World Journal of *Gastrointestinal Oncology*

World J Gastrointest Oncol 2024 July 15; 16(7): 2867-3367

Published by Baishideng Publishing Group Inc

WJGO

World Journal of **Gastrointestinal** Oncology

Contents

Monthly Volume 16 Number 7 July 15, 2024

EDITORIAL

2867	Oncolytic virotherapy for hepatocellular carcinoma: A potent immunotherapeutic landscape
	Xiao R, Jin H, Huang F, Huang B, Wang H, Wang YG
2877	Can the preoperative prognostic nutritional index be used as a postoperative predictor of gastric or gastroesophageal junction adenocarcinoma?
	Feng YW, Wang HY, Lin Q
2881	Esophageal cancer: A global challenge requiring tailored strategies
	Cheng CY, Hao WR, Cheng TH
2884	Effectiveness of transarterial chemoembolization in combination with lenvatinib and programmed cell death protein-1 inhibition for unresectable hepatocellular carcinoma
	Chisthi MM
2888	Maximizing therapeutic outcomes in hepatocellular carcinoma: Insights into combinatorial strategies
	Ilhan Y, Ergun Y
2894	Human β-defensin-1 activates autophagy in human colon cancer cells <i>via</i> regulation of long non-coding RNA TCONS_00014506
	Eid N, Davamani F
	REVIEW
2902	Role of molecular biology in the management of pancreatic cancer
	Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M
	MINIREVIEWS
2915	Advances in immunotherapy of M2 macrophages and gastrointestinal stromal tumor
	Wang XK, Yang X, Yao TH, Tao PX, Jia GJ, Sun DX, Yi L, Gu YH
	ORIGINAL ARTICLE
	Case Control Study
2925	Disparities in the diagnosis and treatment of colorectal cancer among patients with disabilities
	Kim KB, Shin DW, Yeob KE, Kim SY, Han JH, Park SM, Park JH, Park JH

Retrospective Study

Effectiveness and safety of sequential transarterial chemoembolization and microwave ablation for 2941 subphrenic hepatocellular carcinoma: A comprehensive evaluation

Zhu ZY, Qian Z, Qin ZQ, Xie B, Wei JZ, Yang PP, Yuan M

Combon	World Journal of Gastrointestinal Oncology
Conten	Monthly Volume 16 Number 7 July 15, 2024
2952	Combined use of dexmedetomidine and nalbuphine in laparoscopic radical gastrectomy for gastric cancer
	Zhao GG, Lou C, Gao RL, Lei FX, Zhao J
2960	Development and validation of a nomogram for predicting lymph node metastasis in early gastric cancer
	He JY, Cao MX, Li EZ, Hu C, Zhang YQ, Zhang RL, Cheng XD, Xu ZY
	Observational Study
2971	Comprehensive serum proteomics profiles and potential protein biomarkers for the early detection of advanced adenoma and colorectal cancer
	Tan C, Qin G, Wang QQ, Li KM, Zhou YC, Yao SK
	Clinical and Translational Research
2988	Network pharmacology- and molecular docking-based exploration of the molecular mechanism underlying Jianpi Yiwei Recipe treatment of gastric cancer
	Chen P, Wu HY
2999	Survival disparities among racial groups with hepatic malignant tumors
	Han D, Zhang ZY, Deng JY, Du HB
3011	Adipocytes impact on gastric cancer progression: Prognostic insights and molecular features
	Shang JR, Zhu J, Bai L, Kulabiek D, Zhai XX, Zheng X, Qian J
3032	Integrated single-cell and bulk RNA sequencing revealed an epigenetic signature predicts prognosis and tumor microenvironment colorectal cancer heterogeneity
	Liu HX, Feng J, Jiang JJ, Shen WJ, Zheng Y, Liu G, Gao XY
3055	Causal effects of genetic birth weight and gestational age on adult esophageal diseases: Mendelian randomization study
	Ruan LC, Zhang Y, Su L, Zhu LX, Wang SL, Guo Q, Wan BG, Qiu SY, Hu S, Wei YP, Zheng QL
3069	Prognostic significance of exportin-5 in hepatocellular carcinoma
	Li H, Li F, Wang BS, Zhu BL
3082	BCAR3 and BCAR3-related competing endogenous RNA expression in hepatocellular carcinoma and their prognostic value
	Shi HQ, Huang S, Ma XY, Tan ZJ, Luo R, Luo B, Zhang W, Shi L, Zhong XL, Lü MH, Chen X, Tang XW
3097	Glycolysis-related five-gene signature correlates with prognosis and immune infiltration in gastric cancer
	Meng XY, Yang D, Zhang B, Zhang T, Zheng ZC, Zhao Y
	Basic Study
3118	Kombo knife combined with sorafenib in liver cancer treatment: Efficacy and safety under immune function influence
	Cao Y, Li PP, Qiao BL, Li QW
3158	Yiqi Jiedu Huayu decoction inhibits precancerous lesions of chronic atrophic gastritis by inhibiting NLRP3 inflammasome-mediated pyroptosis
	Zhou P, Zheng ZH, Wan T, Liao CW, Wu J

Camban	World Journal of Gastrointestinal Oncology
Conten	Monthly Volume 16 Number 7 July 15, 2024
3169	Multi-Omics analysis elucidates tumor microenvironment and intratumor microbes of angiogenesis subtypes in colon cancer
	Yang Y, Qiu YT, Li WK, Cui ZL, Teng S, Wang YD, Wu J
3193	Baitouweng decoction suppresses growth of esophageal carcinoma cells through miR-495-3p/BUB1/STAT3 axis
	Yang H, Chen XW, Song XJ, Du HY, Si FC
3211	Weiwei Decoction alleviates gastric intestinal metaplasia through the olfactomedin 4/nucleotide-binding oligomerization domain 1/caudal-type homeobox gene 2 signaling pathway
	Zhou DS, Zhang WJ, Song SY, Hong XX, Yang WQ, Li JJ, Xu JQ, Kang JY, Cai TT, Xu YF, Guo SJ, Pan HF, Li HW
3230	Aldehyde dehydrogenase 2 family member repression promotes colorectal cancer progression by JNK/p38 MAPK pathways-mediated apoptosis and DNA damage
	Yu M, Chen Q, Lu YP
3241	RBM5 suppresses proliferation, metastasis and glycolysis of colorectal cancer cells <i>via</i> stabilizing phosphatase and tensin homolog mRNA
	Wang CX, Liu F, Wang Y
3256	Immune effect and prognosis of transcatheter arterial chemoembolization and tyrosine kinase inhibitors therapy in patients with hepatocellular carcinoma
	Guo Y, Li RC, Xia WL, Yang X, Zhu WB, Li FT, Hu HT, Li HL
3270	N6-methyladenosine modification of hypoxia-inducible factor-1a regulates <i>Helicobacter pylori</i> -associated
	An TY, Hu QM, Ni P, Hua YQ, Wang D, Duan GC, Chen SY, Jia B
3284	Canopy FGF signaling regulator 3 affects prognosis, immune infiltration, and PI3K/AKT pathway in colon adenocarcinoma
	Gao XC, Zhou BH, Ji ZX, Li Q, Liu HN
3299	Clinical and pathological features of advanced rectal cancer with submesenteric root lymph node
•••	metastasis: Meta-analysis
	Wang Q, Zhu FX, Shi M
3308	Clinical benefits of transarterial chemoembolization combined with tyrosine kinase and immune checkpoint inhibitors for unresectable hepatocellular carcinoma
	Han F, Wang XH, Xu CZ
	SCIENTOMETRICS
3321	Research trends and hotspots in the immune microenvironment related to hepatocellular carcinoma: A bibliometric and visualization study
	Zhang DY, Bai FH

Contents

World Journal of Gastrointestinal Oncology

Monthly Volume 16 Number 7 July 15, 2024

CASE REPORT

- 3331 Gastric cancer metastatic to the breast: A case report Liu JH, Dhamija G, Jiang Y, He D, Zhou XC
- 3341 Rare infiltrative primary hepatic angiosarcoma: A case report and review of literature Lin XJ, Luo HC

3350 Metachronous multifocal carcinoma: A case report

Wan DD, Li XJ, Wang XR, Liu TX

3357 BRAF K601E-mutated metastatic colorectal cancer in response to combination therapy with encorafenib, binimetinib, and cetuximab: A case report

Sasaki M, Shimura T, Nishie H, Kuroyanagi K, Kanno T, Fukusada S, Sugimura N, Mizuno Y, Nukui T, Uno K, Kojima Y, Nishigaki R, Tanaka M, Ozeki K, Kubota E, Kataoka H

LETTER TO THE EDITOR

3364 Challenges in early detection and endoscopic resection of esophageal cancer: There is a long way to go Liu S, Chen LX, Ye LS, Hu B

Contents

World Journal of Gastrointestinal Oncology

Monthly Volume 16 Number 7 July 15, 2024

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Oncology, Meysam Ebrahimifar, MSc, PhD, Research Assistant Professor, Department of Toxicology, Islamic Azad University, Isfahan 1477893855, Iran. ebrahimifar67@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING

