In our patient, the SNP microarray analysis also detected a segment of LOH of 9.4 Mb, which included 39 OMIM genes, four of them have been associated with intellectual disability, OCRL, AIFM1, PHF6 and HPRT1 genes (HP: 0001249 in OMIM) (Figure 3). The Borjeson-Forssman-Lehman syndrome syndrome has been associated with cleft lip/palate, microcephaly, band heteropia and simplified gyral cortical patterns as the case of some female due to a de novo intragenic duplication of PFH617,18, characteristics found in our patient.

Any pathogenic recessive mutation within these regions could theoretically be clinically significant, and the likelihood of this occurring would increase with the number of regions present. However, as normal genome variations, it is unlikely that most of these regions are clinically significant. A previous study with 8 families identified long segments (from 2.2% to 4.4% of the autosomal genome) and short homozygosity using short tandem repeat markers, indicating that the parents were relatively related19. Another study with 209 unrelated individuals from a HapMap population detected 1393 segments over 1 Mb in length (the longest length was a region of 17.9 Mb). In the aforementioned study, the subjects had an average of 6.6 homozygous segments with larger long tracts in regions of linkage disequilibrium and low recombination. This suggests that multiple ancestral megabase haplotypes persist in non-inbred human populations in broad genomic regions with below-average recombination rates20. Finally, an analysis of 276 neurologically normal elderly subjects among North American Caucasians using the SNP of the entire genome revealed contiguous tracts of > 5 Mb in 9.5% (26/272) of these individuals, indicating that the long homozygous segments represent segments of autozygosity due to the mating of closely related individuals, while short segments were due to linkage disequilibrium or past ancestors who were subject to distant inbreeding21.

Microsatellite analysis in our patient’s parents could confirm the homozygosity of the biparental origin for these regions. It is important to mention that in women the X inactivation mechanism compensates for these types of molecular changes, minimizing or nullifying the phenotypic effects. To interpret LOH, it is necessary to add a catalog of new pathogenic or potentially pathogenic loci in high-quality database. This could provide the opportunity to perform genotype-phenotype correlations in a suitable number of individuals with congenital malformations and/or intellectual disability.

CONCLUSION

In conclusion, we describe a second case of deletion of the ELP4 gene, which confirms its association with the absence of aniridia and the presence of neurological manifestations. We also showed additional clinical data on cleft palate/Lip or facial dysmorphism and changes at the brain level, probably due to the affectation of the genes involved in the LOH region. More case reports or large studies involving patients with the ELP4 gene are necessary.
Figure 3 Depiction of allele peaks on chromosome Xq25-q26 shows homozygous (top and bottom bands) and heterozygous (middle band) allele peak bands. Note the loss of the middle band showing loss of heterozygosity of Xq25-26.3. The genes related to X-linked diseases (OCRL, AIFM1, IGSF1, GPC3, PHF6, HPRT1) (orange) such as Dent disease 2, Lowe Oculo-Cerebro-Renal syndrome, cowchock syndrome, central hypothyroidism and testicular enlargement, Simpson-Golabi-Behmel syndrome, Borjeson-Forssman-Lehman syndrome and Lesch-Nyhan are shown.

ACKNOWLEDGEMENTS

The authors thank the family for participating in this study.

REFERENCES

8. Simioni M, Vicera TP, Sgardioli IC, Freitas EL, Rosenberg C, Maurer-Morelli CV, Lopes-Cendes I, Fett-Conte AC, Gil-da-Silva-Lopes VL. Insertional translocation of 15q25-q26 into 11p13 and duplication at...

