REVIEW
1146 Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes
Bansal S, Burman A, Tripathi AK

1163 Dysglycemia and arrhythmias
Sun DK, Zhang N, Liu Y, Qiu JC, Tse G, Li GP, Roever L, Liu T

1178 Gestational diabetes mellitus and COVID-19: The epidemic during the pandemic
Mendez Y, Alpuing Radilla LA, Delgadillo Chabolla LE, Castillo Cruz A, Luna J, Sarani S

MINIREVIEWS
1194 Ten-year review of trends in children with type 1 diabetes in England and Wales
Ng SM, Soni A

1202 Impact of inhaled and intranasal corticosteroids on glucose metabolism and diabetes mellitus: A mini review
See KC

1212 Diabetes mellitus as a consequence of acute severe pancreatitis: Unraveling the mystery
Manrai M, Singh AK, Birda CL, Shah J, Dutta A, Bhadada SK, Kochhar R

1226 Advances in cardiovascular-related biomarkers to predict diabetic peripheral neuropathy
Cheng MK, Guo YY, Kang XN, Zhang L, Wang D, Ren HH, Yuan G

ORIGINAL ARTICLE
Basic Study
1234 Potential role of microRNA-503 in Icariin-mediated prevention of high glucose-induced endoplasmic reticulum stress
Su BL, Wang LL, Zhang LY, Zhang S, Li Q, Chen GY

1249 Impact of bariatric surgery on glucose and lipid metabolism and liver and kidney function in food-induced obese diabetic rats
Long H, Zhao L, Xiao ZS, Li SX, Huang QL, Xiao S, Wu LL

Case Control Study
1259 Risk and predictors of severity and mortality in patients with type 2 diabetes and COVID-19 in Dubai
Contents

World Journal of Diabetes

Monthly Volume 14 Number 8 August 15, 2023

Retrospective Study

1271
Conbercept combined with laser photocoagulation in the treatment of diabetic macular edema and its influence on intraocular cytokines
Zhan HQ, Zhou JL, Zhang J, Wu D, Gu CY

Observational Study

1280
Effects of glucagon-like peptide-1 receptor agonists on glucose excursion and inflammation in overweight or obese type 2 diabetic patients
Huang XM, Zhong X, Du YJ, Guo YY, Pan TR

META-ANALYSIS

1289
Prognostic role of metformin in diabetes mellitus type 2 patients with hepatocellular carcinoma: A systematic review and meta-analysis
Cigrovski Berkovic M, Giovanardi F, Mrzljak A, Lai Q

1301
New environmental factors related to diabetes risk in humans: Emerging bisphenols used in synthesis of plastics

1314
Sodium-glucose Cotransporter-2 Inhibitors induced euglycemic diabetic ketoacidosis: A meta summary of case reports
Juneja D, Nasa P, Jain R, Singh O

CASE REPORT

1323
Sequential treatment for diabetic foot ulcers in dialysis patients: A case report
Wang JJ, Yu YY, Wang PY, Huang XM, Chen X, Chen XG
ABOUT COVER
Editorial Board Member of World Journal of Diabetes, Samuel Trevino, PhD, Full Professor, Research Scientist, Clinical Biochemistry, University Autonomous of Puebla, Puebla 72000, Mexico. samuel_trevino@hotmail.com

AIMS AND SCOPE
The primary aim of World Journal of Diabetes (WJD, World J Diabetes) is to provide scholars and readers from various fields of diabetes with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJD mainly publishes articles reporting research results and findings obtained in the field of diabetes covering a wide range of topics including risk factors for diabetes, diabetes complications, experimental diabetes mellitus, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes, diabetic angiopathies, diabetic cardiomyopathies, diabetic coma, diabetic ketoacidosis, diabetic nephropathies, diabetic neuropathies, Donohue syndrome, fetal macrosomia, and prediabetic state.

INDEXING/ABSTRACTING
The WJD is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJD as 4.2; IF without journal self cites: 4.1; 5-year IF: 4.5; Journal Citation Indicator: 0.69; Ranking: 51 among 145 journals in endocrinology and metabolism; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Editorial Office Director: Jia-Ru Fan.
Retrospective Study

Conbercept combined with laser photocoagulation in the treatment of diabetic macular edema and its influence on intraocular cytokines

Hui-Qin Zhan, Ji-Lin Zhou, Jun Zhang, De Wu, Chun-Yan Gu

Specialty type: Ophthalmology
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind

Abstract

BACKGROUND

The prevalence of diabetes mellitus (DM) in China is high, and the base is broad. Diabetic retinopathy (DR) is a critical condition affecting the life and health of a nation and its economic development. DR is a common complication of DM.

