REVIEW

Malnutrition in cirrhosis: More food for thought
883
Chapman B, Sinclair M, Gow PJ, Testro AG

MINIREVIEWS

Paraneoplastic syndromes in cholangiocarcinoma
897
Rahman SU, Sana MK, Tahir Z, Ali A, Shah PA

Noninvasive scores for the prediction of esophageal varices and risk stratification in patients with cirrhosis
908
Bangaru S, Benhammou JN, Tabibian JH

Natremia and liver transplantation: The right amount of salt for a good recipe
919
Lenci I, Milana M, Grassi G, Signorello A, Aglitti A, Baiocchi L

ORIGINAL ARTICLE

Basic Study

Inhibition of vascular adhesion protein-1 modifies hepatic steatosis in vitro and in vivo
931
Shepherd EL, Karim S, Newsome PN, Lalor PF

Aceclofenac-induced hepatotoxicity: An ameliorative effect of *Terminalia bellirica* fruit and ellagic acid
949
Gupta A, Pandey A

Obeticholic acid attenuates human immunodeficiency virus/alcohol metabolism-induced pro-fibrotic activation in liver cells
965
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA

Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry
976
Khan M, Rauf W, Habib F, Rahman M, Iqbal M

Retrospective Cohort Study

Cannabis use history is associated with increased prevalence of ascites among patients with nonalcoholic fatty liver disease: A nationwide analysis
993
Choi CJ, Weiss SH, Nasir UM, Pyrsopoulos NT

Phase angle and non-alcoholic fatty liver disease before and after bariatric surgery
1004
Teixeira J, Marroni CA, Zoubiaurre PR, Henz A, Faina L, Pinheiro LK, Mottin CC, Fernandes SA
Contents

Retrospective Study

1020 Factors associated with 5-year survival of combined hepatocellular and cholangiocarcinoma
Sempokaya T, Wien EA, Pattison RJ, Ma J, Wong LL

1031 Circulating miR-21-5p level has limited prognostic value in patients with hepatocellular carcinoma and is influenced by renal function
Franck M, Thon C, Schütte K, Malfertheiner P, Link A

1046 Real impact of tumor marker AFP and PIVKA-II in detecting very small hepatocellular carcinoma (≤ 2 cm, Barcelona stage 0) - assessment with large number of cases

1055 Non-invasive splenic parameters of portal hypertension: Assessment and utility
Ahmad AK, Atzori S, Maurice J, Taylor-Robinson SD, Lim AKP

1067 Outcome of gastric antral vascular ectasia and related anemia after orthotopic liver transplantation
Emhmed Ali S, Benrajab KM, Dela Cruz AC

Clinical Trials Study

1076 Hepatitis B surface antigen and hepatitis B core-related antigen kinetics after adding pegylated-interferon to nucleos(t)ides analogues in hepatitis B e antigen-negative patients

Observational Study

1089 Occurrence of seeding metastases in resectable perihilar cholangiocarcinoma and the role of low-dose radiotherapy to prevent this

Randomized Controlled Trial

1098 Metalloproteinase expression after desflurane preconditioning in hepatectomies: A randomized clinical trial

SYSTEMATIC REVIEWS

1115 Clinical utility of viscoelastic testing in chronic liver disease: A systematic review
Wei H, Child LJ

CASE REPORT

1128 Hepatocellular carcinoma with tumor thrombus extends to the right atrium and portal vein: A case report
Gomez-Puerto D, Mirallas O, Vidal-González J, Vargas V
ABOUT COVER
Associate editor of World Journal of Hepatology, Dr. Yong-Ping Yang is a Distinguished Professor at Peking University Health Science Center in Beijing, China. Having received his Bachelor’s degree from Yanbian University in 1985, Dr. Yang undertook his postgraduate training at PLA Medical College, receiving his Master’s degree in 1992. He rose to Chief Physician in the Hepatology Division of the Fifth Medical Center of the Chinese PLA General Hospital in 2003 and has held the position since. His ongoing research interests involve liver fibrosis, cirrhosis and hepatocellular carcinoma, with a particular focus on cryoablation and cryo-immunotherapy for hepatocellular carcinoma. Currently, he serves as Chairman of the Department of Liver Disease of the Chinese PLA General Hospital and as President of the Chinese Research Hospital Association for the Study of the Liver Disease. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of World Journal of Hepatology (WJH, World J Hepatol) is to provide scholars and readers from various fields of hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING
The WJH is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of Science), Scopus, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Li-Li Wang; Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL
World Journal of Hepatology