The WJGO is now abstracted and indexed in PubMed, PubMed Central, Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 edition of Journal Citation Reports[®] cites the 2023 journal impact factor (JIF) for WJGO as 2.5; JIF without journal self cites: 2.5; 5-year JIF: 2.8; JIF Rank: 71/143 in gastroenterology and hepatology; JIF Quartile: Q2; and 5-year JIF Quartile: Q2. The WJGO's CiteScore for 2023 is 4.2 and Scopus CiteScore rank 2023: Gastroenterology is 80/167; Oncology is 196/404.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Si Zhao; Production Department Director: Xiang Li; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
w oria Journal of Gastrointestinal Oncology	https://www.wjgnet.com/bpg/gerinto/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 1948-5204 (online)	https://www.wignet.com/bpg/GerInfo/287
1001 17 10 520 ((011111c)	https://www.wjgheteoni/bpg/ Oerinio/20/
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 15, 2009	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Monthly	https://www.wignet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Moniur Ahmed, Florin Burada	https://www.wignet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wignet.com/1948-5204/editorialboard.htm	https://www.wignet.com/bpg/garinfo/242
https://www.wjgnet.com/1946-3204/eutonaboard.htm	https://www.wgnet.com/bpg/gennio/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
July 15, 2024	https://www.wignet.com/bog/GerInfo/230
July 15, 2024	https://www.wgnet.com/bpg/ Germio/255
COPYRIGHT	ONLINE SUBMISSION
© 2024 Baishidang Publishing Group Inc	https://www.foublishing.com
© 2024 Daising rubising Group inc	https://www.topublishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com

 \mathcal{O} W U

World Journal of **Gastrointestinal** Oncology

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Oncol 2024 July 15; 16(7): 3308-3320

DOI: 10.4251/wjgo.v16.i7.3308

ISSN 1948-5204 (online)

META-ANALYSIS

Clinical benefits of transarterial chemoembolization combined with tyrosine kinase and immune checkpoint inhibitors for unresectable hepatocellular carcinoma

Feng Han, Xiao-Han Wang, Chen-Zhou Xu

Specialty type: Oncology

Provenance and peer review:

Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's classification

Scientific Quality: Grade C Novelty: Grade C Creativity or Innovation: Grade B Scientific Significance: Grade B

P-Reviewer: Minbashi M, Iran

Received: April 24, 2024 Revised: May 17, 2024 Accepted: May 20, 2024 Published online: July 15, 2024 Processing time: 79 Days and 2 Hours

Feng Han, Xiao-Han Wang, Chen-Zhou Xu, Department of Gastroenterology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China

Corresponding author: Chen-Zhou Xu, MM, Doctor, Department of Gastroenterology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing 314001, Zhejiang Province, China. jxsdyyyxcz@zjxu.edu.cn

Abstract

BACKGROUND

Combination therapy has emerged as the focus of research for unresectable hepatocellular carcinoma (HCC). In recent years, several studies have explored the clinical efficacy and safety of the combination therapies of transarterial chemoembolization (TACE) with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs).

AIM

To conduct an updated meta-analysis verifying the clinical benefits and adverse effects of the triple combination therapy for unresectable HCC.

METHODS

All eligible cohort, non-randomized controlled, and randomized controlled trial studies from the PubMed, Web of Science, Embase, Cochrane Library, and MedLine databases up to March 20, 2024 were screened for the present metaanalysis. The study endpoints included complete response (CR), objective response rate (ORR), disease control rate (DCR), overall survival (OS), progressionfree survival (PFS), and adverse events (AEs). Stata 16/18 software was used for this meta-analysis, and a *P* value of <0.05 was considered statistically significant.

RESULTS

A total of 29 studies with 1754 patients were included. Among the patients who received the TACE therapy with TKIs and ICIs, the tumor response results revealed a pooled CR, ORR, and DCR of 14% [95%CI (0.11-0.18)], 61% [95%CI (0.55-0.66)], and 85% [95%CI (0.83-0.87)], respectively. In terms of the survival outcomes, the pooled median PFS and OS were 10.25 months [95%CI (9.31-11.18)] and 20.47 months [95%CI (18.98-21.97)], respectively. The pooled prevalence of all-grade AEs during the triple treatment was 90% [95%CI (0.84-0.94)] and that of

WJGO https://www.wjgnet.com

grade \geq 3 AEs was 32% [95%CI (0.24–0.42)].

CONCLUSION

The combination therapy of TACE, TKIs, and ICIs exhibits great clinical benefits for unresectable HCC in terms of tumor responses and survival outcomes without increasing the risk of severe AEs.

Key Words: Transarterial chemoembolization; Tyrosine kinase inhibitors; Immune checkpoint inhibitors; Hepatocellular carcinoma; Meta-analysis

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Consensus regarding the treatment of unresectable hepatocellular carcinoma (HCC) currently remains lacking. The triple combination therapy of transarterial chemoembolization with tyrosine kinase and immune checkpoint inhibitors has attracted significant attention as an aggressive treatment strategy and has been used for treatment in recent years. We conducted a systematic review and updated meta-analysis to verify the clinical benefits and adverse effects of triple therapy in 29 studies with 1754 patients with unresectable HCC. The complete response, objective response rate, disease control rate, overall survival, progression-free survival, and adverse events induced by the triple therapy were evaluated.

Citation: Han F, Wang XH, Xu CZ. Clinical benefits of transarterial chemoembolization combined with tyrosine kinase and immune checkpoint inhibitors for unresectable hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16(7): 3308-3320 URL: https://www.wjgnet.com/1948-5204/full/v16/i7/3308.htm DOI: https://dx.doi.org/10.4251/wjgo.v16.i7.3308

INTRODUCTION

Primary liver cancer is the most common and fatal solid malignancy worldwide[1]. In 2020, 905700 people were diagnosed with liver cancer, with 830200 fatalities globally[2]. The 5-year survival rate for liver cancer was 18% between 2006 and 2012[3]. The mortality rate of liver cancer increased by 43% from 2000 to 2016 in the United States[4]. By 2040, new cases and deaths from liver cancer may increase by > 55%[2]. Hepatocellular carcinoma (HCC) is the most common histological type of liver cancer, accounting for approximately 90% of cases[1]. Many curative treatments, including surgical resection, radiofrequency ablation, and liver transplantation, are available for patients with early HCC [Barcelona Clinic Liver Cancer (BCLC) 0 and A][5]. However, owing to the late presentation of symptoms, > 70% of patients are diagnosed with the intermediate (BCLC B) and advanced (BCLC C) HCC stages and mostly receive locoregional and systemic therapies [5-7].

Transarterial chemoembolization (TACE) is the most common and standard locoregional therapy in the management of patients with intermediate HCC[8]. TACE improved the survival outcomes of patients with unresectable HCC in random controlled trials conducted in Europe and Asia[5]. However, repeated TACE may impair liver function and even result in the development of TACE resistance. Consequently, TACE therapy alone is not sufficient for patients with advanced stages, especially portal vein invasion or extrahepatic spread[9,10]. Additionally TACE is generally not successful in controlling tumor progression because of the high incidence of incomplete embolization and embolizationrelated changes in the tumor microenvironment[11]. For systemic therapy, sorafenib, a multikinase inhibitor, was the first drug approved for the first-line systemic regimen. Treatment with sorafenib resulted in a longer median overall survival (OS) than the placebo group (10.7 vs 7.9 months) in patients with advanced HCC[12]. Lenvatinib is also an approved multikinase inhibitor for advanced HCC, and it demonstrated a comparable median OS of 13.6 vs 12.3 months for sorafenib in REFLECT trial[13]. Many other tyrosine kinase inhibitors (TKIs) and/or antiangiogenic VEGFR2 antagonists, such as regorafenib, cabozantinib, and ramucirumab, have shown significant improvements in the median OS of patients with HCC[14]. Immune checkpoint inhibitors (ICIs), including atezolizumab/bevacizumab, are also systemic first-line therapies for advanced HCC. Compared with sorafenib and lenvatinib, treatment with these ICIs resulted in the longest median OS of 15.03 months, median progression-free survival (PFS) of 7.97 months, and highest objective response rate (ORR) of 31.6% [15]. Recently, the combination of locoregional and systemic treatments has yielded impressive clinical outcomes[14]. A multicenter retrospective matched-cohort study of patients with HCC from 59 hospitals in China found that TACE combination therapy with PD-(L)1 inhibitors and molecular targeted agents significantly improved the median PFS, median OS, and ORR compared with TACE monotherapy[16]. A single-arm phase II trial based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) revealed that TACE plus lenvatinib and PD-1 inhibitors exhibited a high ORR of 60.0%, disease control rate (DCR) of 86.7%, long median OS of 18.4 months, and median PFS of 8.0 months, with 93.3% adverse events (AEs) of any grade, 40.0% grade 3 TRAEs, and no grade 4/5 TRAEs in patients with advanced HCC[17]. To date, numerous clinical trials and studies with or without control or intervention measures have explored the benefits of combination therapies of TACE with TKIs and ICIs using different treatment regimens and have achieved encouraging results.