AIM

To investigate the efficacy of laser photocoagulation combined with intravitreal injection of conbercept for treating macular edema.

METHODS

Overall, 130 patients with diabetic macular edema (DME) hospitalized in The Third People’s Hospital of Changzhou from January 2019 to June 2022 were retrospectively included. According to the treatment plan, 130 patients with DME were categorized into an observation and a control group, with 65 patients in each group. The control group received laser photocoagulation, and the observation group received laser photocoagulation with intravitreal injection of conbercept. Observe changes in vision, cytokines in the eye and so on.

RESULTS

The total efficacy rate in the observation group (93.85%) was higher than that in the control group (78.46%) \((P < 0.05)\). In both groups, the best corrected visual acuity correction effect improved after treatment, and the observation group was superior to the control group \((P < 0.05)\). Retinal thickness and central macular thickness improved after treatment, and the observation group was superior to the control group \((P < 0.05)\). The levels of vascular endothelial growth factor, interleukin-6, soluble intercellular adhesion molecule-1, and basic fibroblast growth factor in both groups improved after treatment, and the observation group was superior to the control group \((P < 0.05)\).

CONCLUSION
In patients with macular edema, combining laser photocoagulation and intravitreal injections of conbercept for DME is a more effective and safer strategy to improve vision, and lower intraocular cytokine levels.

Key Words: Conbercept; Laser photocoagulation; Diabetes treatment; Diabetic retinopathy; Diabetic macular edema; Intraocular cytokines

INTRODUCTION
Diabetic retinopathy (DR) is a common complication in patients with diabetes. DR is a critical factor affecting people’s lives, health, and economic development. Furthermore, there are many reasons for vision loss in patients with DR, including diabetic macular edema (DME). However, the etiology of DME is unknown and may be related to reduced retinal barrier function in macular DME, which mainly appears as a retinal thickening and can cause patients to develop significant DME, primarily manifesting as a retinal thickening and can cause patients to develop substantial visual impairment, which requires active treatment[1]. Historically, the main clinical treatment strategy for DME has been laser photocoagulation of the retina under glycemic control, where laser energy causes protein denaturation and coagulation, capillary and outer retinal wall occlusion, and reduced macular blood flow[2]. Laser photocoagulation is important in treating retinal vascular diseases and cannot be completely replaced by various intraocular drugs. The predominant technique in the clinical treatment of DR is laser photocoagulation because it inhibits intraocular vascular growth, reduces macular edema, and improves visual acuity.[3]

DR is primarily caused by metabolic abnormalities and organ dysfunction due to diabetes. Therefore, laser photocoagulation alone improves symptoms and effectively prevents DR[4]. As research progresses, it is currently known that the development of DME is closely related to vascular endothelial growth factor [hereafter referred to as vascular endothelial growth factor (VEGF)]. Intravitreal administration of anti-VEGF drugs can rapidly improve DME symptoms and has attracted significant clinical attention. Conbercept is a humanized anti-VEGF drug manufactured domestically and with a strong presence in the domestic market, available for treating ocular vascular diseases with remarkable results[5]. This study aimed to evaluate the combined effects of conbercept intravitreal administration and laser retinal photocoagulation for DME, compare the effects of combined treatment and laser photocoagulation alone, and propose a new clinical treatment system for DME in DR.

MATERIALS AND METHODS

General information
Overall, 130 patients with DME who were hospitalized in The Third People’s Hospital of Changzhou between January 2019 and June 2022 were retrospectively included. According to the treatment plan, 130 patients with DME were categorized into an observation and a control group, with 65 patients in each group. The observation group comprised 39 males (39 diseased eyes) and 26 females (26 diseased eyes). The age of the patients in this group was 33-79 (51.07 ± 12.50) years. The disease duration in the selected patients ranged from 1 to 4 (2.49 ± 0.34) wk. The control group comprised 36 males (48 diseased eyes) and 29 females (39 diseased eyes). The age of the patients in the control group ranged from 34 to 78 (52.48 ± 11.37) years. Their disease duration ranged from 1 to 4 (2.58 ± 0.37) wk. No significant differences were found in the general characteristics (sex, age, or disease duration) between the two groups (P > 0.05).

