REVIEW

9180 Assisting individuals with diabetes in the COVID-19 pandemic period: Examining the role of religious factors and faith communities
Eseadi C, Ossai OV, Onyishi CN, Ikechukwu LC

9192 Role of octreotide in small bowel bleeding
Khedr A, Mahmoud EE, Attallah N, Mir M, Boike S, Rauf I, Jama AB, Mishtaq H, Surani S, Khan SA

MINIREVIEWS

9207 Internet of things-based health monitoring system for early detection of cardiovascular events during COVID-19 pandemic
Dami S

9219 Convergence mechanism of mindfulness intervention in treating attention deficit hyperactivity disorder: Clues from current evidence
Xu XP, Wang W, Wan S, Xiao CF

9228 Clinical presentation, management, screening and surveillance for colorectal cancer during the COVID-19 pandemic
Akbulut S, Hargura AS, Garzali IU, Aloun A, Colak C

9241 Early diagnostic value of liver stiffness measurement in hepatic sinusoidal obstruction syndrome induced by hematopoietic stem cell transplantation
Tan YW, Shi YC

ORIGINAL ARTICLE

Case Control Study

9254 Local inflammatory response to gastroesophageal reflux: Association of gene expression of inflammatory cytokines with esophageal multichannel intraluminal impedance-pH data
Morozov S, Sentsova T

Retrospective Study

9264 Evaluation of high-risk factors and the diagnostic value of alpha-fetoprotein in the stratification of primary liver cancer

9276 One-half layer pancreaticojejunostomy with the rear wall of the pancreas reinforced: A valuable anastomosis technique
Wei JP, Tai S, Su ZL
Contents

Development and validation of an epithelial–mesenchymal transition-related gene signature for predicting prognosis

Observational Study

Incidence and risk factor analysis for swelling after apical microsurgery

CASE REPORT

Acute carotid stent thrombosis: A case report and literature review

Zhang JB, Fan XQ, Chen J, Liu P, Ye ZD

Congenital ovarian anomaly manifesting as extra tissue connection between the two ovaries: A case report

Cefoperazone-sulbactam and ornidazole for *Gardnerella vaginalis* bloodstream infection after cesarean section: A case report

Early-onset ophthalmoplegia, cervical dyskinesia, and lower extremity weakness due to partial deletion of chromosome 16: A case report

Xu M, Jiang J, He Y, Gu WY, Jin B

Posterior mediastinal extralobar pulmonary sequestration misdiagnosed as a neurogenic tumor: A case report

Jin HJ, Yu Y, He W, Han Y

Unexpected difficult airway due to severe upper tracheal distortion: A case report

Special epithelioid trophoblastic tumor: A case report

Wang YN, Dong Y, Wang L, Chen YH, Hu HY, Guo J, Sun L

Intrahepatic multicystic biliary hamartoma: A case report

Wang CY, Shi FY, Huang WF, Tang Y, Li T, He GL

ST-segment elevation myocardial infarction in Kawasaki disease: A case report and review of literature

Lee J, Seo J, Shin YH, Jang AY, Suh SY

Bilateral hypocalcaemic cataracts due to idiopathic parathyroid insufficiency: A case report

Li Y

Single organ hepatic artery vasculitis as an unusual cause of epigastric pain: A case report