WJGO | https://www.wjgnet.com

Combination therapies with remarkable therapeutic potential have become the focus of research on unresectable HCC [6]. Survival outcomes, tumor responses, and adverse reactions caused by triple therapy have attracted much attention from academic researchers and scholars. Therefore, in this study, we conducted a meta-analysis to evaluate the clinical benefits and side effects of triple therapy of TACE combined with TKIs and ICIs in unresectable HCC using systematic and up-to-date data. Our study may serve as a reference for the selection of treatment regimens by clinicians.

MATERIALS AND METHODS

Search strategy and study selection

We identified the eligible studies from the PubMed, Web of Science, Embase, Cochrane Library, and MedLine databases up to March 20, 2024. The following terms were used: transarterial chemoembolization OR transcatheter arterial chemoembolization OR TACE AND tyrosine kinase inhibitors OR TKIs OR sorafenib OR lenvatinib AND immune checkpoint inhibitors OR ICIs OR programmed cell death protein 1 OR programmed cell death ligand 1 OR PD-1/L1 inhibitors OR atezolizumab OR bevacizumab AND liver cancer OR liver neoplasms OR hepatocellular carcinoma OR hepatocarcinoma OR HCC.

Inclusion and exclusion criteria

The inclusion criteria included: (1) Patients diagnosed with HCC; (2) Intervention using triple therapy of TACE with TKIs and ICIs; (3) No restriction on whether a control group or intervention was established; (4) Studies reporting at least one of the endpoints, such as complete response (CR), ORR, DCR, median PFS, median OS, all-grade AEs, and grade \geq 3 AEs; and (5) Study design including cohort, non-randomized controlled, and randomized controlled trials. The exclusion criteria were as follows: (1) The use of monotherapy or combination therapies other than TACE with TKIs and ICIs; (2) Studies with insufficient data; (3) Studies that were not available; (4) Duplicate studies; and (5) Studies not reported in English.

Data extraction

The data were extracted by two professionals, and the following information was collected: (1) Characteristics of studies: first author's name, publication date, country, subjects, study design, treatment regimens, and sample size; (2) Characteristics of patients: median age, sex, whether hepatitis B virus-positive, α-fetoprotein levels, Child-Pugh grade, BCLC stage, extrahepatic metastasis, and portal vein tumor thrombus; (3) Endpoints reported in the articles: tumor responses (CR, ORR, and DCR), survival outcomes (median PFS and median OS), adverse effects (all-grade AEs and grade \geq 3 AEs).

Statistical analysis

The tumor response was evaluated according to the mRECIST. ORR was defined as CR or partial response (PR), whereas DCR was defined as the sum of CR, PR, and stable disease. AEs and grade \geq 3 AEs were evaluated based on the Common Terminology Criteria for Adverse Events. A meta-analysis of the pooled rates of CR, ORR, DCR, and AEs and the effect size of median PFS and OS with 95%CI was performed using Stata 16/18. The heterogeneity was evaluated using l^2 statistics, and P > 0.10 or $P \ge 50\%$ was considered as apparent heterogeneity. A random-effect or fixed-effect model was used. P < 0.05 was considered statistically significant.

RESULTS

Study and patient characteristics

A flowchart of the study selection is illustrated in Figure 1. After excluding ineligible studies, 29 articles [17-45] with 1754 patients were included. Among the included studies, 27 were retrospective studies and 2 were prospective studies. In this meta-analysis, regardless of the presence or absence of control or intervention measures, patients who underwent triple combination therapy were included. The characteristics of the included studies and patients are presented in Table 1.

Tumor responses

Tumor responses are presented as forest plots in Figure 2. Tumor responses, including CR, ORR, and DCR, were reported in 21, 24, and 23 studies, respectively. The results revealed the pool CR rate (Figure 3A), ORR (Figure 3B), and DCR (Figure 3C) as 14% [95%CI (0.11-0.18)], 61% [95%CI (0.55-0.66)], and 85% [95%CI (0.83-0.87)], respectively. A randomeffect model was used for CR ($l^2 = 50.98\%$; P < 0.01) and ORR ($l^2 = 70.47\%$; P < 0.01), and a fixed-effect model was used for DCR ($I^2 = 28.27\%$; P = 0.10).

Survival outcomes

Forest plots of survival outcomes are presented in Figure 3. In terms of survival outcomes, 22 and 16 studies reported PFS and OS data, respectively. The pooled results demonstrated that patients who underwent triple combination therapy exhibited a promising median PFS [10.25 months; 95%CI (9.31-11.18); Figure 2A]. Moreover, the triple therapy was associated with a long median OS [20.47 months; 95%CI (18.98–20.97); Figure 2B]. A random-effect model was employed because of the high l^2 values for the analysis of median PFS ($l^2 = 80.71\%$; P < 0.01) and OS ($l^2 = 73.59\%$; P < 0.01).

WJGO https://www.wjgnet.com

Table 1 Bas	able 1 Baseline characteristics of includes studies and patients												
Ref.	Country	Subjects	Study design	Treatment regimen	Sample size	Age (yr)	Male (%)	Positive of HBV (%)	AFP < 400 ng/mL (%)	Child- Pugh A (%)	BCLC stage A/B/C	EHM (%)	PVTT (%)
Yuan <i>et al</i> [<mark>18</mark>], 2024	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	139	59 (50, 67)	121 (87.05)	115 (82.73)	103 (74.10)	119 (85.61)	0/99/40	23 (16.55)	31 (22.3)
Sun <i>et al</i> [<mark>19</mark>], 2024	China	Patients with advanced HCC	Retrospective	TACE + lenvatinib + sintilimab	40	55 ± 9	34 (85.0)	30 (75.0)	26 (65.0)	34 (85.0)	0/0/40	14 (35.0)	29 (72.5)
Sheng <i>et al</i> [20], 2024	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	113	64.48 ± 10.83	95 (84.1)	72 (63.7)	90 (79.6)	88 (77.9)	0/54/59	15 (13.3)	29 (25.7)
Cai <i>et al</i> [<mark>17</mark>], 2024	China	Patients with advanced HCC	Retrospective	TACE + lenvatinib + sintilimab	30	49.4 ± 9.9	26 (86.7)	25 (83.3)	NR	29 (96.7)	NR	13 (43.3)	NR
Gao <i>et al</i> [21], 2023	China	Patients with advanced HCC	Retrospective	TACE + TKIs + ICIs	41	52 (46, 57)	35 (85.4)	29 (70.7)	9 (22.0)	32 (78.0)	0/11/30	10 (24.4)	29 (70.7)
Li et al[<mark>22</mark>], 2023	China	Patients with advanced HCC	Prospective	TACE + TKIs + camrel- izumab	87	56 (34, 75)	81 (93.1)	75 (86.2)	51 (58.6)	51 (58.6)	NR/NR/69	43 (49.4)	65 (74.7)
Hu et al[<mark>44</mark>], 2023	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	98	52 (42, 62)	87 (88.8)	85 (86.7)	NR	75 (76.5)	0/12/86	49 (50.0)	14 (14.3)
Zhang <i>et al</i> [23], 2024	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	54	≤ 60: 38 (72.5); > 60: 16 (27.5)	46 (85.0)	53 (98.1)	26 (48.1)	54 (100)	0/23/31	19 (35.2)	NR
Wu et al [24], 2024	China	Patients with unresectable HCC	Prospective	TACE + lenvatinib + camrelizumab	55	54 (46, 62)	45 (81.8)	27 (49.1)	23 (41.8)	55 (100)	0//12/43	10 (18.2)	37 (67.3)
Gao <i>et al</i> [25], 2023	China	Patients with TACE- refractory HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	57	57.5 ± 9.4	45 (78.9)	43 (75.4)	NR	34 (59.6)	0/17/40	24 (42.1)	NR
Lu et al <mark>[26]</mark> , 2023	China	Patients with unresectable HCC	Retrospective	TACE + donafenib + toripalimab	81	51.9±12.4	65 (80.2)	54(66.7)	NR	46 (56.8)	0/22/59	NR	NR
Pan <i>et al</i> [27], 2023	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	49	< 65: 38 (77.6); ≥ 65: 11 (22.4)	46 (93.9)	41 (83.7)	21 (42.9)	40 (81.6)	5/14/30	6 (12.2)	27 (55.1)
Wu et al [28], 2023	China	Patients with BCLC- defined stage C HCC	Retrospective	TACE + lenvatinib + camrelizumab	57	53.18 ± 9.25	49 (86.0)	44 (77.2)	25 (43.9)	52 (91.2)	0/0/57	23 (40.4)	NR
Wang et al [<mark>29]</mark> , 2023	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	45	54 (18, 79)	42 (93.33)	42 (93.33)	13 (28.89)	NR	NR	18 (40.0)	20 (44.44)
Xin <i>et al</i> [<mark>30</mark>], 2023	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	60	57.5 (26, 76)	54 (90.0)	56 (93.4)	32 (53.3)	NR	0/21/39	18 (30.0)	28 (46.7)
Wang <i>et al</i> [<mark>31</mark>], 2023	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	46	55.54 ± 11.92	41 (89.1)	42 (91.3)	18 (39.1)	38 (82.6)	0/8/38	24 (52.2)	NR