Inclusion and exclusion criteria
The inclusion criteria were as follows: (1) Age ≥18, met diagnostic criteria for DR; (2) met DME diagnostic standards, best corrected visual acuity (BCVA) < 0.6, and central macular thickness (CMT) ≥ 250 μm; and (3) no severe organ
dysfunction, such as heart, liver, and kidney.

The exclusion criteria were as follows: (1) Previous cataract or other eye surgeries; (2) other types of maculopathy; and (3) patients who could not undergo eye surgery[6].

Therapeutic method

Intravitreal injection of conbercept and laser photocoagulation treatment were used in the observation group; antibiotic eye drops were routinely used 5 d preoperatively. Intravitreal injections of conbercept included disinfection of a drapery, topical anesthesia, eyelid opener, povidone-iodine solution (5%), conjunctival sac disinfection, and normal saline irrigation. A 1-mL disposable syringe was connected to a 30 G needle to suction 0.05 mL conbercept injection. The tip of the needle was perpendicular to the eyeball wall, and the needle was inserted approximately 1 cm from the flat part of the ciliary body 3.5-3.8 mm behind the superior temporal limbus.

The needle was confirmed to reach the vitreous cavity from the pupil area, slowly push the injection, pull it out after completion, and gently press the needle eye with a cotton swab for 2 min. Tobramycin and Dexamethasone Eye Ointment were applied to the conjunctival sac, a bandage was used, and antibiotics were administered for 3 d[7].

The 532 nm laser pan-retinal photocoagulation: 1 wk after intravitreal injection of conbercept, laser system (California, Lumenis, United States), wavelength 532 nm, spot diameter 200-300 μm, exposure time 0.2-0.3 s, power level I-III, and Spaced one spot diameter apart. First, photocoagulation of the uncovered part of the vitreous hemorrhage was performed 3-4 times at 1-wk intervals as the accumulated blood was absorbed. The total effective photocoagulation volume was 1200-1500 points. It was completed by senior doctors of the same specialty[8].

The control group was treated with 532 nm laser photocoagulation, and the procedure was the same as that of the observation group.

Detection methods of related indicators

(1) BCVA was measured according to the international standard eye chart; (2) retinal thickness was measured using optical coherence tomography (OCT, Heidelberg, Germany); (3) CMT was measured using OCT; (4) a 5-mL was collected in the morning in a common vacuum tube and centrifuged at 3500 rpm for 15 min at a centrifuge radius of 8 cm. The upper serum was collected, and the level of VEGF was measured using ELISA; (5) vitreous fluid from patients was collected and diluted, and interleukin-6 (IL-6) expression and soluble intercellular adhesion molecule-1 (sICAM-1) and basic fibroblast growth factor (BFGF) levels were measured using ELISA; and (6) the adverse reactions during treatment were recorded in both groups[9].

The criterion of therapeutical effect

Significant effect: Fundus fluorescein angiography showed retinal capillaries, arteriolar non-perfusion area, and no neovascularization and visual acuity reached 5.0 or improved more than 2 lines; effective: Retinal capillaries, arteriolar non-perfusion area, and neovascularization significantly reduced, visual acuity improved 1 line; ineffective: retinal capillaries, arteriolar non-perfusion area, and neovascularization did not decrease or aggravate, and visual acuity did not improve. Ametropia refers to corrected visual acuity. Total effective rate = (effective + markedly effective)/total cases × 100%[10].

Observation target

(1) The BCVA was measured using an international standard visual acuity chart at four-time points: Before treatment, 1 mo after treatment, 3 mo after treatment, and 6 mo after treatment; (2) the retinal thickness was measured using an OCT scanner at four-time points: Before treatment, 1 mo after treatment, 3 mo after treatment, and 6 mo after treatment; (3) CMT was measured using OCT before treatment, 1 mo of treatment, 3 mo of treatment, and 6 mo after treatment; (4) cytokine levels: before treatment, after 1 mo of treatment, after 3 mo of treatment, and after 6 mo of treatment; (5) vitreous fluid was collected from the patient, diluted, and assayed using enzyme-linked immunoassay for VEGF and IL-6 and sICAM-1 and BFGF[11]. Adverse events also need to be recorded: The occurrence of adverse reactions during treatment in both groups, such as elevated intraocular pressure, endophthalmitis, vitreous hemorrhage, and retinal detachment, among others[12].