Kaviani R, Farrell J, Dehghan N, Moosavi S

Congenital lipoid adrenal hyperplasia with Graves’ disease: A case report

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9398</td>
<td>Cytokine release syndrome complicated with rhabdomyolysis after chimeric antigen receptor T-cell therapy: A case report</td>
<td>Zhang L, Chen W, Wang XM, Zhang SQ</td>
</tr>
<tr>
<td>9411</td>
<td>Uncontrolled high blood pressure under total intravenous anesthesia with propofol and remifentanil: A case report</td>
<td>Jang MJ, Kim JH, Jeong HJ</td>
</tr>
<tr>
<td>9434</td>
<td>Complete recovery from segmental zoster paresis confirmed by magnetic resonance imaging: A case report</td>
<td>Park J, Lee W, Lim Y</td>
</tr>
<tr>
<td>9440</td>
<td>Imaging findings of immunoglobulin G4-related hypophysitis: A case report</td>
<td>Lv K, Cao X, Geng DY, Zhang J</td>
</tr>
<tr>
<td>9447</td>
<td>Systemic lupus erythematosus presenting with progressive massive ascites and CA-125 elevation indicating Tjalma syndrome? A case report</td>
<td>Wang JD, Yang YF, Zhang XF, Huang J</td>
</tr>
<tr>
<td>9454</td>
<td>Locally advanced cervical rhabdomyosarcoma in adults: A case report</td>
<td>Xu LJ, Cai J, Huang BX, Dong WH</td>
</tr>
<tr>
<td>9462</td>
<td>Rapid progressive vaccine-induced immune thrombotic thrombocytopenia with cerebral venous thrombosis after ChAdOx1 nCoV-19 (AZD1222) vaccination: A case report</td>
<td>Jiang SK, Chen WL, Chien C, Pan CS, Tsai ST</td>
</tr>
<tr>
<td>9470</td>
<td>Burkitt-like lymphoma with 11q aberration confirmed by needle biopsy of the liver: A case report</td>
<td>Yang HJ, Wang ZM</td>
</tr>
<tr>
<td>9478</td>
<td>Common carotid artery thrombosis and malignant middle cerebral artery infarction following ovarian hyperstimulation syndrome: A case report</td>
<td>Xu YT, Yin QQ, Guo ZR</td>
</tr>
<tr>
<td>9493</td>
<td>Follicular carcinoma of the thyroid with a single metastatic lesion in the lumbar spine: A case report</td>
<td>Chen YK, Chen YC, Lin WX, Zheng JH, Lin YY, Zou J, Cai JH, Ji ZQ, Chen LZ, Li ZY, Chen YX</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9510</td>
<td>Intravitreous injection of conbercept for bullous retinal detachment: A case report</td>
<td>Xiang XL, Cao YH, Jiang TW, Huang ZR</td>
</tr>
<tr>
<td>9518</td>
<td>Supratentorial hemangioblastoma at the anterior skull base: A case report</td>
<td>Xu ST, Cao X, Yin XY, Zhang JY, Nan J, Zhang J</td>
</tr>
<tr>
<td>9524</td>
<td>Certain sulfonylurea drugs increase serum free fatty acid in diabetic patients: A systematic review and meta-analysis</td>
<td>Yu M, Feng XY, Yao S, Wang C, Yang P</td>
</tr>
<tr>
<td>9539</td>
<td>A rare cause of acute abdomen after a Good Friday</td>
<td>Pante L, Brito LG, Franciscatto M, Brambilla E, Soldera J</td>
</tr>
<tr>
<td>9542</td>
<td>Obesity is associated with colitis in women but not necessarily causal relationship</td>
<td>Shen W, He LP, Zhou LL</td>
</tr>
<tr>
<td>9545</td>
<td>Risk stratification of primary liver cancer</td>
<td>Tan YW</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Youngmin Oh, MD, PhD, Associate Professor, Neurosurgeon, Department of Neurosurgery, Jeonbuk National University Medical School/Hospital, Jeonju 54907, Jeollabukdo, South Korea. timoh@jbnu.ac.kr

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
September 16, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GERInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/GERInfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GERInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/GERInfo/288

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/GERInfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GERInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
CASE REPORT

Postoperative radiotherapy for thymus salivary gland carcinoma: A case report

Rui Deng, Nan-Jing Li, Liang-Liang Bai, Shi-Hong Nie, Xiao-Wen Sun, Yong-Sheng Wang

Abstract

BACKGROUND
Salivary gland cancer is a rare disease in which cancer cells form in the tissues of the salivary glands. It mostly occurs in the glands that have secretion functions, such as the parotid gland, sublingual gland and submandibular gland. This is very rare when it occurs in other nonsecreting glands. Here, we report one case of salivary gland carcinoma occurring in the thymus and discuss related diagnoses and treatment progress.

CASE SUMMARY
One 33-year-old middle-aged man presented with a thymus mass without any clinical symptoms when he underwent regular physical examination. Later, the patient was admitted to the hospital for further examination. Computed tomography (CT) showed that there was a mass of 3 cm × 2.8 cm × 1.5 cm in the thymus area. The patient had no symptom of discomfort or tumor-related medical history before. After completing the preoperative examinations, it was confirmed that the patient had indications for surgery. The surgeon performed a transthoracoscopic "thymectomy + pleural mucostomy" for him. During the operation, the tumor tissue was quickly frozen, and the symptomatic section showed a malignant tumor. The final pathological result suggested thymus salivary gland carcinoma- mucoepidermoid carcinoma (MEC). In the second month after surgery, we performed local area radiotherapy for the patient, with a total radiation dose of 50.4 Gy/28Fx. After 12 mo of surgery, the patient underwent positron emission tomography-CT examination, which indicated that there was no sign of tumor recurrence or metastasis. After 16 mo of operation, CT...
scan re-examination showed that there was no sign of tumor recurrence or metastasis. As of the time of publication, the patient was followed up for one and a half years. He had no sign of tumor recurrence and continued to survive.