Han F et al. TACE with TKIs and ICIs

Sun <i>et al</i> [<mark>32</mark>], 2023	China	Patients with advanced HCC	Retrospective	TACE + TKIs + camrel- izumab	70	53.8 ± 10.4	58 (82.9)	54 (77.1)	30 (42.9)	57 (81.4)	NR	NR	NR
Ju <i>et al</i> [<mark>33</mark>], 2021	China	Patients with unresectable HCC	Retrospective	TACE + apatinib + camrel- izumab	56	52 (26, 75)	46 (82.1)	48 (85.7)	NR	43 (76.8)	0/13/43	NR	NR
Cai <i>et al</i> [<mark>34</mark>], 2022	China	Patients with advanced HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	41	51.9 ± 10.3	37 (90.2)	35 (85.4)	20 (48.8)	37 (90.2)	NR	17 (41.5)	NR
Li et al[<mark>35</mark>], 2022	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	114	53 (24, 79)	102 (89.5)	102 (89.5)	NR	111 (97.4)	3/42/69	23 (20.2)	NR
Teng <i>et al</i> [<mark>36</mark>], 2022	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	53	56.9 (37, 75)	45 (84.9)	45 (84.9)	35 (66.0)	34 (64.2)	0/23/30	42 (79.2)	NR
Qu et al <mark>[37</mark>], 2022	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + PD-1 inhibitor	56	51 (24, 82)	51 (91.1)	43 (76.8)	34 (60.7)	53 (94.6)	0/17/39	29 (51.8)	NR
Yang et al [<mark>38</mark>], 2022	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	53	59 ± 10.6	45 (85.0)	47 (89.0)	34 (64.0)	34 (64.0)	2/29/22	NR	NR
Yang <i>et al</i> [<mark>39</mark>], 2021	China	Patients with unresectable HCC	Retrospective	TACE + TKIs + ICIs	31	57.5 ± 9.4	25 (80.6)	26 (83.9)	23 (74.2)	27 (87.1)	2/18/11	NR	NR
Liu <i>et al</i> [<mark>45</mark>], 2021	China	Patients with advanced HCC	Retrospective	TACE + lenvatinib + camrelizumab	22	57.7 ± 9.9	17 (77.3)	15 (68.2)	7 (31.2)	16 (72.7)	0/12/10	8 (36.4)	11 (50.0)
Wu <i>et al</i> [<mark>40], 2021</mark>	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + Anti- PD-1 antibodies	62	57 (23, 75)	56 (90.3)	57 (91.9)	30 (48.4)	62 (100.0)	6/21/35	6 (9.7)	15 (24.2)
Cao <i>et al</i> [<mark>41</mark>], 2021	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + sintilimab	52	≤ 65: 40 (76.9); > 65: 12 (23.1)	45 (86.4)	47 (90.4)	34 (65.4)	46 (88.5)	0/13/39	21 (40.4)	NR
Zheng <i>et al</i> [<mark>42</mark>], 2020	China	Patients with advanced TACE-refractory HCC	Retrospective	TACE + sorafenib + ICIs	22	< 55: 10 (45.45); ≥ 55: 12 (54.55)	19 (86.36)	17 (77.27)	7(31.82)	13 (59.03)	0/11/11	7(31.82)	7(31.82
Chen <i>et al</i> [43], 2022	China	Patients with unresectable HCC	Retrospective	TACE + lenvatinib + pembrolizumab	70	58 (36, 69)	37 (52.9)	38 (54.3)	25 (35.7)	70 (100.0)	0/47/23	NR	NR

HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; TKI: Tyrosine kinase inhibitor; ICI: Immune checkpoint inhibitor; HBV: Hepatitis B virus; AFP: α-fetoprotein; BCLC: Barcelona Clinic Liver Cancer; EHM: Extrahepatic metastasis; PVTT: Portal vein tumor thrombosis.

AEs

Forest plots for AEs are presented in Figure 4. AEs mainly included hypertension, elevated alanine aminotransferase levels, fatigue, diarrhea, vomiting, decreased appetite, thrombocytopenia, and hypothyroidism. In this analysis, 18 studies reported all-grade AEs, and 13 studies reported grade \geq 3 AEs. The pooled incidence of all-grade AEs was 90% [95%CI (0.84–0.94)] and that of grade \geq 3 AEs was 32% [95%CI (0.24–0.42)]. A random-effect model was employed, and the I² values for all-grade AEs and grade \geq 3 AEs were 84.16% (*P* < 0.01) and 83.51% (*P* < 0.01), respectively.

Figure 1 Flowchart of study selection.

DISCUSSION

Using locoregional therapy along with systemic therapy may be a promising choice for unresectable HCC. In this study, 29 studies with 1754 patients who underwent TACE therapy in combination with TKIs and ICIs were included, and the findings revealed an encouraging CR, ORR, DCR, OS, PFS, and acceptable AEs in patients with unresectable HCC.

The efficacy and safety of triple TACE therapy with TKIs and ICIs in patients with advanced HCC were first reported in 2021[45]. In that study, patients receiving TACE therapy with lenvatinib and camrelizumab exhibited an ORR of 72.7%, and the DCR reached 95.5% at the third month. Further, the median OS and PFS were 24 and 11.4 months, respectively, with no serious AEs or deaths[45]. Thereafter, numerous studies have explored the benefits of combination therapies using different treatment options. The superiority of the triple combination modality over TACE monotherapy, TACE + TKIs, and TKIs + ICIs has been demonstrated in many controlled studies. In 2020, the TACTICS trial compared the effectiveness of TACE and sorafenib with that of TACE monotherapy, and reported a significant improvement in PFS (25.2 vs 13.5 months; P = 0.006 [46]. Notably, the ORR of TACE plus lenvatinib treatment reached 88.7% for unresectable HCC in the TACTICS-L trial[47]. A propensity score matching retrospective study reported that the triple combination of TACE with TKIs and ICIs demonstrated better ORR (52.5% vs 32.8%; P < 0.001) and DCR (82.7% vs 59.6%; P < 0.001), and achieved longer OS (median OS, 21.9 vs 16.3 months; P = 0.022) and PFS (median PFS, 8.3 vs 5.1 months; P < 0.0001) than TACE alone, with AEs similar to those reported in previous TACE-related studies[18]. Single-agent ICIs have shown an ORR of 15%-20% in patients with advanced HCC, mostly with no significant benefit on OS, resulting in approximately 30% of HCCs exhibiting intrinsic resistance to ICIs[48]. Using a PD-1 inhibitor in addition to TACE and lenvatinib has shown significant improvements in efficiency and safety^[20]. Compared with TACE with lenvatinib, TACE with lenvatinib and PD-1 inhibitor resulted in longer PFS (14.0 vs 9.0 months; P < 0.001) and OS (24.0 vs 15.0 months; P < 0.001) 0.001), and a better overall ORR (54.0% vs 32.8%; P = 0.001), with no significant difference in the incidence of AEs (56.64%) vs 46.09%; P = 0.102) and grade \geq 3 AEs (11.50% vs 9.38%; P = 0.588)[20]. In 2022, the IMbrave150 trial demonstrated that atezolizumab with bevacizumab results in a higher OS than sorafenib (19.2 vs 13.4 months; P < 0.001) in patients with untreated HCC[49]. The OS of the TACE with TKI plus ICI group was significantly longer than that of the TKI plus ICI group (19.5 vs 10.8 months; P = 0.005), and major AEs were comparable in both groups (34.7% vs 30.6%; P = 0.621)[44].

The findings of the present study revealed that the triple combination therapy exhibited an encouraging pooled CR rate, ORR, and DCR of 14%, 61%, and 85%, respectively. Further, the pooled median PFS and OS were 10.25 and 20.47 months, respectively. Moreover, the pooled prevalence of all-grade AEs was 90%, and that of grade \geq 3 AEs was 32%. Our data support the potential application of triple combination therapy for unresectable HCC, which may have great clinical benefits in tumor responses and survival outcomes without increasing the risk of severe AEs. The findings are consistent with a recent largest, multicenter, retrospective cohort study in China, which indicated that combining TACE with ICIs plus anti-VEGF antibody/TKIs can significantly improve the OS, PFS, and ORR, with an acceptable safety profile[50]. Additionally, two multicenter international study registered in the United States were conducted to evaluate TACE in combination with ICIs and lenvatinib therapy in patients with locoregional/incurable/non-metastatic HCC (NCT05301842, NCT04246177). The results of the two ongoing trials have been not posted yet, but we are looking forward to the improved clinical effects of the triple therapy for HCC. Table 2 presents the ongoing clinical trials exploring the clinical benefits of the triple combination modality.