Statistical analysis

The clinical data were analyzed using SPSS statistical software. The test data followed a normal distribution and were expressed as mean ± SD regarding homogeneity of variance and compared using independent sample t-tests. Count data were expressed as n (%) using the c² test; statistical significance was set at P < 0.05.

RESULTS

Clinical effects

The patients in both groups showed high efficacy; however, the total efficacy rate in the observation group was higher than that in the control group (P < 0.05) (Table 1).

Comparison of two groups of BCVA

The BCVA of the control and observation groups before treatment was not significantly different (P > 0.05). After 1 mo of
treatment, the BCVA in both groups improved. After 3 mo and 6 mo of treatment, the BCVA in both groups improved significantly, and that in the observation group was superior to that in the control group. According to the independent samples t-test, the changes in BCVA in the two groups were statistically different at the three-time points after treatment and were comparable ($P < 0.05$), as shown in Table 2.

Retinal thickness

No significant difference was observed in the retinal thickness between the two groups before treatment ($P > 0.05$). After 1 mo of treatment, it was visually evident from the images that the retinal thickness of both groups improved. Retinal thickness in both groups improved significantly after 3 and 6 mo of treatment, and the effect in the observation group was better than that in the control group. According to the t-test, a significant variation existed in retinal thickness changes between the two groups at the three time points after treatment ($P < 0.05$) (Table 3).

Comparison of CMT between two groups of patients

The difference in CMT between the two groups before treatment was not statistically significant ($P > 0.05$). The CMT in both groups improved after 1 mo of treatment. The CMT in both groups could be found to be substantially improved after 3 mo and 6 mo of treatment, and the effect of the observation group was better than that of the control group. Notably, the changes in CMT in both groups at the two-time points were statistically different ($P < 0.05$) (Table 4).

Cytokine levels

The data showed no statistical discrepancy in the levels of VEGF, IL-6, sICAM-1, and BFGF between the observation control group before treatment ($P > 0.05$). The cytokine levels in both groups gradually decreased after 1 mo, 3 mo, and 6 mo of treatment. According to the independent samples t-test, VEGF, IL-6, sICAM-1, and BFGF levels were statistically different between the observation and control groups at the three time points after treatment ($P < 0.05$), as shown in Tables 5-8.

Untoward effect

The two groups had 2 and 3 cases of intraocular pressure hypertension and 1 and 1 case of vitreous injection site hemorrhage, respectively. Retinal detachment or fundus lesions were not observed in either group. The total incidence of adverse events in the control and observation groups was 4.61% and 6.15% (control and observation), respectively, and no significant difference was found between the two groups in the total incidence of adverse events ($\chi^2 = 2.222$, $P > 0.05$).

DISCUSSION

Studies have demonstrated that approximately 6.8% of patients with diabetes experience vision loss due to DME. Clinically, DME is defined as a retinal thickening or hard exudation within 1.5 mm of the fovea. The mechanism of DME may involve a local inflammatory reaction or oxidative stress reaction[13]. It damages the retinal barrier and increases retinal permeability. Some proteins and water molecules enter the parenchymal layer from outside the retina, increasing intercellular space[14]. If these components converge into the macular area, they will cause retinal thickening and visual impairment in the macular area[15]. Intravitreal injection of anti-VEGF drugs and laser photocoagulation are options for treating DME; however, both methods have limitations. Photocoagulation has a long history of use in treating DR. Photocoagulation can inhibit blood vessel proliferation, relieve hypoxia in the inner retina, and improve visual function. Patients with DR still experience vision loss shortly after simple photocoagulation treatment, which is related to the failure to eliminate the underlying cause of DR formation. Abnormal angiogenesis plays a key role in the occurrence and development of DR. Retinal laser photocoagulation is used to transform laser energy into heat energy and then use its consistency and strong directionality to form scars at specific locations in the retina to repair eye tissue[16]. However, it has the risk of burning the retinal fovea and damaging the retinal pigment epithelial cells, and the treatment effect in moderate to severe DME is not ideal[17]. Anti-VEGF drugs reduce angiogenesis by inhibiting the binding of VEGF to its receptors[18]. Some patients do not respond to anti-VEGF drugs. Although anti-VEGF drugs can improve the visual acuity and anatomical structure in patients with DME, they cannot replace retinal laser photocoagulation. Therefore, laser photocoagulation in combination with the injection of an anti-VEGF is recommended. Conbercept, which is a fusion protein extracted from hamster ovarian cells, has antiangiogenic and antiproliferative effects on endothelial cells. It has been successfully used to treat wet age-related macular degeneration[19]. Therefore, this study used a combination...
Zhan HQ et al. Conbercept combined with laser photocoagulation