ISSN
ISSN 1948-5182 (online)

LAUNCH DATE
October 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Nikolaos Pyrsopoulos, Ke-Qin Hu, Koo Jeong Kang

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
November 27, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Noninvasive scores for the prediction of esophageal varices and risk stratification in patients with cirrhosis

Saroja Bangaru, Jihane N Benhammou, James H Tabibian

ORCID number: Saroja Bangaru 0000-0002-1881-8332; Jihane N Benhammou 0000-0003-2442-5145; James H Tabibian 0000-0001-9104-1702.

Author contributions: Bangaru S drafted the manuscript; Benhammou JN provided critical revision of the manuscript; Tabibian JH provided supervision and critical revisions; all authors approved the submitted manuscript.

Conflict-of-interest statement: No potential conflicts of interest, no financial support.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Saroja Bangaru, Internal Medicine, Gastroenterology, University of California at Los Angeles, Los Angeles, CA 90025, United States
Jihane N Benhammou, The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles, Los Angeles, CA 90095, United States
James H Tabibian, Department of Medicine, Olive View-University of California at Los Angeles Medical Center, Sylmar, CA 91342, United States
James H Tabibian, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States

Corresponding author: James H Tabibian, MD, PhD, FACP, Health Sciences Clinical Associate Professor, Department of Medicine, Olive View-University of California at Los Angeles Medical Center, 14445 Olive View Drive, 2B-182, Sylmar, CA 91342, United States. jtabibian@dhs.lacounty.gov

Abstract

The primary purpose of variceal screening in patients with cirrhosis is to detect gastroesophageal varices at high risk of hemorrhage and implement preventative intervention(s). It was previously recommended that all patients with cirrhosis undergo initial and periodic longitudinal variceal screening via upper endoscopy. However, there has been growing interest and methods to identify patients with cirrhosis who may not have clinically significant portal hypertension and therefore be unlikely to have varices requiring intervention or benefit from upper endoscopy. Because the population of patients with compensated advanced chronic liver disease continues to grow, it is neither beneficial nor cost-effective to perform endoscopic variceal screening in all patients. Therefore, there is ongoing research into the development of methods to non-invasively risk stratify patients with cirrhosis for the presence of high-risk esophageal varices and effectively limit the population that undergoes endoscopic variceal screening. This is particularly important and timely in light of increasing healthcare reform and barriers to healthcare. In this review, we discuss and compare, with respect to test characteristics and clinical applicability, the available methods used to non-invasively predict the presence of esophageal varices.

Key Words: Gastroesophageal varices; Variceal screening; Advanced chronic liver disease; Cirrhosis; Non-invasive screening; Upper endoscopy
Because low PC and enlarged spleen size are independently suggestive of PH, their
dependency continues to grow, it is neither beneficial nor cost-effective to perform
endoscopic variceal screening in all patients. Therefore, there is ongoing research into
the development of methods to non-invasively risk stratify patients with cirrhosis for
the presence of high risk esophageal varices and effectively limit the population that
undergoes endoscopic variceal screening. These topics are reviewed in this article.

Citation: Bangaru S, Benhammou JN, Tabibian JH. Noninvasive scores for the prediction of
esophageal varices and risk stratification in patients with cirrhosis. World J Hepatol 2020;
12(11): 908-918
DOI: https://dx.doi.org/10.4254/wjh.v12.i11.908

