EDITORIAL
1384 Remission of type 2 diabetes mellitus
Nakhleh A, Halfin E, Shehadeh N

1390 Diabetes remission and nonalcoholic fatty pancreas disease
Wu WJ

1394 Management of gestational diabetes mellitus via nutritional interventions: The relevance of gastric emptying
Huang WK, Jalleh RJ, Rayner CK, Wu TZ

1398 MicroRNA-630: A promising avenue for alleviating inflammation in diabetic kidney disease
Donate-Correa J, Gonzalez-Luis A, Diaz-Vera J, Hernandez-Fernaud JR

1404 Adiposity in Chinese people with type 1 diabetes
Wu NW, Lyu XF, An ZM, Li SY

1409 Diabetes and tuberculosis: An emerging dual threat to healthcare
Shetty S, Pappachan JM, Fernandez CJ

REVIEW
1417 Patient-centered care in diabetes care-concepts, relationships and practice
Chen TT, Su WC, Liu MI

1430 Insulin resistance as the molecular link between diabetes and Alzheimer's disease
Abdalla MMI

MINIREVIEWS
1448 Obstructive sleep apnea: Overlooked comorbidity in patients with diabetes
Tenda ED, Henrina J, Cha JH, Triono MR, Putri EA, Aristy DJ, Tahapary DL

1461 Update on evidence-based clinical application of sodium-glucose cotransporter inhibitors: Insight to uncommon cardiovascular disease scenarios in diabetes
Tao SB, Lu X, Ye ZW, Tong NW
Contents

World Journal of Diabetes

Monthly Volume 15 Number 7 July 15, 2024

ORIGINAL ARTICLE

Retrospective Cohort Study

1477 Association between glucose levels of children with type 1 diabetes and parental economic status in mobile health application

Retrospective Study

1489 Association between glucose-lowering drugs and circulating insulin antibodies induced by insulin therapy in patients with type 2 diabetes

Zhang P, Jiang Q, Ding B, Yan RN, Hu Y, Ma JH

1499 Clinical efficacy of endovascular revascularization combined with vacuum-assisted closure for the treatment of diabetic foot

Lei FR, Shen XF, Zhang C, Li XQ, Zhuang H, Sang HF

1509 Magnetic resonance imaging combined with serum endolipin and galactagoglobin-3 to diagnose cerebral infarction in the elderly with diabetes mellitus

Zhang YH, Liang D

1518 Dapagliflozin in heart failure and type 2 diabetes: Efficacy, cardiac and renal effects, safety

Yu PL, Yu Y, Li S, Mu BC, Nan MH, Pang M

Observational Study

1531 Cut-off value of glycated hemoglobin A1c for detecting diabetic retinopathy in the Chinese population

Wen Y, Wang Q

1537 Glymphatic function and its influencing factors in different glucose metabolism states

Clinical and Translational Research

1551 Does type 1 diabetes serve as a protective factor against inflammatory bowel disease: A Mendelian randomization study

Tong KK, Yu YF, Yang XY, Wu JY, Yu R, Tan CC

1562 Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease

Zhang MY, Zheng SQ

Basic Study

1589 Interactions between myoblasts and macrophages under high glucose milieus result in inflammatory response and impaired insulin sensitivity

Luo W, Zhou Y, Wang LY, Ai L
Contents

World Journal of Diabetes

Monthly Volume 15 Number 7 July 15, 2024

SYSTEMATIC REVIEWS

- **1603** Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease
 Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD

META-ANALYSIS

- **1615** Evaluation of teplizumab's efficacy and safety in treatment of type 1 diabetes mellitus: A systematic review and meta-analysis
 Ma XL, Ge D, Hu XJ

SCIENTOMETRICS

- **1627** Global trends in publications regarding macrophages-related diabetic foot ulcers in the last two decades
 Wen JP, Ou SJ, Liu JB, Zhang W, Qu YD, Li JX, Xia CL, Yang Y, Qi Y, Xu CP

LETTER TO THE EDITOR

- **1645** Atrial fibrillation and prediabetes: A liaison that merits attention!
 Batta A, Hatwal J