This study has some limitations. First, the retrospective design of the most included studies may have caused recall bias in this study. Second, conducting the subgroup analysis was difficult because of the small sample size of all included

Zaishideng® WJGO | https://www.wjgnet.com

A	Study										E	ffect vith 9	siz 5%	e bCI	Weight (%)
	Yuan G,2024		-								8.30	[7.30	,	9.30]	6.08
	Sheng Y,2024					-					14.00	[11.50	, 1	6.50]	4.46
	Cai M,2024		-	-							8.00	[6.40	,	9.60]	5.49
	Gao B,2023		-								10.50	[7.30	, 1	3.70]	3.71
	Li J,2023					_					10.50	[7.90	, 1	3.10]	4.35
	Hu Y,2023			-	-						9.70	[8.00	, 1	1.40]	5.38
	Gao Y,2023		-	H.							7.00	[5.80	,	8.20]	5.90
	Lu H,2023					-					10.90	[9.60	, 1	2.20]	5.80
	Wu J,2023										12.70	[7.60	, 1	7.80]	2.23
	Wang YY,2023				-	-					11.70	[7.70	, 1	5.70]	2.98
	Xin Y,2023							-		_	16.20	[11.75	, 2	0.65]	2.64
	Wang J,2023		_				_				10.20	[5.80	, 1	4.60]	2.68
	Sun T,2023				-						10.00	[8.95	, 1	1.05]	6.04
	Cai M,2022		-	-							7.30	[5.95	,	8.65]	5.75
	Li X,2022				-						10.40	[7.50	, 1	3.30]	4.02
	Teng Y,2022		_								8.50	[6.40	, 1	0.60]	4.92
	Qu S,2022			_	-	-	_				11.90	[9.00	, 1	4.80]	4.02
	Yang F,2022										8.50	[5.45	, 1	1.55]	3.86
	Liu J,2021			-	-						9.50	[8.10	, 1	0.90]	5.70
	Cao F,2021					-	H				13.30	[11.90	, 1	4.70]	5.70
	Zheng L,2021					_				-	16.26	[12.13	, 2	0.40]	2.88
	Chen S,2021			-	H						9.20	[7.55	, 1	0.85]	5.43
	Overall										10.2	5 [9.3	31,	11.1	8]
	Heterogeneity: τ^2 = 3.50, I ² = 80.71%, <i>P</i> < 0.01														
	Random-effects model	5	5	ŕ	10		15	5	2	0					

В	Study							Effect size with 95%CI Weight (%)					
	Yuan G,2024		_	-	-			21.90 [17.70,	26	.10]	5.69	
	Sheng Y,2024				_			24.00 [20.30,	27	.70]	6.34	
	Cai M,2024		_	<u> </u>				18.40 [14.50,	22	.30]	6.07	
	Gao B,2023	_	-	—				18.80 [12.07,	25	.53]	3.33	
	Hu Y,2023		\rightarrow					19.50 [15.20,	23	.80]	5.57	
	Gao Y,2023			-				17.00 [14.20,	19	.80]	7.60	
	Lu H,2023			-				19.60 [17.95,	21	.25]	9.21	
	Wu J,2023		-	_				19.80 [15.70,	23	.90]	5.82	
	Wang YY,2023							26.80 [14.45,	39	.15]	1.28	
	Wang J,2023							20.50 [13.50,	27	.50]	3.16	
	Cai M,2022		-					16.90 [14.95,	18	.85]	8.82	
	Qu S,2022				-			23.90 [19.90,	27	.90]	5.94	
	Liu J,2021							22.00 [20.15,	23	.85]	8.95	
	Cao F,2021			-				23.60 [22.20,	25	.00]	9.51	
	Zheng L,2021		-	-	_			23.30 [17.54,	29	.05]	4.08	
	Chen S,2021		-	H-				18.10 [16.00,	20	.20]	8.61	
	Overall			•				20.47	[18.9	98,	21.9	7]	
	Heterogeneity: τ^2 = 5.58, I ² = 73.59%, P < 0.01									í		-	
	Random-effects model	10		20	:	30	4	10 10					

Figure 2 Forest plots of survival outcomes. A: The pooled effect size of median progression-free survival; B: The pooled effect size of median over survival.

studies and insufficient data on TACE, TKIs, and ICIs in some of the studies. Third, as all eligible studies were from China, our conclusions may not be widely relied upon and generalized because of the notable heterogeneity in etiology. Fourth, different treatment regimens of triple combination therapy could also be a major contributor to heterogeneity. Finally, the sequence of triple therapy administration was not uniform across the included studies, and a broad consensus on this is required in the future.

Gaishideng® WJGO | https://www.wjgnet.com

Study	Events	Total		Proportion with 95%CI	Weight (%)
Cai M,2024	4	30		0.13 [0.05, 0.31]	3.99
Gao B,2023	3	37		0.08 [0.03, 0.22]	3.43
Li J,2023	16	87		0.18 [0.12, 0.28]	7.37
Hu Y,2023	22	98		0.22 [0.15, 0.32]	7.94
Zhang JX,2023	1	54	+	0.02 [0.00, 0.12]	1.54
Wu XK,2023	9	55		0.16 [0.09, 0.29]	6.01
Gao Y,2023	6	57		0.11 [0.05, 0.22]	5.12
Lu H,2023	13	81		0.16 [0.10, 0.26]	6.95
Pan X,2023	2	42	-	0.05 [0.01, 0.17]	2.64
Wu J,2023	9	57		0.16 [0.08, 0.28]	6.03
Wang YY,2023	0	45		0.00 [0.00, 0.15]	0.84
Xin Y,2023	10	60		0.17 [0.09, 0.28]	6.28
Wang J,2023	0	46		0.00 [0.00, 0.15]	0.84
Sun T,2023	4	70		0.06 [0.02, 0.14]	4.20
Teng Y,2022	6	51		0.12 [0.05, 0.24]	5.08
Qu S,2022	11	56		0.20 [0.11, 0.32]	6.43
Yang F(a),2022	10	53		0.19 [0.10, 0.32]	6.21
Yang F(b),2021	7	31		0.23 [0.11, 0.40]	5.15
Wu JY,2021	17	62		0.27 [0.18, 0.40]	7.24
Cao F,2021	4	60		0.07 [0.03, 0.16]	4.17
Zheng L,2021	2	22		0.09 [0.02, 0.30]	2.55
Overall	156	1154	•	0.14 [0.11,0.18]	1
Heterogeneity: τ^2	= 0.17, I ² =	50.98%, P	< 0.01		
Random-effects n	nodel		0.00 0.10 0.20 0.30 0.4	0	

R
-

Study	Events	Total		Proportion with 95%CI	Weight (%)
Sheng Y,2024	61	113		0.54 [0.45, 0.63]	5.14
Cai M,2024	18	30		0.60 [0.42, 0.76]	3.55
Gao B,2023	21	37		0.57 [0.41, 0.72]	3.88
Li J,2023	62	87		0.71 [0.61, 0.80]	4.72
Hu Y,2023	73	98		0.74 [0.65, 0.82]	4.77
Zhang JX,2023	34	54		0.63 [0.49, 0.75]	4.32
Wu XK,2023	42	55		0.76 [0.63, 0.86]	4.00
Gao Y,2023	34	57		0.60 [0.47, 0.72]	4.42
Lu H,2023	54	81		0.67 [0.56, 0.76]	4.73
Pan X,2023	24	42		0.57 [0.42, 0.71]	4.05
Wu J,2023	33	57		0.58 [0.45, 0.70]	4.44
Wang YY,2023	20	45		0.44 [0.31, 0.59]	4.16
Xin Y,2023	46	60		0.77 [0.64, 0.86]	4.11
Wang J,2023	25	46		0.54 [0.40, 0.68]	4.19
Sun T,2023	19	70		0.27 [0.18, 0.39]	4.43
Cai M,2022	23	41		0.56 [0.41, 0.70]	4.03
Teng Y,2022	28	51		0.55 [0.41, 0.68]	4.32
Qu S,2022	38	56		0.68 [0.55, 0.79]	4.28
Yang F,2022	28	53		0.53 [0.40, 0.66]	4.38
Yang F,2022	20	31		0.65 [0.47, 0.79]	3.52
Liu J,2021	16	22		0.73 [0.51, 0.87]	2.79
Wu JY,2021	48	62		0.77 [0.65, 0.86]	4.12
Cao F,2021	28	60		0.47 [0.35, 0.59]	4.52
Zheng L,2021	12	22		0.55 [0.34, 0.74]	3.13
Overall	807	1330	•	0.61 [0.55,0.66	5]
Heterogeneity: τ^2 :	= 0.19, I ² =	70.47%, <i>P</i> < 0.01			
Random-effects m	nodel		0.12 0.27 0.50 0.73 0.	ז 88	

