REVIEW

Encouraging specific biomarkers-based therapeutic strategies for hepatocellular carcinoma

ORIGINAL ARTICLE

Clinical and Translational Research

Autophagy-related long non-coding RNA prognostic model predicts prognosis and survival of melanoma patients

Identification of circ_0000375 and circ_0011536 as novel diagnostic biomarkers of colorectal cancer
Yin TF, Du SY, Zhao DY, Sun XZ, Zhou YC, Wang QJ, Zhou GYJ, Yao SK

Retrospective Study

Echocardiography in the diagnosis of Shone’s complex and analysis of the causes for missed diagnosis and misdiagnosis
Li YD, Meng H, Pang KJ, Li MZ, Xu N, Wang H, Li SJ, Yan J

Predictors and prognostic impact of post-operative atrial fibrillation in patients with hip fracture surgery
Bae SJ, Kwon CH, Kim TY, Chang H, Kim BS, Kim SH, Kim HJ

Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients
Ke ZR, Chen W, Li MX, Wu S, Jin LT, Wang TJ

Washed microbiota transplantation reduces serum uric acid levels in patients with hyperuricaemia
Cai JR, Chen XW, He YJ, Wu B, Zhang M, Wu LH

Clinical Trials Study

Concurrent chemoradiotherapy using gemcitabine and nedaplatin in recurrent or locally advanced head and neck squamous cell carcinoma

META-ANALYSIS

Effect of enhanced recovery after surgery on inflammatory bowel disease surgery: A meta-analysis
Peng D, Cheng YX, Tao W, Tang H, Ji GY