Table 2 Comparison of best-corrected visual acuity before and after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>BCVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prior treatment</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>(t) value</td>
<td></td>
<td>1.224</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.223</td>
</tr>
</tbody>
</table>

\(^1\)Indicates the intra-group comparison with that before treatment, \(P < 0.05\).
\(^2\)Indicates that compared with 1 mo after treatment, \(P < 0.05\).
\(^3\)Indicates \(\bar{P} < 0.05\), in the group compared with 3 mo of treatment.
BCVA: Best-corrected visual acuity.

Table 3 Retinal thickness before and after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Retinal thickness (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prior treatment</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>637.20 ± 101.96</td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>638.39 ± 103.16</td>
</tr>
<tr>
<td>(t) value</td>
<td></td>
<td>-0.492</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.624</td>
</tr>
</tbody>
</table>

\(^1\)Indicates the intra-group comparison with that before treatment, \(P < 0.05\).
\(^2\)Demonstrates that compared with 1 mo after treatment, \(P < 0.05\).
\(^3\)Indicates \(\bar{P} < 0.05\), in the group compared with 3 mo of treatment.

Table 4 Before and after central macular thickness treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>CMT (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prior treatment</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>360.60 ± 41.62</td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>357.63 ± 42.51</td>
</tr>
<tr>
<td>(t) value</td>
<td></td>
<td>0.493</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.623</td>
</tr>
</tbody>
</table>

\(^1\)Indicates the intra-group comparison with that before treatment, \(P < 0.05\).
\(^2\)Indicates that compared with 1 mo after treatment, \(P < 0.05\).
\(^3\)Indicates intra-group comparison with 3 mo treatment, \(P < 0.05\).
CMT: Central macular thickness.

treatment protocol for DME and examined its efficacy and safety to explore a more economical and effective treatment scheme for DME[20].

Analysis of the data before and after the four treatment periods revealed that laser photocoagulation combined with conbercept injection had a better treatment effect on DME, which can effectively improve the visual quality of patients and inhibit retinal thickening[21]. Retinal laser photocoagulation reduces macular edema in the following two ways: One is by blocking the capillary network through the thermal effect of the laser, which decreases the permeability of the retina and reduces the infiltration rate; and other is in the retinal epithelium that damages the photoreceptor cells in the retina and decreases their VEGF expression, which decreases angiogenesis in the retina and improves its hypoxic state. This has proven to be a practical and effective treatment method; however, its treatment time is considerably long and can cause visual field defects, thereby reducing its effectiveness[22]. In combination with retinal laser photocoagulation, DME can be treated from the following two perspectives: inhibition of macular effusion and multitargeted inhibition of VEGF expression. In our study, we found that compazepib significantly increased laser penetration during retinal laser photocoagulation and enhanced its efficacy[23].
Zhan HQ et al. Conbercept combined with laser photocoagulation

Studies have also shown\cite{24} that intravitreal injection of conbercept combined with pan-retinal photocoagulation is more effective in treating severe non-proliferative DR with macular edema. Placental growth factor (PIGF) has various biological effects that induce endothelial cell proliferation and stimulate angiogenesis. It also increases vascular permeability by enhancing endothelial cell migration. Studies\cite{25} have found that PIGF is highly expressed in pathological conditions, such as inflammation, tumors, tissue ischemia, and hypoxia, which may be related to the occurrence and development of DME. Another reason for the enhanced efficacy of the combined treatment of the two DME methods in this study may be associated with the inhibition of PIGF expression. VEGF is a glycoprotein with a molecular mass of 36 kDa to 46 kDa that induces cell mitosis and promotes angiogenesis. This is an important cellular factor associated with DME. When the retina is ischemic and hypoxic, related cells secrete a large amount of VEGF, which can interact with the tight junction proteins of endothelial cells, thereby destroying the structure and function of the blood-retinal barrier, eventually leading to retinal capillary leakage and macular edema. A critical component of the DME disease process is the inflammatory response, and various pro-inflammatory factors can affect each other and aggravate...

