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Abstract
In order to provide the means for the design of novel 
rational anti-cancer drug therapies research efforts are 
concentrated on unravelling the molecular circuits which 
induce programmed cell death and block proliferation 
of cancer cells. Modern therapeutic strategies are based 
on the understanding of the complexity of physiological 
functions such as differentiation, development, immune 
responses, cell-cycle arrest, DNA damage repair, apop�
tosis, autophagy, energy metabolism, and senescence. 
It has become evident that this knowledge will provide 
the means to target the components of the pathways in�
volved in these processes in a specific and selective man�
ner thus paving the way for the development of effective 
and personalised anti-cancer therapies. Transcription is 
a crucial cellular process that regulates a multitude of 
physiological functions, which are essential in disease 

progression and cellular response to therapy. Transcrip�
tion factors such as the p53 tumor suppressor and the 
hypoxia-inducible factor-α (HIF-α) are key players in 
carcinogenesis and cellular response to cancer therapies. 
Both of these transcription factors regulate gene expres�
sion of genes involved in cell death and proliferation, in 
some cases cooperating towards producing the same 
outcome and in some others mediating opposing effects. 
It is thus apparent that fine tuning of the activity of 
these transcription factors is essential to determine the 
cellular response to therapeutic regimens, in other words 
whether tumor cells will commit to apoptosis or evade 
engagement with the anti-proliferative effects of drugs 
leading to drug resistance. Our observations support the 
notion that the functional crosstalk between HIF-1α and 
p53 pathways and thus the fine tuning of their transcrip�
tional activity is mediated by cofactors shared between 
the two transcription factors such as components of the 
p300 co-activator multiprotein complex. In particular, 
there is evidence to suggest that differential composition 
of the co-modulatory protein complexes associated with 
p53 and HIF-1α under diverse types of stress conditions 
differentially regulate the expression of distinct subsets 
of p53 and HIF-1α target genes involved in processes 
such as cell cycle arrest, apoptosis, chronic inflamma�
tion, and cellular energy metabolism thereby determin�
ing the cellular fate under particular types of micro-
environmental stress.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The results of our work endorse the notion 
that specific features determine targeting of transcrip�
tion factors to distinct clusters of their target genes 
including the nature of the DNA binding sites found 
within the regulatory region of the promoter of each 
one of the target genes, the composition of the cofactor 
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network associated with different transcription factors 
under diverse types of stress conditions and the precise 
posttranslational modifications of each one of the tran�
scription factors linking characteristic PTM codes with 
discrete types of micro-environmental stress. These fea�
tures are essential considerations for the design of ef�
fective therapeutics and individualised cancer treatment.
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INTRODUCTION
The transcriptional regulation of  gene expression is a 
crucial mechanism by which cells maintain homeostasis, 
differentiate, survive and proliferate, respond to internal 
signals as well as those they receive from their surround-
ings, and adjust to local environmental conditions[1]. The 
transcription process is regulated mainly at two levels. 
One encompassing transcription factors and the tran-
scriptional machinery, and the other involving chromatin 
which is the packaging structure of  the DNA and con-
sists of  the four histone proteins H2A, H2B, H3 and H4 
forming the nucleosome[2,3]. The two levels of  regulation 
are connected to each other since access of  the transcrip-
tion machinery to the DNA is regulated by molecular 
modifications of  the chromatin structure executed by 
remodelling reactions such as phosphorylation, methyla-
tion, and acetylation[4] which control the binding between 
transcription factors and DNA thereby selectively and 
specifically modulating gene expression of  their target 
genes[5,6]. These modifications represent the so called 
‘‘histone code’’[7], which is a type of  encryption that indi-
cates either open access (euchromatin structure) of  tran-
scription factors to the DNA and transcription initiation 
of  the target genes or closed chromatin conformation 
(heterochromatin) and transcriptional repression[8,9]. In 
this respect transcriptional co-factors, which are proteins 
mediating histone modifications thus determining the 
open or closed chromatin conformation are of  crucial 
importance in the activation or repression of  gene ex-
pression and therefore for the cellular physiology[10-12]. 

The detailed understanding of  the regulation of  gene 
expression has provided the means to comprehend how 
aberrant regulation of  the transcriptional events can lead 
to disease[13]. The role of  DNA binding transcription 
factors and their modulators, of  the non-coding RNAs, 
as well as the effects of  epigenetic changes on the struc-
ture of  the chromatin on transcription regulation and 
the impact of  these events on the cellular physiology has 
been elucidated for many different diseases, for example 
diabetes[14] cardiovascular disease[15], neurological disor-
ders[16], rheumatoid arthritis[17] cancer[18] and conditions 
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such as obesity[19] and ageing[20]. Transcriptional regula-
tion is not only important to understand the initiation, 
development, and prognosis of  the disease but it is also 
imperative in predicting the cellular response to thera-
peutic modalities[21-24].