Accuracy of ultrasound elastography for predicting breast cancer response to neoadjuvant chemotherapy: A systematic review and meta-analysis
Chen W, Fang LX, Chen HL, Zheng JH
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 11 April 16, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3449</td>
<td>Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis</td>
<td>Zhao LY, Zhou XL</td>
</tr>
<tr>
<td>3472</td>
<td>Difference and similarity between type A interrupted aortic arch and aortic coarctation in adults: Two case reports</td>
<td>Ren SX, Zhang Q, Li PP, Wang XD</td>
</tr>
<tr>
<td>3478</td>
<td>Combination therapy (toripalimab and lenvatinib)-associated toxic epidermal necrolysis in a patient with metastatic liver cancer: A case report</td>
<td>Huang KK, Han SS, He LY, Yang LL, Liang BY, Zhen QY, Zhu ZB, Zhang CY, Li HY, Lin Y</td>
</tr>
<tr>
<td>3485</td>
<td>Unusual glomus tumor of the lower leg: A case report</td>
<td>Wang HY, Duan P, Chen H, Pan ZY</td>
</tr>
<tr>
<td>3490</td>
<td>Pulmonary Cladosporium infection coexisting with subcutaneous Corynespora cassiicola infection in a patient: A case report</td>
<td>Wang WY, Luo HB, Hu JQ, Hong HH</td>
</tr>
<tr>
<td>3496</td>
<td>Preoperative diagnosis and management of breast ductal carcinoma in situ arising within fibroadenoma: Two case reports</td>
<td>Wu J, Sun KW, Mo QP, Yang ZR, Chen Y, Zhong MC</td>
</tr>
<tr>
<td>3505</td>
<td>Reconstruction of complex chest wall defects: A case report</td>
<td>Huang SC, Chen CY, Qiu P, Yan ZM, Chen WZ, Liang ZZ, Luo KW, Li JW, Zhang YQ, Huang BY</td>
</tr>
<tr>
<td>3511</td>
<td>Young children with multidrug-resistant epilepsy and vagus nerve stimulation responding to perampanel: A case report</td>
<td>Yang H, Yu D</td>
</tr>
<tr>
<td>3541</td>
<td>Severe gastric insufflation and consequent atelectasis caused by gas leakage using AIR-Q laryngeal mask airway: A case report</td>
<td>Zhao Y, Li P, Li DW, Zhao GF, Li XY</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3547</td>
<td>Hypereosinophilic syndrome presenting as acute ischemic stroke, myocardial infarction, and arterial involvement: A case report</td>
<td>Sun RR, Chen TZ, Meng M</td>
</tr>
<tr>
<td>3553</td>
<td>Cytochrome P450 family 17 subfamily A member 1 mutation causes severe pseudohermaphroditism: A case report</td>
<td>Gong Y, Qin F, Li WJ, Li LY, He P, Zhou XJ</td>
</tr>
<tr>
<td>3573</td>
<td>Qingchang decoction retention enema may induce clinical and mucosal remission in left-sided ulcerative colitis: A case report</td>
<td>Li PH, Tang Y, Wen HZ</td>
</tr>
<tr>
<td>3587</td>
<td>Ultrasound-guided local ethanol injection for fertility-preserving cervical pregnancy accompanied by fetal heartbeat: Two case reports</td>
<td>Kakinuma T, Kakinuma K, Matsuda Y, Ohwada M, Yanagida K, Kajima H</td>
</tr>
<tr>
<td>3593</td>
<td>Successful apatinib treatment for advanced clear cell renal carcinoma as a first-line palliative treatment: A case report</td>
<td>Wei HP, Mao J, Hu ZL</td>
</tr>
<tr>
<td>3601</td>
<td>Del(5q) and inv(3) in myelodysplastic syndrome: A rare case report</td>
<td>Liang HP, Luo XC, Zhang YL, Liu B</td>
</tr>
<tr>
<td>3609</td>
<td>Papillary thyroid microcarcinoma with contralateral lymphatic skip metastasis and breast cancer: A case report</td>
<td>Ding M, Kong YH, Gu JH, Xie RL, Fei J</td>
</tr>
<tr>
<td>3615</td>
<td>Contrast-enhanced ultrasound manifestations of synchronous combined hepatocellular-cholangiocarcinoma and hepatocellular carcinoma: A case report</td>
<td>Gao L, Huang JY, Lu ZJ, Lu Q</td>
</tr>
<tr>
<td>3624</td>
<td>Thyrotoxicosis after a massive levothyroxine ingestion: A case report</td>
<td>Du F, Liu SW, Yang H, Duan RX, Ren WX</td>
</tr>
<tr>
<td>3630</td>
<td>Pleomorphic adenoma of the left lacrimal gland recurred and transformed into myoepithelial carcinoma after multiple operations: A case report</td>
<td>Huang WP, Li LM, Gao JB</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Chi-Yuan Yeh, MD, PhD, Assistant Professor, Chief Doctor, radiation oncology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan. peteryeh46@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch ®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
April 16, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerInfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerInfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerInfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Anti-nuclear matrix protein 2+ juvenile dermatomyositis with severe skin ulcer and infection: A case report and literature review

Ya-Ting Wang, Yu Zhang, Tao Tang, Chong Luo, Ming-Yue Liu, Li Xu, Li Wang, Xue-Mei Tang

Abstract

BACKGROUND
Juvenile dermatomyositis (JDM) is an idiopathic inflammatory myopathy that occurs in childhood. It is characterized by muscle weakness and a characteristic rash. Previous literature reports have rarely described JDM with severe skin ulcers and infections.

CASE SUMMARY
Herein, we describe a case of a 2-year-old female patient who suffered from JDM, whose myositis-specific autoantibodies were positive for anti-nuclear matrix protein 2 antibody, with progressively worsening skin ulcers and severe infections. The patient was treated with glucocorticoids and various immunosuppressants. Nevertheless, further progression of the disease and the combination of primary disease and severe infection in the later period were fatal.

CONCLUSION
In children, anti-nuclear matrix protein 2+ JDM combined with skin ulcers often indicates severe disease. In such cases, personalized treatment for the primary disease and infection prevention and control are essential.
Key Words: Juvenile dermatomyositis; Skin ulcer; Anti-nuclear matrix protein 2 antibody; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Juvenile dermatomyositis (JDM) is a rare systemic autoimmune disease characterized by specific skin lesions, chronic muscle inflammation, and systemic vasculitis. We report a very rare case of JDM with severe skin ulcers and infections. By reporting the disease development and treatment of this case of a patient positive for anti-nuclear matrix protein 2 (NXP2) antibody combined with skin ulcers and performing a comprehensive literature review, we summarize JDM with skin ulcers, the clinical characteristics of JDM combined with positivity for anti-NXP2 antibody, and treatment measures for severe JDM.