Table 5 Levels of vascular endothelial growth factor before and after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>VEGF (ng/mL)</th>
<th>Prior treatment</th>
<th>One month of treatment</th>
<th>Three months of treatment</th>
<th>Treatment for 6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>423.73 ± 76.35</td>
<td>336.73 ± 65.28</td>
<td>170.30 ± 41.32</td>
<td>106.32 ± 10.71</td>
<td></td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>424.32 ± 77.31</td>
<td>301.62 ± 63.78</td>
<td>110.32 ± 36.72</td>
<td>66.79 ± 10.21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.151</td>
<td>0.880</td>
</tr>
</tbody>
</table>

1Indicates the intra-group comparison with that before treatment, $P < 0.05$.

2Indicates that compared with 1 month after treatment, $P < 0.05$.

3Indicates intra-group comparison with 3-mo treatment, $P < 0.05$.

VEGF: Vascular endothelial growth factor.

Table 6 Interleukin-6 levels before and after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>IL-6 (ng/mL)</th>
<th>Prior treatment</th>
<th>One month of treatment</th>
<th>Three months of treatment</th>
<th>Treatment for 6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>76.31 ± 11.76</td>
<td>66.31 ± 11.76</td>
<td>52.34 ± 8.71</td>
<td>42.91 ± 5.93</td>
<td></td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>75.24 ± 12.03</td>
<td>60.12 ± 8.03</td>
<td>45.71 ± 7.62</td>
<td>34.73 ± 5.63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.196</td>
<td>0.845</td>
</tr>
</tbody>
</table>

1Indicates the intra-group comparison with that before treatment, $P < 0.05$.

2Indicates that compared with 1 mo after treatment, $P < 0.05$.

3Indicates intra-group comparison with 3-mo treatment, $P < 0.05$.

IL-6: Interleukin-6.

Table 7 Levels of soluble intercellular adhesion molecule-1 before and after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>sICAM-1 (ng/mL)</th>
<th>Prior treatment</th>
<th>One month of treatment</th>
<th>Three months of treatment</th>
<th>Treatment for 6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>373.37 ± 83.12</td>
<td>313.71 ± 54.62</td>
<td>236.42 ± 37.91</td>
<td>205.71 ± 20.31</td>
<td></td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>376.39 ± 83.83</td>
<td>280.18 ± 54.62</td>
<td>200.73 ± 37.91</td>
<td>180.31 ± 20.72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.043</td>
<td>0.966</td>
</tr>
</tbody>
</table>

1Indicates the intra-group comparison with that before treatment, $P < 0.05$.

2Indicates that compared with 1 mo after treatment, $P < 0.05$.

3Indicates intra-group comparison with 3-mo treatment, $P < 0.05$.

sICAM-1: Soluble intercellular adhesion molecule-1.
Table 8 Levels before and after serum basic fibroblast growth factor treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>BFGF (g/L)</th>
<th>Prior treatment</th>
<th>One month of treatment</th>
<th>Three months of treatment</th>
<th>Treatment for 6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>52.16 ± 8.17</td>
<td>49.31 ± 7.28<sup>1</sup></td>
<td>40.21 ± 6.22<sup>1</sup></td>
<td>32.41 ± 3.21<sup>1,2,3</sup></td>
<td></td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>53.07 ± 8.02</td>
<td>44.12 ± 7.16<sup>1</sup></td>
<td>33.34 ± 5.98<sup>1,2</sup></td>
<td>23.62 ± 3.16<sup>1,2,3</sup></td>
<td></td>
</tr>
<tr>
<td>t value</td>
<td>-0.201</td>
<td>3.675</td>
<td>6.601</td>
<td>11.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.841</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Indicates the intra-group comparison with that before treatment, P < 0.05.

²Indicates that compared with 1 mo after treatment, P < 0.05.

³Indicates intra-group comparison with 3-mo treatment, P < 0.05.

BFGF: Basic fibroblast growth factor.