DNA DAMAGE RESPONSE: THE ROLE OF 
THE p53 TUMOR SUPPRESSOR
A characteristic example of  the importance of  the tran-
scription process in the outcome of  the disease and the 
cellular response to drug treatment has been demonstrat-
ed by the function of  the transcription factor and tumor 
suppressor protein p53[25]. p53 is a transcription factor 
responding alternatively to diverse types of  stress convey-
ing different signals in a manner dependent on the type of  
stress[26] by modulating gene expression of  specific subsets 
of  its target genes involved in vital and sometimes con-
tradicting cellular functions such as cell cycle control[27], 
apoptosis[28], senescence[29,30], autophagy[31], DNA damage 
repair[32,33], and tumor energy metabolism[34]. It is worth 
noting that more than 90% of  p53 mutations in human 
cancers occur in its DNA binding domain[35] hampering 
the ability of  this transcription factor to bind to DNA and 
transactivate its transcription target genes and emphasis-
ing the importance of  transcription in oncogenesis[36]. 
Under mild stress conditions p53 facilitates cell survival by 
activating a set of  genes involved in cell cycle arrest and 
DNA damage repair[37]. In prolonged stress or irreversible 
DNA damage p53 activates programmed cell death[38]. 
Post-translational modifications of  p53 including ubiqui-
tination, phosphorylation, methylation and acetylation are 
also very important in the regulation of  its protein stabil-
ity and transcription target selectivity[39].

HYPOXIA-INDUCIBLE FACTOR-1α 
MEDIATED RESPONSE TO HYPOXIA
Hypoxia is an important pathophysiological state found 
mainly in solid tumors since the rapid growth of  cancer 
tissues is associated with vascularisation deficiency, and 
therefore low oxygen availability which reaches levels be-
low 5%[40]. Hypoxic conditions give rise to the expression 
of  genes encoding proteins which promote angiogenesis, 
invasion and metastasis, and enhanced glycolytic metabo-
lism[41-45]. Major contributing factors to the cellular and 
systemic adaptation in response to hypoxic conditions are 
primarily the hypoxia-inducible factors (HIFs)[45,46]. HIF-1 
is a transcription factor that regulates the induction of  
various genes facilitating adaptation and survival of  cells 
in low oxygen conditions such as erythropoietin[47] vascu-
lar endothelial growth factor[48] glucose transporters, and 
glycolytic enzymes[49,50]. 

CROSSTALK BETWEEN p53 AND HIF-1
The functional crosstalk between HIF-1α and p53 path-
ways at several levels has been extensively studied[51-53] 
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and indicated that under certain conditions p53 and HIF-
1α co-operate in inducing apoptosis whereas they exert 
opposing functions in G1 cell cycle arrest[54,55]. p53 has 
also been shown to be stabilized in hypoxia mimicking 
conditions in a HIF-1α dependent manner[56] although 
its transcriptional activity is attenuated in hypoxia since it 
is incapable to induce the expression of  its transcription 
targets including pro-apoptotic members of  the Bcl-2 
family under these conditions[57]. Although the molecular 
mechanisms involved have not yet been clearly eluci-
dated, it appears that both p53 and HIF-1α regulate cel-
lular energy production pathways by modulating the gene 
expression of  glucose transporters and enzymes involved 
in glycolysis and oxidative phosphorylation. In particular, 
the glucose transporter GLUT-1 is downregulated by p53 
and upregulated by HIF-1α[58-60] and similarly hexokinase 
2 is upregulated by mutated p53[61,62], and induced by HIF-
1α[63]. These contradicting observations are due at least 
in part to the differential interactions of  p53 and HIF-1α 
with their common co-activators or co-repressors[64-67].

ROLE OF THE COFACTORS SHARED 
BETWEEN p53 AND HIF-1α
The p300/CBP transcriptional coactivator assembles a 
number of  diverse cofactor proteins into multicomponent 
complexes[68] and is itself  involved in the regulation of  the 
transcriptional activity of  both HIF-1 and p53[69,70]. The 
steroid receptor coactivator 1 is a component of  the p300/

CBP complex[71] and another common cofactor shared 
between HIF-1[72] and p53[73]. In addition, the nuclear recep-
tor coactivator TIF2 interacts with HIF-1 to potentiate its 
transcriptional activity[74], although it inhibits p53 transcrip-
tion potential when fused with the acetyltransferase MOZ 
associated with acute myeloid leukaemia[75]. 