Citation: Wang YT, Zhang Y, Tang T, Luo C, Liu MY, Xu L, Wang L, Tang XM. Anti-nuclear matrix protein 2+ juvenile dermatomyositis with severe skin ulcer and infection: A case report and literature review. World J Clin Cases 2022; 10(11): 3579-3586
DOI: https://dx.doi.org/10.12998/wjcc.v10.i11.3579

INTRODUCTION
Juvenile dermatomyositis (JDM) is a rare systemic autoimmune disease characterized by vascular disease that mainly affects muscles and skin, as well as the lungs, intestines, heart, and other organs[1-3]. JDM can also lead to macrophage activation syndrome, which is a potentially fatal complication of a number of rheumatological conditions[4]. JDM is the most common inflammatory myopathy in children and has been reported to affect 1.9 individuals per million children in the United Kingdom and 2.4-4.1 individuals per million children in the United States[5,6]. Skin ulcers are one of the severe manifestations of childhood dermatomyositis; however, cases of severe skin ulcers with infections are rarely reported. Here, we report a single case of a 2-year-old female patient who suffered from JDM and whose myositis-specific autoantibodies (MSAs) were positive for anti-nuclear matrix protein 2 antibody, with progressively worsening skin ulcers and severe infections.

CASE PRESENTATION

Chief complaints
A 2-year-old Chinese girl came to the Department of Rheumatology and Immunology with a heliotrope rash for 1 mo and muscle weakness for 10 d.

History of present illness
This patient developed a heliotrope rash, periorbital edema, and nailfold capillary changes within 1 mo, with symmetric proximal muscle weakness. There was no fever, cough, hoarseness, or sensory disturbance.

History of past illness
The patient had no significant medical or surgical history.

Personal and family history
The child was born at full term. Her parents and other family members had no family history of autoimmune or other diseases.

Physical examination
After admission, the patient’s weight was 14 kg. There were heliotrope rashes on her face, periorbital edema, changes in nailfold capillaries, Gottron papules on the dorsal surface of the proximal interdigital (PIP), symmetric proximal muscle weakness of arms and legs, no erythema butterfly, and arthritis.

Laboratory examinations
Investigations revealed elevated creatine kinase of 12647 U/L (reference range, 50-220 U/L), lactate dehydrogenase (LDH) of 1358 U/L (reference range, 80-300 U/L), erythrocyte sedimentation rate (ESR) of 79 mm/h (reference range, 0-20 mm/h), and ferritin of 726 ng/mL (reference range, 10-120 ng/mL).
The autoantibody, immunoglobulin, and complement profiles were normal. Anti-nuclear matrix protein 2 (NXP-2) antibody was positive in the myositis spectrum, as determined by the dot-ELISA method, and no other myositis-associated autoantibodies were present (Table 1).

Imaging examinations
Magnetic resonance imaging (MRI) of the bilateral thighs revealed inflammatory changes in the musculature and subcutaneous fat layer of the thigh muscles on both sides, which were also characteristic of dermatomyositis. Electromyography (EMG) showed that the motor unit potential amplitude of the tibialis anterior and rectus femoris muscle was reduced, and the duration was shortened, thus suggesting myogenic abnormalities.

FINAL DIAGNOSIS
Characteristic skin lesions, proximal muscle weakness, elevated serum muscle enzyme levels, EMG myopathic abnormalities, and changes in muscle MRI findings confirmed the diagnosis of juvenile dermatomyositis.

TREATMENT
When the patient was diagnosed with anti-nuclear matrix protein 2 (NXP2)+ juvenile dermatomyositis, she initially received intravenous immunoglobulin (IVIG; 1 g/kg) for 2 d and high-dose glucocorticoids (GC; 15 mg/kg) for 3 d, after which she was treated with oral methylprednisolone (1.15 mg/kg.d), intravenous cyclophosphamide (IV CYC; 0.1 g/kg) for 2 d, methotrexate (MTX; 7.5 mg qw), hydroxychloroquine (0.05 g qd), and other symptomatic and supportive treatment. Following these treatments, the child’s rash and edema basically disappeared, and her muscle strength improved.