CONCLUSION

The incidence of MEC in the thymus is low, and its diagnosis needs to be combined with clinical features and imaging methods. Histopathological analysis plays a key role in the diagnosis of the disease. Patients with early-stage disease have a good prognosis and long survival period. In contrast, patients with advanced-stage disease have a poor prognosis and short survival period. Combining radiotherapy and chemotherapy in inoperable patients may prolong survival.

Key Words: Thymic tumor; Salivary gland carcinoma; Mucoepidermoid carcinoma; Postoperative; Radiotherapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this report, we showed one one 33-year-old middle-aged man presented with a thymus mass without any clinical symptoms when he underwent regular physical examination. After completing the pre-operative examinations, it was confirmed that the patient had indications for surgery. The surgeon performed a transthoracoscopic “thymectomy + pleural mucostomy” for him. The final pathological result suggested: Thymus salivary gland carcinoma-mucoepidermoid carcinoma, which was rarely reported in literatures. The patient underwent a local radiotherapy for total dose of 50.4 Gy after the surgery. He had no sign of recurrence and continued to survive as of time of publication.

INTRODUCTION

Similar to tumors of major salivary glands in other parts of the body, salivary gland tumors that originate in the thoracic cavity are also widely known. Tumors of the thoracic salivary glands most often occur in the lungs[1,2]. Salivary gland tumors that occur in the thymus are extremely rare, with few reported cases in the literature. As early as the 1980s, salivary carcinoma of the thymus was first reported in Japan. This patient was a 59-year-old female patient. Due to the limited diagnosis and treatment technology at that time, the patient eventually died of tumor compressing on the heart[3]. Among the various pathological types of thymic salivary gland tumors, mucoepidermoid carcinoma is the most common, followed by adenoid cystic carcinoma. Because of the rarity of cases, it is more difficult to diagnose. Both thoracoscopic biopsy and image-guided percutaneous needle biopsy have limited diagnostic value for the disease[4]. Therefore, the accurate identification of salivary gland-type tumors of the thymus, even if rare, is critical for proper treatment and prognosis. Here, we report a case of thymus primary salivary gland carcinoma and discuss the diagnosis and treatment strategies.

CASE PRESENTATION

Chief complaints

Physical examination found a thymus mass for half a year.

History of present illness

The patient’s chest computed tomography (CT) revealed a thymic mass before 11 mo. The patient had no chest pain, chest tightness, cough, expectoration, exertion, hot flashes or night sweats, and he was observed and followed up. Half a month ago, the patient re-examined the chest CT. The CT showed that the enhanced scan of the anterior mediastinal nodule showed mild enhancement, and the size was not significantly changed. Thymoma? The patient went to our clinic and was admitted to our department with a "thymus mass".
History of past illness
The patient had no history of chronic diseases, such as hypertension, cancers, diabetes, heart diseases, chronic bronchitis, or emphysema. He also had no history of infectious diseases, such as hepatitis, tuberculosis, typhoid fever, and malaria.

Personal and family history
The patient had no history of chronic diseases, such as hypertension, cancers, diabetes, heart diseases, chronic bronchitis, or emphysema. He also had no history of infectious diseases, such as hepatitis, tuberculosis, typhoid fever, and malaria.

Physical examination
Body temperature: 36.3°C; Respiratory rate: 18/min; Heart rate: 69/min; Blood pressure: 125/69 mmHg. The superficial lymph nodes of the whole body were not palpated. The neck was soft and without resistance, the trachea was in the middle, the thorax was not deformed, and the breathing was uniform.

Laboratory examinations
The laboratory tests were as follows: blood routine test: RBC: 7.37 × 10^{12}/L, HCT: 51.3%, PCT: 0.29%, MCV: 69.6 fl, MCH: 21.0 pg, MCHC: 302 g/L. Biochemical tests: Uric acid: 583 umol/L. Thyroid function: FT3: 4.52 pmol/L, TSH: 1.908 mIU/mL, FT4: 1.190 pmol/L, TPOAb: 0.47 IU/mL.

Imaging examinations
Chest CT revealed “anterior mediastinal nodules, enhanced scan showed mild enhancement, thymoma? small nodules in the upper lobes of the lungs, a few chronic inflammatory foci in the dorsal segment of the lower lobe of the left lung (Figure 1).”