Previous studies have demonstrated²⁷ that microglia are bifurcated and distributed in the inner retina under normal physiological conditions and mainly monitor retinal immunity. When there is local inflammation in the retina, microglia are activated, become amebic, and gather at the site of inflammation, causing an inflammatory cascade, releasing many inflammatory mediators, and causing changes in vascular permeability. Additionally, inflammation can alter the function of retinal Müller cells, reduce the efficiency of intracellular fluid clearance, and cause fluid accumulation. IL-6 is a classic pro-inflammatory factor that induces apoptosis in retinal cells and increases their permeability by activating the nuclear factor-kB pathway. It is also an important inflammatory factor in DME²⁸. sICAM-1 is an immunoglobulin, and in this study, the levels of VEGF, IL-6, sICAM-1, and BFGF in the vitreous fluid of the observation group were significantly reduced at three-time points after treatment-induced DME, and the efficacy was better. The intravitreal syringe of conbercept combined with laser photocoagulation improved the hypoxic state, reduced the inflammatory response, and enhanced treatment efficacy.

When conbercept and ranibizumab were compared in DME, it was found that both anti-VEGF drugs inhibited the expression of VEGF and IL-6²⁹. The results showed that the use of conbercept in DR was safer and more credible. Therefore, to prevent DME, we should increase screening and health promotion for people at risk of DME (patients with poor glycemic control, combined hypertension, combined hyperlipidemia, kidney disease, anemia, and pregnancy) so that they know the specific means of preventing and cultivating good habits.

CONCLUSION

Conbercept, combined with laser photocoagulation, is a highly effective therapeutic agent for DR. Its action mechanism may be achieved by downregulating the expression of VEGF, IL-6, sICAM-1, BFGF, and other genes. Although the study had positive results, it also had some limitations. Among them, the sample size is small, which makes the research results lack sufficient representativeness. Second, the short duration of the study may lead to the lack of long-term validation of the results. In order to better generalize the results of this study, follow-up studies need to focus on these limiting factors, which could help guide clinical treatment.

ARTICLE HIGHLIGHTS

Research background
China has a high prevalence of diabetes and a large base of diabetes. Diabetic retinopathy (DR) seriously affects the patients’ quality of life.

Research motivation
DR is an important condition affecting people’s lives, health, and economic development. Therefore, effective and efficient treatment programs are required.

Research objectives
To provide better treatment for DR with macular edema.

Research methods
We selected 130 patients with diabetic macular edema who were hospitalized between January 2018 and May 2020 and assigned them to the following two groups according to treatment: the observation and control groups. The control group
was treated with laser photocoagulation, and the observation group received laser photocoagulation with an intravitreal injection of conbercept (65 patients in each group). Clinical efficacy was evaluated, and seven indicators were measured.

Research results
The total efficacy rate in the observation group (93.85%) was higher than that in the control group (78.46%). In both groups, the BCVA correction effect was better after treatment, and that in the observation group was superior to that in the control group. Retinal thickness and CMT improved after treatment, and the observation group was superior to the control group. The levels of VEGF, IL-6, sICAM-1, and BFGF in both groups improved after treatment, and the observation group was superior to the control group.

Research conclusions
In patients with macular edema, the combination of laser photocoagulation and intravitreal injections of Conbercept for DME is a more effective and safer way to improve vision, reduce retinal thickness, and lower intraocular cytokine VEGF levels.

Research perspectives
It is more effective in treating DR with macular edema and is worthy of widespread promotion.

FOOTNOTES

Author contributions: Zhan HQ designed and performed the research and wrote the paper; Gu CY designed the research and supervised the report; Zhou JL designed the research and contributed to the analysis; Zhang J and Wu D provided clinical advice.

Supported by the Youth Project of Changzhou Health Commission, No. QN202129.

Institutional review board statement: This study was reviewed and approved by the Third People’s Hospital of Changzhou.

Informed consent statement: This study has obtained informed consent from all patients.

Conflict-of-interest statement: The authors declare no conflict of interest.

Data sharing statement: Does not support sharing data with third parties.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number:
- Hui-Qin Zhan 0009-0004-5418-9491;
- Ji-Lin Zhou 0009-0005-9187-9106;
- Jun Zhang 0000-0003-3080-183X;
- De Wu 0009-0001-8753-1343;
- Chun-Yan Gu 0009-0005-6624-5689.

REFERENCES

Conbercept combined with laser photoocoagulation

Zhan HQ et al. Conbercept combined with laser photoocoagulation...