- **1648** Serum tumor markers: Can they clinically implicate in type 2 diabetes mellitus?
 Reddy KS, Pandiaraj IP, Gaur A, Varatharajan S

- **1651** Bidirectional link between periodontitis and systemic inflammation in diabetic retinopathy
 Nishant P, Sinha S, Sinha RK, Morya AK
ABOUT COVER
Peer Review of *World Journal of Diabetes*, Erkan Gokce, MD, Professor, Department of Radiology, Tokat Gaziosmanpasa University, School of Medicine, Tokat 60100, Türkiye. drerkangokce@gmail.com

AIMS AND SCOPE
The primary aim of *World Journal of Diabetes (WJD, World J Diabetes)* is to provide scholars and readers from various fields of diabetes with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJD mainly publishes articles reporting research results and findings obtained in the field of diabetes and covering a wide range of topics including risk factors for diabetes, diabetes complications, experimental diabetes mellitus, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes, diabetic angiopathies, diabetic cardiomyopathies, diabetic coma, diabetic ketoacidosis, diabetic nephropathies, diabetic neuropathies, Donohue syndrome, fetal macrosomia, and prediabetic state.

INDEXING/ABSTRACTING
The *WJD* is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 Edition of Journal Citation Reports® cites the 2023 journal impact factor (JIF) for *WJD* as 4.2; JIF without journal self cites: 4.1; 5-year JIF: 4.2; JIF Rank: 40/186 in endocrinology and metabolism; JIF Quartile: Q1; and 5-year JIF Quartile: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Cover Editor: Jia-Ru Fan.
Adiposity in Chinese people with type 1 diabetes

Nian-Wei Wu, Xia-Fei Lyu, Zhen-Mei An, She-Yu Li

Abstract

Adiposity, synonymous with obesity, is prevalent among both children and adults with type 1 diabetes in China. Recent literature underscored the pathophysiological and socioeconomic factors associated with adiposity, and consistently highlighted its impact on cardiovascular, kidney, and metabolic diseases among Chinese individuals with type 1 diabetes. Addressing and managing adiposity in individuals with type 1 diabetes are complicated and entail comprehensive approaches including lifestyle modifications, cognitive-behavioral therapy, insulin dose titration, and other diabetes treatment medications. The condition calls for coordination among policymakers, researchers, clinicians, and patients.

Key Words: Type 1 diabetes; China; Metabolic syndrome; Obesity; Anti-obesity medications
Core Tip: Adiposity emerges as a significant health concern for individuals with type 1 diabetes in China as well as globally. Adiposity is associated with adverse health outcomes, including cardiovascular and kidney complications in people with type 1 diabetes. This article highlighted the approaches in addressing and managing adiposity in individuals with type 1 diabetes. The condition calls for coordination among policymakers, researchers, clinicians, and patients.

Citation: Wu NW, Lyu XF, An ZM, Li SY. Adiposity in Chinese people with type 1 diabetes. *World J Diabetes* 2024; 15(7): 1404-1408

URL: https://www.wjgnet.com/1948-9358/full/v15/i7/1404.htm

DOI: https://dx.doi.org/10.4239/wjd.v15.i7.1404

INTRODUCTION

Obesity (adiposity) pandemic goes wildly in China as well as globally[1]. Adolescents and adults with overweight and obesity are facing elevated risks of metabolic diseases, cardiovascular diseases, kidney diseases, chronic pain, disability, and neoplasm[2]. Compared to type 2 diabetes, type 1 diabetes is less prevalent in China but more common among young people. Almost a quarter of individuals with type 1 diabetes were first diagnosed before the age of 14[3]. Adiposity does not directly involve in the pathogenesis or development of type 1 diabetes, which is characterized by beta-cell failure due to autoimmunity, viral infection, and other non-metabolic factors. Nevertheless, adiposity-associated impairment of the antioxidant defense system[4] and elevated proinflammatory cytokines may be associated with worsened immune response[5,6]. At individual level, adiposity means adverse health prognosis, including cardiovascular and kidney complications in people with type 1 diabetes[7-9].