Our studies investigating the crosstalk between p53 
and HIF-1α[64,65,76] have elucidated an additional molecu-
lar mechanism explaining the inability of  p53 to activate 
its pro-apoptotic targets in hypoxia and implicate p300/
CBP associated factor (PCAF) in the fine-tuning of  the 
transcriptional activity and protein stability of  both p53 
and HIF-1α in DNA damage and hypoxic conditions. 
PCAF is a common cofactor for both p53 and HIF-
1α[64,67] and is recruited to the transcriptional complex of  
the one or the other transcription factor in a tissue and 
type of  stress dependent manner (Figure 1) determining 
the pathway of  energy production (Figure 2) and the cel-
lular fate under diverse stress conditions[64,65] providing an 
additional evidence for the importance of  the co-activa-
tor function in determining the cell fate under hypoxia by 
modulating both p53 and HIF-1α responses.

IMPLICATIONS ON THE EFFICACY OF 
ANTI-CANCER THERAPIES
The therapeutic activity of  many anti-cancer agents de-
pends on their ability to specifically and selectively induce 
apoptotic pathways in cancer cells. Radioactivity and 

Figure 1  p300/CBP associated factor mediates p53 and hypoxia inducible factor-1α transcription target selectivity in a manner dependent on the type of 
stress. In DNA damage conditions the p300/CBP associated factor (PCAF) is recruited to the promoters of pro-apoptotic gene targets thus inducing p53 mediated cell 
death, whereas in conditions of low oxygen availability PCAF mediates p53 and hypoxia inducible factor 1α (HIF-1α) post-translational modifications that selectively 
target both transcription factors to a subset of their transcription target genes with pro-survival activity thereby inducing cell proliferation.
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chemotherapeutic drugs mediate their pro-apoptotic ef-
fects through the induction of  pro-apoptotic pathways 
regulated by transcription factors such as the tumor sup-
pressor protein p53. The tumor suppressor p53 signalling 
pathway is a highly regulated process involving a cascade 
of  events, mediated among other pathways by various 
transcriptional co-factors such as the p300, and other 
p300 associated factors such as the tetratricopeptide do-
main 5 and PCAF[77,78]. These co-factors regulate the p53 
transcriptional activity and protein stability by acetylating 
different lysine residues in its C-terminal region and in 
this way they contribute to the p53 mediated cellular ad-
aptation to diverse types of  stress[79,80]. In addition, it has 
become clear from the studies investigating the molecular 
mechanisms of  the regulation of  HIF-1α protein stability 
and transcriptional activity that p300 is required for the 
trans-activation of  HIF-1α and that there is competition 
for limiting amounts of  this cofactor in hypoxia between 
HIF-1α and p53[69,81-83]. 

Poor response or resistance to anti-cancer chemothera-
peutics by hypoxic tumors has been evidenced and it is 
attributed to the lack of  vascular system that would al-
low efficient drug delivery to these tumors[84]. Likewise, 
radiation therapy requires oxygen radicals for efficient 
production of  DNA strand breaks, and thus hypoxic 
tumor microenvironment contributes to radioresis-
tance[44,84]. Furthermore, repression of  the p53 transcrip-
tional activity and inability of  this transcription factor to 
induce its pro-apoptotic targets in hypoxic conditions is 
an additional mechanism conferring drug resistance to 

hypoxic tumors[85]. 

CONCLUSION AND FUTURE DIRECTIONS
Our observations have provided evidence supporting the 
view that distinct subpopulations of  transcription co-
activator complexes as well as differential posttransla-
tional modifications determine the transcriptional target 
selectivity of  both p53 and HIF-1α under diverse micro-
environmental conditions[64,65,76] resulting in the expres-
sion of  distinct subsets of  genes, which carry out differ-
ent functions, in a type of  stress dependent manner. This 
distinction in the transcriptional cofactors’ function can 
be interpreted in a variety of  ways. Firstly, transcription 
cofactors might facilitate the recruitment of  different 
transcription factors to distinct regions of  the genome[86] 
thus allowing different transcription factors to carry out 
specialised functions determining the cellular fate (sur-
vival or apoptosis) (Figure 1). Secondly, differences in the 
structure of  the promoter between the different targets 
of  various transcription factors could be responsible for 
preferential binding of  particular subsets of  these targets 
by alternatively posttranslationally modified transcription 
factors. For example, PCAF dependent acetylation of  ei-
ther p53 or HIF-1α is a mechanism by which these tran-
scription factors distinguish between their pro-survival or 
pro-apoptotic target promoters[64] or glycolytic or oxida-
tive phosphorylation inducers (Figure 2)[65,87-89]. 

To substantiate this hypothesis we are currently using 
genome wide ChIP-seq approaches to uncover the spe-
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cific transcriptional circuitries that determine the specific-
ity and target selectivity of  several transcription factors 
including p53, glucocorticoid receptor, estrogen receptor, 
HIF-1α and NF-KB which play very important roles in 
carcinogenesis. The ultimate aim of  this investigation is 
to acquire essential knowledge that will guide the identifi-
cation of  new transcriptional targets in the DNA damage 
response and low oxygen availability networks and thus 
facilitate the development of  selective therapeutics for 
potential personalized cancer therapeutics.
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