С	Study	Events	Total		Proportion with 95%CI	Weight (%)
	Cai M,2024	26	30	_	0.87 [0.69, 0.95]	2.51
	Gao B,2023	31	37		0.84 [0.68, 0.93]	3.64
	Li J,2023	78	87		0.90 [0.81, 0.95]	5.85
	Hu Y,2023	89	98		0.91 [0.83, 0.95]	5.92
	Zhang JX,2023	46	54		0.85 [0.73, 0.92]	4.94
	Wu XK,2023	47	55		0.85 [0.74, 0.93]	4.96
	Gao Y,2023	51	57		0.89 [0.78, 0.95]	3.89
	Lu H,2023	67	81		0.83 [0.73, 0.89]	8.39
	Pan X,2023	39	42		0.93 [0.80, 0.98]	2.02
	Wu J,2023	43	57		0.75 [0.63, 0.85]	7.66
	Wang YY,2023	42	45		0.93 [0.81, 0.98]	2.03
	Xin Y,2023	58	60		0.97 [0.88, 0.99]	1.40
	Wang J,2023	38	46		0.83 [0.69, 0.91]	4.79
	Sun T,2023	54	70		0.77 [0.66, 0.85]	8.95
	Cai M,2022	35	41		0.85 [0.71, 0.93]	3.71
	Teng Y,2022	43	51		0.84 [0.72, 0.92]	4.89
	Qu S,2022	52	56		0.93 [0.82, 0.97]	2.69
	Yang F,2022	43	53		0.81 [0.68, 0.90]	5.88
	Yang F,2022	24	31		0.77 [0.60, 0.89]	3.93
	Liu J,2021	21	22	-	0.95 [0.74, 0.99]	0.69
	Wu JY,2021	57	62		0.92 [0.82, 0.97]	3.33
	Cao F,2021	51	60		0.85 [0.74, 0.92]	5.55
	Zheng L,2021	18	22		0.82 [0.60, 0.93]	2.37
	Overall	1053	1217	•	0.85 [0.83, 0.87]	
	Heterogeneity: I ² =	= 28.27%,	P = 0.10			
	Fixed-effects mod	el		0.50 0.88 0.98 1.00		

Figure 3 Forest plots of tumor responses. A: The pooled complete response rate; B: The pooled objective response rate; C: The pooled disease control rate.

CONCLUSION

We conducted a meta-analysis to evaluate the clinical efficacy and side effects of a combination of TACE with TKIs, and ICIs for unresectable HCC using current data. Our data support the potential application of triple therapy, which may have great clinical benefits for unresectable HCC in terms of tumor responses and survival outcomes without increasing the risk of severe AEs. Future randomized controlled trials with large sample sizes and multiple centers must be conducted to assess the efficacy and safety of the triple combination therapy and identify the optimal treatment regimen for potential beneficiaries with unresectable HCC.

Table 2 Ongoing clinical trials for triple therapy							
Combination regimen	Comparator	Cancer stage	NCT number	Phase	Primary endpoint		
TACE + lenvatinib + sintilimab/camrel- izumab	None	Advanced unresectable HCC	NCT04997850	I/II	Conversion resection rate		
TACE + lenvatinib + ICIs	None	Intermediate/advanced HCC	NCT04974281	Ι	Conversion resection rate		
TACE + donafenib + ICIs	None	Advanced HCC	NCT05262959	Π	PFS		
TACE + sorafenib + ICIs	None	Intermediate/advanced HCC	NCT04518852	Π	ORR, OS		
TACE + sorafenib + tilelizumab	None	Advanced HCC	NCT04992143	II	1-yr survival rate		
TACE + lenvatinib + tislelizumab	None	Advanced unresectable HCC	NCT05131698	Ι	ORR		
TACE + sorafenib + tilelizumab	None	Advanced HCC	NCT04599777	Π	OS		
TACE + lenvatinib + durvalumab + tremelimumab	TACE	Locoregional HCC not amenable to curative therapy	NCT05301842	III	PFS		

Baisbideng® WJGO https://www.wjgnet.com

TACE + lenvatinib + pembrolizumab	TACE	Incurable/Non-metastatic HCC	NCT04246177	III	PFS, OS	
-----------------------------------	------	------------------------------	-------------	-----	---------	--

PFS: Progression-free survival; OS: Overall survival; ORR: Objective response rate; HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; ICI: Immune checkpoint inhibitor.

A Study	Events	Total	Proportion with 95%CI Weight (%
Yuan G,2024	112	139	——————————————————————————————————————
Sheng Y,2024	64	113	0.57 [0.47, 0.65] 7.54
Cai M,2024	28	30	0 .93 [0.77, 0.98] 5.03
Li J,2023	87	87	——1 .00 [0.92, 1.00] 2.53
Hu Y,2023	95	98	
Zhang JX,2023	53	54	- 0.98 [0.88, 1.00] 3.80
Wu XK,2023	55	55	——1 .00 [0.87, 1.00] 2.53
Pan X,2023	48	49	- 0.98 [0.87, 1.00] 3.80
Xin Y,2023	58	60	
Wang J,2023	39	46	0.85 [0.71, 0.93] 6.66
Sun T,2023	63	70	
Cai M,2022	38	41	0.93 [0.80, 0.98] 5.70
Teng Y,2022	51	53	- 0.96 [0.86, 0.99] 5.08
Yang F,2022	45	53	0 .85 [0.73, 0.92] 6.79
Yang F,2022	29	31	——————————————————————————————————————
Liu J,2021	14	22	0.64 [0.42, 0.81] 6.50
Wu JY,2021	46	62	0.74 [0.62, 0.84] 7.19
Cao F,2021	44	52	0.85 [0.72, 0.92] 6.78
Overall	969	1115	• 0.90 [0.84,0.94]
Heterogeneity: τ^2	= 0.96, I ² =	84.16%, <i>P</i> <	0.01
Random-effects n	nodel		0.40 0.60 0.80 1.00
3 Study	Events	Total	Proportion with 95%CI Weight (%
Sheng Y.2024	13	113	0.12 [0.07, 0.19] 7.98
Cai M.2024	12	30	
Li J.2023	59	87	
Hu Y.2023	34	98	
Zhang JX,2023	15	54	0.28 [0.17, 0.41] 7.90
Wu XK.2023	24	55	0.44 [0.31, 0.57] 8.18
Pan X.2023	18	49	0.37 [0.25, 0.51] 7.96
Xin Y,2023	18	60	
Sun T 2023	28	70	
Cai M.2022	15	41	
Yang F 2022	15	53	
Yang F.2022	4	31	0.13 [0.05, 0.30] 5.78

 Liu J,2021
 4
 22

 Overall
 259
 763

 Heterogeneity: $\tau^2 = 0.44$, $l^2 = 83.51\%$, P < 0.01 Random-effects model

0.05 0.12 0.27 0.50 0.73

0.18 [0.07, 0.40]

0.32 [0.24,0.42]

5.64

Figure 4 Forest plots of adverse events. A: The pooled rate of all-grade adverse events (AEs); B: The pooled rate of grade ≥ 3 AEs.

FOOTNOTES

Author contributions: Han F was responsible for acquisition of data, analysis and interpretation of data, drafting the article, final approval; Wang XH was responsible for interpretation of data, revising the article, final approval; Xu CZ was responsible for conception and design of the study, critical revision, final approval.

Supported by Jiaxing Public Welfare Research Project, No. 2022AD30046.

Saishideng® WJGO | https://www.wjgnet.com

Conflict-of-interest statement: Dr. Xu has nothing to disclose.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Chen-Zhou Xu 0009-0009-9227-7210.