In the following 8 mo, the girl was hospitalized 9 times, and she received IVIG 9 times (1 g/kg for 2 d each time) and IV CYC 6 times, replacing MTX and hydroxychloroquine with mycophenolate mofetil (MMF) and thalidomide. From the 4th month of the illness, she was treated with tofacitinib (2.5 mg bid). In the first three months after diagnosis, the child developed livedo reticularis on the skin of the extremities (Figure 1A) and ulcers on the buttock and left upper arm, while the ulcerated surfaces gradually increased. In the 6th month, yellow necrotic fascia was visible on the left buttock (Figure 1B). After she received proper wound care, anti-infection, and adjustment of immunosuppressants, the ulcers improved (in the 8th month), showing gradual scabbing. Nonetheless, her mother discontinued the patient’s hospitalization. One month later, the patient suffered fatigue, anorexia, and multiple ulcers on the whole body again, which were worse than before. She never showed calcinosis during the whole course of the disease. After rehospitalization, she was given tocilizumab (12 mg/kg). However, when she received 20% of the infusion, the patient developed irritability, and her heart rate increased; thus, the administration of tocilizumab was stopped.

In the 10th month after diagnosis, the child was hospitalized for the last time because of bloody stools, fever, anorexia, listlessness, and multiple painful skin ulcers throughout the whole body (Figure 1C and D). The patient could not move on the bed by herself because of low muscle strength. Laboratory examinations revealed CK of 289 U/L, LDH of 689 U/L, and ESR of 92 mm/hr. Skin tissue biopsy of the left upper arm and left neck suggested epidermal necrosis, hyperplasia of subepidermal fibers and fatty tissues, visible vitreous and mucous changes, multifocal necrosis of the subepidermis and dermis, and focal chronic inflammatory cell infiltration. We used ceftazidime to fight infections and added vancomycin after 2 d. Pathogen detection in the pus from the buttock suggested Escherichia coli. Accordingly, the antibiotics were adjusted to vancomycin and meropenem; however, the ulcers further deepened (Figure 2A and B). After 9 d, re-examination of the culture revealed Pseudomonas aeruginosa and Staphylococcus epidermidis. Based on susceptibility testing, the antibiotics were changed to amikacin and ciprofloxacin. Other treatments included adjusting oral methylprednisolone at 6 mg qd (0.5 mg/kg.d) to intravenous methylprednisolone at 10 mg bid (2 mg/kg.d). During this period, the systemic dressing was changed at least 3 times per week, while IVIG, human albumin, component blood transfusion, and other symptomatic and supportive treatments were intermittently given.

OUTCOME AND FOLLOW-UP
On the 48th day after admission, gastrointestinal bleeding and shock occurred, after which the girl was transferred to the ICU. She was discharged 6 d later and died a few days after leaving the hospital.
Table 1 Laboratory examinations at the first hospital admission

<table>
<thead>
<tr>
<th>Laboratory examinations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>WBC: 6.71 × 10^9/L, PLT: 165 × 10^9/L, L: 0.37, N: 0.54, Hb: 120 g/L, CRP < 8 mg/L</td>
</tr>
<tr>
<td>Biochemical examination</td>
<td>CK: 12647 U/L, LDH: 1358 U/L, ALT: 116.6 U/L, AST: 359.5 U/L</td>
</tr>
<tr>
<td>ESR</td>
<td>79 mm/h</td>
</tr>
<tr>
<td>Ferritin</td>
<td>726 ng/mL</td>
</tr>
<tr>
<td>Autoantibody profile</td>
<td>Negative</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Normal</td>
</tr>
<tr>
<td>Complements</td>
<td>Normal</td>
</tr>
<tr>
<td>MSA</td>
<td>Anti-nuclear matrix protein 2 antibody positive</td>
</tr>
</tbody>
</table>

ALT: Alanine aminotransferase; AST: Aspartate transaminase; CBC: Complete blood count; CK: Creatine kinase; ESR: Erythrocyte sedimentation rate; LDH: Lactate dehydrogenase; MSA: Myositis-specific autoantibody.