LABORATORY EXAMINATIONS
The laboratory tests were as follows: blood routine test: RBC: 7.37 × 10^{12}/L, HCT: 51.3%, PCT: 0.29%, MCV: 69.6 fl, MCH: 21.0 pg, MCHC: 302 g/L. Biochemical tests: Uric acid: 583 umol/L. Thyroid function: FT3: 4.52 pmol/L, TSH: 1.908 mIU/mL, FT4: 1.190 pmol/L, TPOAb: 0.47 IU/mL.

PHYSICAL EXAMINATION
Body temperature: 36.3°C; Respiratory rate: 18/min; Heart rate: 69/min; Blood pressure: 125/69 mmHg. The superficial lymph nodes of the whole body were not palpated. The neck was soft and without resistance, the trachea was in the middle, the thorax was not deformed, and the breathing was uniform.

FINAL DIAGNOSIS
Thymus salivary gland cancer-mucoepidermoid carcinoma.

TREATMENT
After evaluation, there were indications for surgery for this patient, and no surgical contraindications were observed. Then, this patient underwent thymectomy + pleural adhesion cauterization surgery. The intraoperative freezing mass tissue pathology revealed “malignant tumors, prone to salivary carcinoma. The final diagnosis depends on paraffin section analysis and immunohistochemical tests”. After the operation, the patient had a small amount of pleural effusion symptoms and recovered after thoracentesis and drainage operation.

OUTCOME AND FOLLOW-UP
The patient received a CT scan (Figure 2) 2 mo after the surgery. After 2 mo, the patient underwent radiotherapy with an intensity-modulated radiotherapy technique. The total dose for radiotherapy was 50.4 Gy/28 Fx. The dose distribution chart is shown in Figure 3. The patient received a positron emission tomography-CT scan at the first year after surgery, and the result showed no increased fluorodeoxyglucose metabolism area (Figure 4). In the next year, the patient regularly returned to the...
Figure 1 Preoperative chest computed tomography scan (tumor site was indicated by orange arrow) and postoperative computed tomography scan over time.
A: Computed tomography (CT) scan image shows thymus mass before surgery; B-F: CT scan images show anterior mediastina region after surgery.

Figure 2 Postoperative HE stained histopathological images at 4 × magnification in the first row and 10 × magnification in the second row.
A and C: Mass HE stained microstructure at 4 × magnification; B and D: Mass HE stained microstructure at 10 × magnification.
Figure 3 A three-dimensional dose distribution map of the patient's local intensity-modulated radiotherapy (the blue line represents the delineated target area, the dark red area was the dose range of 50.4 Gy, and the bright red area was the dose range of 47.88 Gy). A: Radiation dose distribution in the transverse position; B: Radiation dose distribution in the sagittal position; and C: Radiation dose distribution in the coronal position.

hospital to receive a physical follow-up examination. The repeated examination presented no recurrence or metastasis signs (Figure 1).

DISCUSSION

Mucoepidermoid carcinoma (MEC) is the most common malignant tumor of the salivary glands and usually occurs in the parotid gland. MEC accounts for approximately 12% of salivary gland epithelial tumors and approximately 30% of their malignant tumors\[5\]. MEC of the thymus is currently mostly reported in individual cases universally. According to the clinical symptoms of MEC of the thymus, the imaging findings have no obvious specificity. Its clinical behavior is highly variable and can be divided into two types, highly differentiated and poorly differentiated, according to its morphological and cytological characteristics. Poorly differentiated MEC has stronger invasion and metastasis ability than well-differentiated MEC, recurrence and distant metastasis often occur, and the prognosis is poor\[6,7\].

The histological diagnosis of mucoepidermoid carcinoma of the salivary gland mainly relies on HE-stained sections. There is no specific marker for the diagnosis or estimation of prognosis. Therefore, research on the diagnosis and prognosis specificity of mucoepidermoid carcinoma of the salivary gland is very important. With the advancement of research in the field of tumor molecular biology, some new biomarkers continue to appear, which not only provide help for the pathological diagnosis of mucoepidermoid carcinoma of the salivary glands but also improve its prognosis and treatment options\[8\]. MECs have a unique structure and cell heterogeneity, with a characteristic t(11;19)(q21;p13) chromosomal translocation, resulting in the MECT1-MAML2 fusion gene. MECT1 protein can activate cyclic adenosine monophosphate (cAMP) response element binding to mediate transcription\[9\]. The MECT1-MAML2 fusion protein can upregulate the expression of vascular endothelial cell growth factor receptor 1 downstream of the cAMP/CREB pathway and the expression of hair split-related enhancer 1 and hair split-related enhancer 5 downstream of the Notch pathway and promote tumorigenesis\[10\]. The positive detection rate of MECT1 was as high as 88%, and it was translocation positive in all low- or
intermediate-level MECs. The positive detection rate of MECT1-MAML2 fusion transcripts in high-level salivary gland MECs is 60%, and the MECT1/MAML2 translocation is likely the main oncogenic driver in these tumors[11]. Otherwise, the most recent research indicated that CRTC1-MAML2 was the major oncogenic driver in MEC[12]. The positive expression rate of NP63 in salivary epithelial malignant tumors is higher than that in benign tumors, and the positive expression rate is higher in poorly differentiated and highly malignant salivary epithelial tumors, suggesting that P63 can promote the proliferation and dedifferentiation of salivary gland cancer cells[13,14]. Research has shown that the positive expression of P63 increases with decreasing MEC differentiation, and P63 helps the differential diagnosis of salivary MEC and acinar cell carcinoma and pathological typing[15]. Additionally, Bcl-2 may participate in the process angiogenesis and angiogenic mimicry (VM) formation[16,17]. The