S-Editor: Lin C L-Editor: A P-Editor: Zhang XD

REFERENCES

- Zhang J, Zhang Z, Wu Z, Wang Y, Xia L. The switch triggering the invasion process: Lipid metabolism in the metastasis of hepatocellular 1 carcinoma. Chin Med J (Engl) 2024 [PMID: 38738689 DOI: 10.1097/CM9.00000000003144]
- Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I. Global burden of primary liver 2 cancer in 2020 and predictions to 2040. J Hepatol 2022; 77: 1598-1606 [PMID: 36208844 DOI: 10.1016/j.jhep.2022.08.021]
- 3 Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, Mariotto A, Lake AJ, Wilson R, Sherman RL, Anderson RN, Henley SJ, Kohler BA, Penberthy L, Feuer EJ, Weir HK. Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. J Natl Cancer Inst 2017; 109 [PMID: 28376154 DOI: 10.1093/jnci/djx030]
- Villanueva A. Hepatocellular Carcinoma. N Engl J Med 2019; 380: 1450-1462 [PMID: 30970190 DOI: 10.1056/NEJMra1713263] 4
- Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and 5 management. Nat Rev Gastroenterol Hepatol 2019; 16: 589-604 [PMID: 31439937 DOI: 10.1038/s41575-019-0186-y]
- Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, Wang C. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat 6 Rev Gastroenterol Hepatol 2023; 20: 203-222 [PMID: 36369487 DOI: 10.1038/s41575-022-00704-9]
- Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, Kudo M, Johnson P, Wagner S, Orsini LS, Sherman M. Global patterns of 7 hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int 2015; 35: 2155-2166 [PMID: 25752327 DOI: 10.1111/liv.12818]
- Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, Lencioni R. Locoregional therapies in the era of molecular and immune 8 treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18: 293-313 [PMID: 33510460 DOI: 10.1038/s41575-020-00395-01
- Li QJ, He MK, Chen HW, Fang WQ, Zhou YM, Xu L, Wei W, Zhang YJ, Guo Y, Guo RP, Chen MS, Shi M. Hepatic Arterial Infusion of 9 Oxaliplatin, Fluorouracil, and Leucovorin Versus Transarterial Chemoembolization for Large Hepatocellular Carcinoma: A Randomized Phase III Trial. J Clin Oncol 2022; 40: 150-160 [PMID: 34648352 DOI: 10.1200/JCO.21.00608]
- Li S, Mei J, Wang Q, Shi F, Liu H, Zhao M, Lu L, Ling Y, Guo Z, Guo Y, Chen X, Shi M, Lau WY, Wei W, Guo R. Transarterial infusion 10 chemotherapy with FOLFOX for advanced hepatocellular carcinoma: a multi-center propensity score matched analysis of real-world practice. Hepatobiliary Surg Nutr 2021; 10: 631-645 [PMID: 34760967 DOI: 10.21037/hbsn.2020.03.14]
- Raoul JL, Gilabert M, Piana G. How to define transarterial chemoembolization failure or refractoriness: a European perspective. Liver Cancer 11 2014; **3**: 119-124 [PMID: 24945002 DOI: 10.1159/000343867]
- Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, 12 Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 [PMID: 18650514 DOI: 10.1056/NEJMoa0708857]
- Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, 13 Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391: 1163-1173 [PMID: 29433850 DOI: 10.1016/S0140-6736(18)30207-1]
- Himmelsbach V, Koch C, Trojan J, Finkelmeier F. Systemic Drugs for Hepatocellular Carcinoma: What Do Recent Clinical Trials Reveal 14 About Sequencing and the Emerging Complexities of Clinical Decisions? J Hepatocell Carcinoma 2024; 11: 363-372 [PMID: 38405324 DOI: 10.2147/JHC.S443218]
- Mahn R, Glüer OA, Sadeghlar F, Möhring C, Zhou T, Anhalt T, Monin MB, Kania A, Glowka TR, Feldmann G, Brossart P, Kalff JC, 15 Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA. First-Line Treatment for Advanced Hepatocellular Carcinoma: A Three-Armed Real-World Comparison. J Hepatocell Carcinoma 2024; 11: 81-94 [PMID: 38239279 DOI: 10.2147/JHC.S432948]
- Zhu HD, Li HL, Huang MS, Yang WZ, Yin GW, Zhong BY, Sun JH, Jin ZC, Chen JJ, Ge NJ, Ding WB, Li WH, Huang JH, Mu W, Gu SZ, Li 16 JP, Zhao H, Wen SW, Lei YM, Song YS, Yuan CW, Wang WD, Huang M, Zhao W, Wu JB, Wang S, Zhu X, Han JJ, Ren WX, Lu ZM, Xing WG, Fan Y, Lin HL, Zhang ZS, Xu GH, Hu WH, Tu Q, Su HY, Zheng CS, Chen Y, Zhao XY, Fang ZT, Wang Q, Zhao JW, Xu AB, Xu J, Wu QH, Niu HZ, Wang J, Dai F, Feng DP, Li QD, Shi RS, Li JR, Yang G, Shi HB, Ji JS, Liu YE, Cai Z, Yang P, Zhao Y, Zhu XL, Lu LG, Teng GJ; CHANCE001 Investigators. Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma (CHANCE001). Signal Transduct Target Ther 2023; 8: 58 [PMID: 36750721 DOI: 10.1038/s41392-022-01235-0]

- Cai M, Huang W, Liang W, Guo Y, Liang L, Lin L, Xie L, Zhou J, Chen Y, Cao B, Wu J, Zhu K. Lenvatinib, sintilimab plus transarterial 17 chemoembolization for advanced stage hepatocellular carcinoma: A phase II study. Liver Int 2024; 44: 920-930 [PMID: 38291865 DOI: 10.1111/liv.15831]
- 18 Yuan G, Li W, Zang M, Li R, Li Q, Hu X, Zhang Q, Huang W, Ruan J, Pang H, Chen J. Transarterial chemoembolization with/without immune checkpoint inhibitors plus tyrosine kinase inhibitors for unresectable hepatocellular carcinoma: a single center, propensity score matching real-world study. Discov Oncol 2024; 15: 68 [PMID: 38460053 DOI: 10.1007/s12672-024-00917-1]
- 19 Sun SS, Guo XD, Li WD, Chen JL. Lenvatinib combined with sintilimab plus transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma. World J Clin Cases 2024; 12: 285-292 [PMID: 38313649 DOI: 10.12998/wjcc.v12.i2.285]
- 20 Sheng Y, Wang Q, Liu H, Chen W, Xing W. Prognostic nomogram model for selecting between transarterial chemoembolization plus lenvatinib, with and without PD-1 inhibitor in unresectable hepatocellular carcinoma. Br J Radiol 2024; 97: 668-679 [PMID: 38303541 DOI: 10.1093/bjr/tgae018]
- Gao B, Yang F, Zheng D, Hu S, Liu J, Liu H, Liu Y, Liu L, Wang R, Zhao Y, Cui C, Fang C, Yang J, Su S, Han Y, Yang X, Li B. 21 Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors Plus Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma: A Propensity Score Matching Analysis. J Hepatocell Carcinoma 2023; 10: 2265-2276 [PMID: 38107541 DOI: 10.2147/JHC.S443041]
- Li J, Kong M, Yu G, Wang S, Shi Z, Han H, Lin Y, Shi J, Song J. Safety and efficacy of transarterial chemoembolization combined with 22 tyrosine kinase inhibitors and camrelizumab in the treatment of patients with advanced unresectable hepatocellular carcinoma. Front Immunol 2023; 14: 1188308 [PMID: 37545497 DOI: 10.3389/fimmu.2023.1188308]
- Zhang JX, Hua HJ, Cheng Y, Liu S, Shi HB, Zu QQ. Role of Transarterial Chemoembolization in the Era of Tyrosine Kinase Inhibitor and 23 Immune Checkpoint Inhibitor Combination Therapy for Unresectable Hepatocellular Carcinoma: A Retrospective Propensity Score Matched Analysis. Acad Radiol 2024; 31: 1304-1311 [PMID: 37775449 DOI: 10.1016/j.acra.2023.09.001]
- 24 Wu XK, Yang LF, Chen YF, Chen ZW, Lu H, Shen XY, Chi MH, Wang L, Zhang H, Chen JF, Huang JY, Zeng YY, Yan ML, Zhang ZB. Transcatheter arterial chemoembolisation combined with lenvatinib plus camrelizumab as conversion therapy for unresectable hepatocellular carcinoma: a single-arm, multicentre, prospective study. EClinicalMedicine 2024; 67: 102367 [PMID: 38169778 DOI: 10.1016/j.eclinm.2023.102367]
- Gao Y, Lu H, Xiong Z. Efficacy and safety of tyrosine kinase inhibitors plus PD-1 inhibitor in patients with transarterial chemoembolization-25 refractory hepatocellular carcinoma: a two-center retrospective study. Front Oncol 2023; 13: 1231359 [PMID: 38074659 DOI: 10.3389/fonc.2023.1231359
- Lu H, Liang B, Xia X, Zheng C. Efficacy and safety analysis of TACE + Donafenib + Toripalimab versus TACE + Sorafenib in the treatment 26 of unresectable hepatocellular carcinoma: a retrospective study. BMC Cancer 2023; 23: 1033 [PMID: 37880661 DOI: 10.1186/s12885-023-11535-5]
- Pan X, Wu SJ, Tang Y, Zhou YF, Luo JW, Fang ZT. Safety and Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase 27 Inhibitor and Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma: A Single Center Experience. J Hepatocell Carcinoma 2023; 10: 883-892 [PMID: 37324411 DOI: 10.2147/JHC.S404500]
- Wu J, Zeng J, Wang H, Huo Z, Hou X, He D. Efficacy and safety of transarterial chemoembolization combined with lenvatinib and 28 camrelizumab in patients with BCLC-defined stage C hepatocellular carcinoma. Front Oncol 2023; 13: 1244341 [PMID: 37916160 DOI: 10.3389/fonc.2023.1244341]
- Wang YY, Yang X, Wang YC, Long JY, Sun HS, Li YR, Xun ZY, Zhang N, Xue JN, Ning C, Zhang JW, Zhu CP, Zhang LH, Yang XB, Zhao 29 HT. Clinical outcomes of lenvatinib plus transarterial chemoembolization with or without programmed death receptor-1 inhibitors in unresectable hepatocellular carcinoma. World J Gastroenterol 2023; 29: 1614-1626 [PMID: 36970591 DOI: 10.3748/wjg.v29.i10.1614]
- Xin Y, Zhang X, Liu N, Peng G, Huang X, Cao X, Zhou X, Li X. Efficacy and safety of lenvatinib plus PD-1 inhibitor with or without 30 transarterial chemoembolization in unresectable hepatocellular carcinoma. Hepatol Int 2023; 17: 753-764 [PMID: 37038024 DOI: 10.1007/s12072-023-10502-3
- Wang J, Zhao M, Han G, Han X, Shi J, Mi L, Li N, Yin X, Duan X, Hou J, Yin F. Transarterial Chemoembolization Combined With PD-1 31 Inhibitors Plus Lenvatinib Showed Improved Efficacy for Treatment of Unresectable Hepatocellular Carcinoma Compared With PD-1 Inhibitors Plus Lenvatinib. Technol Cancer Res Treat 2023; 22: 15330338231166765 [PMID: 37161343 DOI: 10.1177/15330338231166765]
- Sun T, Ren Y, Sun B, Chen L, Zhu L, Zhang L, Zheng C. The Feasibility of TACE Combined with TKIs Plus PD-1 Antibody for Advanced 32 HCC. J Hepatocell Carcinoma 2023; 10: 447-457 [PMID: 36960308 DOI: 10.2147/JHC.S400948]
- Ju S, Zhou C, Yang C, Wang C, Liu J, Wang Y, Huang S, Li T, Chen Y, Bai Y, Yao W, Xiong B. Apatinib Plus Camrelizumab With/Without 33 Chemoembolization for Hepatocellular Carcinoma: A Real-World Experience of a Single Center. Front Oncol 2021; 11: 835889 [PMID: 35174073 DOI: 10.3389/fonc.2021.835889]
- Cai M, Huang W, Huang J, Shi W, Guo Y, Liang L, Zhou J, Lin L, Cao B, Chen Y, Zhu K. Transarterial Chemoembolization Combined With 34 Lenvatinib Plus PD-1 Inhibitor for Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study. Front Immunol 2022; 13: 848387 [PMID: 35300325 DOI: 10.3389/fimmu.2022.848387]
- Li X, Fu Z, Chen X, Cao K, Zhong J, Liu L, Ding N, Zhang X, Zhai J, Qu Z. Efficacy and Safety of Lenvatinib Combined With PD-1 35 Inhibitors Plus TACE for Unresectable Hepatocellular Carcinoma Patients in China Real-World. Front Oncol 2022; 12: 950266 [PMID: 35860582 DOI: 10.3389/fonc.2022.950266]
- Teng Y, Ding X, Li W, Sun W, Chen J. A Retrospective Study on Therapeutic Efficacy of Transarterial Chemoembolization Combined With 36 Immune Checkpoint Inhibitors Plus Lenvatinib in Patients With Unresectable Hepatocellular Carcinoma. Technol Cancer Res Treat 2022; 21: 15330338221075174 [PMID: 35313780 DOI: 10.1177/15330338221075174]
- Qu S, Zhang X, Wu Y, Meng Y, Pan H, Fang Q, Hu L, Zhang J, Wang R, Wei L, Wu D. Efficacy and Safety of TACE Combined With 37 Lenvatinib Plus PD-1 Inhibitors Compared With TACE Alone for Unresectable Hepatocellular Carcinoma Patients: A Prospective Cohort Study. Front Oncol 2022; 12: 874473 [PMID: 35530353 DOI: 10.3389/fonc.2022.874473]
- Yang F, Xu GL, Huang JT, Yin Y, Xiang W, Zhong BY, Li WC, Shen J, Zhang S, Yang J, Sun HP, Wang WS, Zhu XL. Transarterial 38 Chemoembolization Combined With Immune Checkpoint Inhibitors and Tyrosine Kinase Inhibitors for Unresectable Hepatocellular Carcinoma: Efficacy and Systemic Immune Response. Front Immunol 2022; 13: 847601 [PMID: 35300339 DOI: 10.3389/fimmu.2022.847601]
- Yang F, Yang J, Xiang W, Zhong BY, Li WC, Shen J, Zhang S, Yin Y, Sun HP, Wang WS, Zhu XL. Safety and Efficacy of Transarterial 39 Chemoembolization Combined With Immune Checkpoint Inhibitors and Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma. Front