In people with type 1 diabetes and poor glucose control, particularly those experiencing frequent episodes of ketoacidosis, fat mass, including visceral and subcutaneous fat, scarcely accumulates. Adiposity is less prevalent among individuals with type 1 diabetes receiving inadequate healthcare. In nations with advanced healthcare policies, individuals with type 1 diabetes, particularly at younger ages, anticipate minimal years of life lost or a lifespan comparable to those without type 1 diabetes[10]. However, in such circumstances, adiposity could pose a challenge. A recent study by Zeng et al[11] from China examined 101 individuals with type 1 diabetes spanning a wide range of ages. Among their participants, 19.8% exhibited overweight and obesity, while 15.8% were diagnosed with metabolic syndrome. Following the trend of Europe and North America, the adiposity emerges as a significant health concern for individuals with type 1 diabetes in China and other developing countries[12].

RISK FACTORS OF AIDIPOSITY IN TYPE 1 DIABETES

Excessive insulin dose and food intake with inadequate exercise

Multiple factors contribute to the excess body fat mass and elevated risks of health complications among individuals with type 1 diabetes. Insulin therapy is indispensable for individuals with type 1 diabetes for life sustain, as it facilitates the transfer of blood glucose into fat after the body consumption. However, excessive insulin dosing leads to the disproportionate storage of energy in body fat mass, along with the episodes of hypoglycemia. For individuals with type 1 diabetes and severely impaired beta-cell function, hypoglycemia appears unavoidable in the long term, particularly during stressful events necessitating insulin replacement. Food intake following hypoglycemic episodes exacerbates the accumulation of fat mass, especially in regions such as China where the glucagon injections is unavailable.

Lifestyle modifications associated with type 1 diabetes may contribute to adiposity in affected individuals. Engaging in moderate-to-high intensity exercise requests tailored diet and insulin dose adjustments among individuals with type 1 diabetes[13], highlighting the need for comprehensive education and healthcare support. At the population level, such complexities can dampen the overall exercise intensity, while the fear of hypoglycemia can drive up overall energy intake among individuals with type 1 diabetes. Both phenomena escalate the risk of obesity and associated health complications. Inadequate exercise can lead to diminished skeletal muscular mass, which is linked to type 2 diabetes and other adverse health outcomes[14]. Zeng et al’s report[11] observed reduced muscular mass among Chinese individuals with type 1 diabetes and correlated it with metabolic syndrome.

Insulin resistance

In people with type 1 diabetes and adiposity, insulin resistance is common and is associated with increased insulin dosages, resulting in a phenotype akin to those with type 2 diabetes and poor beta-cell function needing lifelong insulin replacement. Patients in both scenarios require multiple injections of insulin for type 1 diabetes and oral medications for type 2 diabetes. The interactive effects and complexity of the two treatment challenge the quality of life improvement and the prevention of metabolic complications. Europe and North America approved metformin, sodium-glucose cotransporter 2 (SGLT2) inhibitors, and glucagon-likepeptide-1 (GLP-1) receptor agonists for the early use of type 1 diabetes. Clinicians must consider the combined therapy of two diseases in a single individual: insulin replacement for type 1 diabetes and bodyweight management for type 2 diabetes. Integrating both arms in one person challenges the intelligence...
of clinicians and patients.

The risk factors of adiposity in people with type 1 diabetes were outlined in Figure 1.

INTERVENTION OF ADIPOSITY IN TYPE 1 DIABETES

Lifestyle modifications

Lifestyle modifications are crucial yet highly challenging for individuals with type 1 diabetes and adiposity. Attitudinal barriers may arise, especially in China, where many individuals have experienced frequent episodes of ketoacidosis and lean body mass during their early years. Weight loss efforts may evoke memories of poor glucose control and fear of acute complications of type 1 diabetes, most of which could be unwarranted. Cognitive interviews and associated personalized interventions have proven beneficial\[15\], relying on long-term follow-up by qualified multidisciplinary teams, which may be scarce in developing countries like China. Cognitive-behavioral therapy (CBT) and motivational interviewing aid individuals with type 1 diabetes in addressing and modifying underlying psychological and behavioral factors contributing to adiposity\[16,17\]. While these interventions improve adherence and facilitate enduring lifestyle changes, they may be prohibitively expensive and unattainable for many individuals in developing countries. Recent advancements in web-based technology support remote CBT, thereby increasing accessibility for a wider population with type 1 diabetes\[18\].