Figure 4 A positron emission tomography-computed tomography image of the patient's chest 12 mo after surgery. A1-A8: The glucose metabolism map of each layer of the anterior mediastinum; B1-B8: The ordinary computed tomography image of each layer of the anterior mediastinum; C1-C8: Displayed as the picture after the combination of group A pictures and group B pictures.

DOI: 10.12998/wjcc.v10.i26.9484 Copyright © The Author(s) 2022.
In the lungs, analyzing the immunohistochemical results of 26 cases of lung MEC, it was found that 26 patients had positive expression of CK7, Muc5AC, P63 and P40 and negative expression of TTF-1, and the variation in Ki-67 ranged from 2%-80%, with an average of 9.7%; the average high-grade lung MEC Ki-67 value was 22.4%, and the average low-grade lung MEC Ki-67 value was 4.1%[19]. A report indicated that 25 patients had P63 expression without TTF-1 and Napsin A expression, and 23 patients had P40 expression[20]. Researchers conducted a comprehensive genome analysis of 48 MECs and found a total of 183 genomic abnormalities. Compared with low-grade tumors, gene mutations occur more frequently in high-grade tumors. In high- level MEC, the most frequently observed mutations occur in TP53, the PI3K/mTOR pathway, and CDKN2A. In addition, ERBB2, BRCA, and FGFR were also amplified in some cases[21]. However, their variation has nothing to do with poor prognosis. However, these markers cannot be used as independent diagnostic criteria for MEC and are not specific. More specific and diagnostic markers require more in-depth exploration by researchers. Considering the situation of our patient, this patient had no specific clinical symptoms or imaging characteristics. Enhanced CT also had no obvious enhancement characteristics. The diagnosis of this patient completely relied on his unique H-E pathological features, and his immunohistochemical molecular features only played a weak auxiliary role. After repeated comparison and verification by pathologists, the diagnosis of MEC was finally made. The first choice for the treatment of MEC of the thymus is complete resection of the lesion, local lymph node dissection, and the removal of the surrounding tissues and organs as much as possible. However, surgical resection is the first choice for the treatment of low-grade tumors. Considering high-grade (low-differentiated) local invasion and easy distant metastasis, for high-grade (low-differentiated) or recurring MEC of the thymus, surgical resection of the lesion is still active radiotherapy, and chemotherapy is needed to prolong the survival time of patients. Researchers have reported that thymic cancer is highly sensitive to radiotherapy, and postoperative radiotherapy can reduce the local recurrence rate to 17%[22]. Radiotherapy can be used for MEC of the thymus to prolong the survival of patients. A report stated that the combined chemotherapy regimen of irinotecan and cisplatin resulted in a 3-mo complete remission[23]. Therefore, for inoperable patients, a combination of radiotherapy and chemotherapy is used to prolong the survival of patients.

CONCLUSION

In summary, the incidence of mucoepidermoid carcinoma of the thymus is low, and the clinical symptoms, signs and imaging examinations have no obvious specificity. The diagnosis mainly depends on the results of postoperative pathology and immunohistochemistry. At present, the first choice for the treatment of thymic mucoepidermoid carcinoma is complete surgical resection. The prognosis of MEC of the thymus is generally poor, and the survival time of high- and middle-differentiated types is long. Therefore, surgical treatment, radiotherapy, and chemotherapy are used for MEC of the thymus to improve the quality of life of patients and prolong the survival time of patients.

FOOTNOTES

Author contributions: Deng R and Li NJ contributed equally to this work; all authors have read and approve the final manuscript.

Informed consent statement: This study involving human participant was approved by the Ethics Committee of the West China Hospital of Sichuan University. Written informed consent was obtained from the patient for the publication of all images and data included in this article.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
references