Figure 1 Clinical examination 3, 6, and 10 mo after diagnosis. A: 3 mo, livedo reticularis; B: 6 mo, ulcers in the buttock; C and D: 10 mo, ulcers in the back (C) and left (D) shoulder.

DISCUSSION

JDM is a rheumatic disease that occurs in childhood, with a mortality rate reaching approximately < 4%, which is second only to systemic lupus erythematosus[7,8]. With early treatment, 30%-50% of patients are likely to achieve remission within 2-3 years from the onset of the disease. In addition to the characteristic skin lesions, other criteria include symmetric proximal muscle weakness, elevated serum muscle enzyme levels, myopathic changes on electromyogram, and typical muscle biopsy results[9].

An ulcer is one of the most serious skin manifestations of JDM and is widely regarded as an indication for more intensive treatment[10]. In different cohorts, the incidence of JDM skin ulcers has been reported to range from 2.6%-23%[7,11,12]. Rare cases have shown such severe skin ulceration with multiple pathogenic infections. Cutaneous ulceration may occur on any soft tissue in JDM, especially the armpits, elbows, or pressure points. Although rare, gluteal ulcers are more likely to worsen due to irritation caused by stool, urine, friction, and maceration, especially in infants and young children[13].

In our case, the child’s gluteal ulcer had a protracted condition that gradually expanded and deepened and was accompanied by refractory bacterial infection. Infection and JDM promote each other, which increases the difficulty of treatment and leads to prolonged and unhealed ulcers. A case of JDM in an infant with gluteal ulcer has been reported in Japan. After treatment with high-dose glucocorticoids with cyclophosphamide and MTX, the ulcer gradually healed[13]; however, this case was not...
Plasmapheresis can be considered for the treatment of cases refractory to immunosuppressants that aggravate the infection, so it was not used. We tried tocilizumab, but the patient could not tolerate it. Case were accompanied by severe infection, we were worried that the use of rituximab would further reduce disease activity and reduce GC use. Additionally, rituximab can ameliorate the skin symptoms of refractory JDM and is effective for skin ulcers of JDM.

In recent years, JDM combined with different MSAs has received extensive clinical attention. Different MSAs have been associated with different clinical phenotypes, prognoses, and risks of associated malignancy. In United States and European cohorts, MSAs were reported to be present in approximately 70% of JDM cases.

NXP2 is a protein involved in transcription and RNA metabolism regulation. The autoantibody was first identified in 1997 in childhood myositis and was considered a key biomarker for the diagnosis of idiopathic inflammatory myopathy. Clinically, anti-NXP2+ JDM often manifests as obvious skin rash, muscle weakness, dysphagia, calcinosis, limb edema, younger age of onset and less remission at 2 years. The incidence of anti-NXP2+ JDM is 20%-25% among JDM cases, making anti-NXP2 a common type of antibody. Two different studies in China have revealed detection rates of anti-NXP2 antibodies in JDM of 30.6% and 20%. Albayda et al. found that NXP2+ dermatomyositis with limb weakness and neck muscle weakness were more serious than NXP2- dermatomyositis; accordingly, as our patient showed severe weakness, another feature of NXP2+ JDM is calcinosis, although this was not present in our case.