Medications

Besides insulin, medications designed for type 2 diabetes are also cornerstones in managing people with type 1 diabetes and adiposity. Metformin stands as one of the first approved oral medications for type 1 diabetes and is widely employed, particularly in those with excessive fat mass accumulation\[19\]. The addition of metformin reduces insulin dose requirements, which are associated increases in appetite. Initial use of metformin may precipitate mild gastrointestinal adverse events such as abdominal pain and nausea, though most people tolerate these effects following dose titration over several weeks. SGLT2 inhibitors were previously debated due to the risk of ketoacidosis in individuals with type 1 diabetes\[20,21\]. However, most clinicians now prescribe SGLT2 inhibitors for individuals with type 1 diabetes and adiposity, particularly those experiencing fluctuating blood glucose levels. In individuals with type 1 diabetes receiving regular insulin therapy, SGLT2 inhibitors stabilize blood glucose levels by lowering the glucose threshold in the kidneys, which excrete excess glucose during elevated blood levels\[22\]. Nonetheless, in people who do not adhere to insulin therapy, SGLT2 inhibitors may pose risks. Long-term use of SGLT2 inhibitors may also increase the risk of genital infections, amputations, and urinary malignancies\[23-25\], albeit with a very low absolute incidence. GLP-1 receptor agonists are also suggested for individuals with type 1 diabetes and obesity\[26\], improving body weight management and enhancing cardiovascular and kidney outcomes in the target population. Tirzepatide, a recent GLP-1 and gastric inhibitory polypeptide receptor dual agonist, is now a new contender for its potential benefits in body weight loss among patients with type 1 diabetes.

A supportive social and family environment

A supportive environment fosters healthy lifestyle habits and medication adherence at the societal level. The stigma of type 2 diabetes affects individuals with type 1 diabetes due to limited public awareness of the distinction between the two diabetes types\[27\]. The environment encompasses family members, colleagues, friends, and their involvement in daily activities, event planning, and financial support. Unlike other diseases, the Chinese healthcare system does not encompass type 1 diabetes in primary healthcare services. Unlike other conditions, clinicians are unlikely to assign a diagnosis of type 2 diabetes to individuals with type 1 diabetes. Primary care physicians may not recognize the comorbidity of type 1 and type 2 diabetes. Such dilemma limits the access of people with type 1 diabetes to body weight control as one of the treatments for type 2 diabetes and metabolic syndrome unless comorbidities such as hypertension and cardiovascular diseases are present.
CONCLUSION

In summary, adiposity, synonymous with obesity, is prevalent among people with type 1 diabetes in China and may be attributed to numerous cardiovascular and kidney adverse outcomes. The prevention and management of adipose accumulation in individuals with type 1 diabetes pose challenges due to multiple pathophysiological and socioeconomic factors, calling for urgent action by policymakers, researchers, clinicians, and patients.

FOOTNOTES

Author contributions: Wu NW prepared the first draft of the manuscript; Wu NW and Lyu XF were responsible for figure plotting, preparation and submission of the manuscript. Both Li SY and An ZM have played important and indispensable roles in the completion of the manuscript and thus qualified as the co-corresponding authors of this paper. Li SY and An ZM conceptualized and designed this editorial. Li SY contributed to the writing, and editing the manuscript, illustrations, and review of literature. An ZM supervised the whole process of this editorial. This collaboration between Li SY and An ZM is crucial for the publication of this manuscript.

Supported by 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University, No. ZYYC24001.

Conflict-of-interest statement: All the Authors have no conflict of interest related to the manuscript.

Open-Access: This is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: She-Yu Li 0000-0003-0060-0287.

S-Editor: Li L
L-Editor: A
P-Editor: Chen YX

REFERENCES