WJGO | https://www.wjgnet.com

Oncol 2021; 11: 657512 [PMID: 35096555 DOI: 10.3389/fonc.2021.657512]

- Wu JY, Yin ZY, Bai YN, Chen YF, Zhou SQ, Wang SJ, Zhou JY, Li YN, Qiu FN, Li B, Yan ML. Lenvatinib Combined with Anti-PD-1 40 Antibodies Plus Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. J Hepatocell Carcinoma 2021; 8: 1233-1240 [PMID: 34676181 DOI: 10.2147/JHC.S332420]
- Cao F, Yang Y, Si T, Luo J, Zeng H, Zhang Z, Feng D, Chen Y, Zheng J. The Efficacy of TACE Combined With Lenvatinib Plus Sintilimab 41 in Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. Front Oncol 2021; 11: 783480 [PMID: 34988019 DOI: 10.3389/fonc.2021.783480]
- Zheng L, Fang S, Wu F, Chen W, Chen M, Weng Q, Wu X, Song J, Zhao Z, Ji J. Efficacy and Safety of TACE Combined With Sorafenib Plus 42 Immune Checkpoint Inhibitors for the Treatment of Intermediate and Advanced TACE-Refractory Hepatocellular Carcinoma: A Retrospective Study. Front Mol Biosci 2020; 7: 609322 [PMID: 33521054 DOI: 10.3389/fmolb.2020.609322]
- 43 Chen S, Wu Z, Shi F, Mai Q, Wang L, Wang F, Zhuang W, Chen X, Chen H, Xu B, Lai J, Guo W. Lenvatinib plus TACE with or without pembrolizumab for the treatment of initially unresectable hepatocellular carcinoma harbouring PD-L1 expression: a retrospective study. J Cancer Res Clin Oncol 2022; 148: 2115-2125 [PMID: 34453221 DOI: 10.1007/s00432-021-03767-4]
- Hu Y, Pan T, Cai X, He QS, Zheng YB, Huang MS, Jiang ZB, Chen JW, Wu C. Addition of transarterial chemoembolization improves 44 outcome of tyrosine kinase and immune checkpoint inhibitors regime in patients with unresectable hepatocellular carcinoma. J Gastrointest Oncol 2023; 14: 1837-1848 [PMID: 37720446 DOI: 10.21037/jgo-23-486]
- Liu J, Li Z, Zhang W, Lu H, Sun Z, Wang G, Han X. Comprehensive Treatment of Trans-Arterial Chemoembolization Plus Lenvatinib 45 Followed by Camrelizumab for Advanced Hepatocellular Carcinoma Patients. Front Pharmacol 2021; 12: 709060 [PMID: 34733154 DOI: 10.3389/fphar.2021.709060
- Kudo M, Ueshima K, Ikeda M, Torimura T, Tanabe N, Aikata H, Izumi N, Yamasaki T, Nojiri S, Hino K, Tsumura H, Kuzuya T, Isoda N, 46 Yasui K, Aino H, Ido A, Kawabe N, Nakao K, Wada Y, Yokosuka O, Yoshimura K, Okusaka T, Furuse J, Kokudo N, Okita K, Johnson PJ, Arai Y; TACTICS study group. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020; 69: 1492-1501 [PMID: 31801872 DOI: 10.1136/gutinl-2019-318934]
- Kudo M, Ueshima K, Saeki I, Ishikawa T, Inaba Y, Morimoto N, Aikata H, Tanabe N, Wada Y, Kondo Y, Tsuda M, Nakao K, Ito T, Hosaka 47 T, Kawamura Y, Kuzuya T, Nojiri S, Ogawa C, Koga H, Hino K, Ikeda M, Moriguchi M, Hisai T, Yoshimura K, Furuse J, Arai Y. A Phase 2, Prospective, Multicenter, Single-Arm Trial of Transarterial Chemoembolization Therapy in Combination Strategy with Lenvatinib in Patients with Unresectable Intermediate-Stage Hepatocellular Carcinoma: TACTICS-L Trial. Liver Cancer 2024; 13: 99-112 [PMID: 38344448 DOI: 10.1159/000531377
- Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023; 79: 506-515 [PMID: 36933770 48 DOI: 10.1016/j.jhep.2023.03.003]
- Cheng AL, Oin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Lim HY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Ma N, 49 Nicholas A, Wang Y, Li L, Zhu AX, Finn RS. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76: 862-873 [PMID: 34902530 DOI: 10.1016/j.jhep.2021.11.030]
- Jin ZC, Chen JJ, Zhu XL, Duan XH, Xin YJ, Zhong BY, Chen JZ, Tie J, Zhu KS, Zhang L, Huang M, Piao MJ, Li X, Shi HB, Liu RB, Xu 50 AB, Ji F, Wu JB, Shao GL, Li HL, Huang MS, Peng ZY, Ji JS, Yuan CW, Liu XF, Hu ZC, Yang WZ, Yin GW, Huang JH, Ge NJ, Qi X, Zhao Y, Zhou JW, Xu GH, Tu Q, Lin HL, Zhang YJ, Jiang H, Shao HB, Su YJ, Chen TS, Shi BQ, Zhou X, Zhao HT, Zhu HD, Ren ZG, Teng GJ; CHANCE2201 Investigators. Immune checkpoint inhibitors and anti-vascular endothelial growth factor antibody/tyrosine kinase inhibitors with or without transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma (CHANCE2201): a target trial emulation study. EClinicalMedicine 2024; 72: 102622 [PMID: 38745965 DOI: 10.1016/j.eclinm.2024.102622]

WJGO | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