Immediately after the diagnosis of JDM was made, we treated this patient with corticosteroids and immunosuppressants. Systemic corticosteroids are the gold-standard initial treatment for JDM. However, they should not be used as monotherapy because this approach is frequently ineffective and associated with the development of unacceptable long-term adverse effects. Immunosuppressants have steroid protection and are recommended even for mild cases to minimize the adverse effects of long-term GC treatment. Treatments used for refractory disease include IVIG, cyclophosphamide, cyclosporine, azathioprine, MMF, hydroxychloroquine, tacrolimus, rituximab, infliximab, and autologous stem cell transplantation. Some studies suggest that treatment with GC and cyclophosphamide combined with calcineurin inhibitors is very important for dermatomyositis patients with skin ulcers or other severe manifestations. A JAK-inhibitor (JAKi) can be used to treat JDM and has been reported to be partially effective for interstitial lung disease and cutaneous dermatomyositis. However, in the present case, a JAKi did not stop the progression of the disease. For NXP2+ JDM and severe JDM, many studies have reported a favorable therapeutic effect of rituximab, which can reduce disease activity and reduce GC use. Additionally, rituximab can ameliorate the skin symptoms of refractory JDM and is effective for skin ulcers of JDM. However, because the skin ulcers in this case were accompanied by severe infection, we were worried that the use of rituximab would further aggravate the infection, so it was not used. We tried tocilizumab, but the patient could not tolerate it. Plasmapheresis can be considered for the treatment of cases refractory to immunosuppressants.

Figure 2 Deepening of the ulcers after treatment (A and B).
For JDM-related skin ulcers, steroids and immunosuppressants should be first used to control the primary disease. However, if skin ulcers are complicated by infections, this type of treatment may exacerbate the ulcers due to the increased susceptibility of the patient to infection[14]. Therefore, in such cases, it is necessary to treat the primary disease and the infection simultaneously. According to the pathogenic examination and drug susceptibility results of the site of infection, appropriate antibacterial drugs were chosen, and the use of IVIG was considered. Due to the refractory nature of cutaneous vasculitis in JDM, case studies suggest that nifedipine, sildenafil, intravenous prostaglandins, and bosantan should be added as early adjuncts[26,31].

In the present case, after high-dose GC treatment, IVIG, MTX, MMF, hydroxychloroquine, a JAKi, thalidomide, and tocilizumab were given to the patient, and improvement was observed; however, the disease was not completely prevented. Further progression of the disease and the combination of primary disease and severe infection in the later period were fatal. It remains unknown whether the early use of vasodilatory agents and rituximab or plasmapheresis at the proper time could save patients’ lives, which future studies should address.

CONCLUSION

Only scarce reports of JDM with severe ulcers accompanied by infection have been reported. Skin ulcer-complicated and anti-NXP2+ JDM usually represent severe cases, and it is important to actively prevent the occurrence of infection while GC and appropriate immunosuppressive therapy are used. According to the different clinical manifestations and immunological indicators of JDM patients, appropriate assessment tools should be used to comprehensively assess the condition of JDM patients at an early stage, and individualized treatment plans should be customized.

FOOTNOTES

Author contributions: Tang XM conceived and designed the study and revised the manuscript; Wang YT collected medical records and wrote the manuscript; Zhang Y collected medical records and participated in its design; Tang T collected medical records and provided pictures; Luo C participated in study design and coordination; Liu MY, Xu L, and Wang L collected and organized the literature; All authors read and approved the final manuscript.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Ya-Ting Wang 0000-0003-3498-6181; Yu Zhang 0000-0003-1124-6543; Tao Tang 0000-0002-6467-0922; Chong Luo 0000-0002-7271-3064; Ming-Yue Liu 0000-0002-1934-778X; Li Xu 0000-0002-7288-1607; Li Wang 0000-0003-4663-102X; Xue-Mei Tang 0000-0002-6658-8084.

S-Editor: Gong ZM
L-Editor: A
P-Editor: Gong ZM

REFERENCES

3 Varnier GC, Pilkington CA, Wedderburn LR. Juvenile dermatomyositis: novel treatment approaches and outcomes. curr
Dermatomyositis Patients.
Mammen AL. Antinuclear Matrix Protein 2 Autoantibodies and Edema, Muscle Disease, and Malignancy Risk in Albayda J

Dermatomyositis. Li DM

juvenile dermatomyositis after treatment with rituximab.
Rider LG

[PMID: 24989778] DOI: 10.1002/acr.23188

Severe gluteal skin ulcers in an infant with juvenile dermatomyositis.
Wang YT

(2021; 3360233) DOI: 10.1016/j.sematresearch.2020.10.007

Wang YT et al. A case report of JDM

[PMID: 31279813 DOI: 10.1016/j.jaad.2019.05.105]