INTRODUCTION

Variceal screening and surveillance is an important part of the management of patients
with cirrhosis. The primary goal of upper endoscopy (EGD) in this context is to
identify patients with gastroesophageal varices (GEV) at high risk of hemorrhage so
that strategies to minimize this risk, including potential endoscopic treatments, can be
implemented. The previous American Association for the Study of Liver Diseases (AASLD) guidelines on the management of GEV and the Baveno consensus conference in
its first five editions recommended variceal screening and periodic surveillance with
EGD in all patients with cirrhosis. However, the introduction of transient elastography
(TE) in clinical practice has allowed the identification of patients with early chronic
liver disease manifested by advanced fibrosis, an entity that was subsequently termed
compensated advanced chronic liver disease (cACLD). This population comprises a
heterogeneous group of patients with varying degrees of portal hypertension (PH),
ranging from no PH (hepatic venous portal gradient (HVPG) of 1-5 mmHg) to mild or
“subclinical” PH (HVPG of 5-9 mmHg) to clinically significant portal hypertension
(CSPH) (defined as an HVPG of ≥ 10 mmHg). Above this threshold of 10 mmHg, all complications of PH, including the development of GEV and variceal hemorrhage, are
more likely to occur. Reflecting this, the prevalence of GEV ranges from 20%-40% in
patients with cACLD to as high as 85% in patients with decompensated cirrhosis (who have CSPH). GEV also have a variable risk of hemorrhage: The overall rate of
variceal hemorrhage is around 10%-15% per year, but this varies with both the severity
of liver disease (Child class B or C) and with endoscopic features of the varices
including size and the presence of high risk stigmata. Furthermore, there are small
but notable risks associated with EGD, and the costs incurred on both the patient and
the healthcare system in the context of a growing chronic liver disease population is
substantial.

In light of this heterogeneity, the most recent AASLD guidance statement and the
2015 Baveno VI consensus statement recommend the use of non-invasive tests to
stratify patients and rule out high risk esophageal varices (HREV) in patients with
cACLD. The AASLD practice guidance states that patients with a liver stiffness of <
20 kPa as measured by TE and a platelet count (PC) of > 150000/mm² can avoid EGD
but that those who do not meet these criteria, known as the Baveno VI criteria, should
receive a screening EGD. There are ongoing efforts to develop alternative non-
invasive models using clinical, biochemical, and radiographic parameters to stratify
patients for variceal screening. The goal is to balance good test characteristics (< 5% of
patients with HREV are missed) with ease of administration and widespread
availability of testing in clinical practice. This review will discuss the non-invasive
methods for esophageal variceal (EV) prediction in patients with cACLD.

PLATELET COUNT TO SPLEEN DIAMETER RATIO

Because low PC and enlarged spleen size are independently suggestive of PH, their
combination into the PC to spleen diameter ratio (PC/SD) was evaluated for the prediction of EV. In the initial proof-of-concept retrospective study of 137 adult patients with confirmed EV by EGD, a PC/SD cutoff value of 909 (n/mm)/mm offered a net present value (NPV) of 73% and a positive predictive value (PPV) of 74%[10]. A 2012 systematic review and meta-analysis of PC/SD including 1275 adult patients with cirrhosis yielded a pooled sensitivity of 89% [95% confidence interval (CI): 87%-92%] and pooled specificity of 74% [95%CI: 70%-78%], but the pooled positive and negative likelihood ratios were only moderately helpful[10]. The largest study was a 2017 Cochrane meta-analysis including 2637 patients across 17 studies evaluating the PC/SD at a cut-off of 909 (n/mm)/mm demonstrated an even better sensitivity of 0.93 (95%CI: 0.83-0.97) and specificity of 0.84 (95%CI: 0.75-0.91) for the detection of varices of any size. However, it was noted that 7% of adults with any EV would be missed[10]. They therefore further evaluated the ability of the PC/SD to predict the presence of HREV [also known as varices needing treatment (VNT)], which refers to medium or large varices, varices with high risk stigmata, or small varices in Child C cirrhosis. Interestingly, the PC/SD performed worse in the prediction of HREV at a cut-off value around 909 (n/mm)/mm (between 897 and 921), with a sensitivity of 0.85 (95%CI: 0.72-0.93) and specificity of 0.66 (95%CI: 0.52-0.77).

While the PC/SD is advantageous in that it is easy to calculate and relies on only two data points, its test characteristics are not adequate for the prediction of EV or HREV. The authors considered that it could potentially be incorporated into a more comprehensive prediction rule[11]; however, an additional challenge with widespread use is that spleen diameter is not consistently included in ultrasound reports.

TRANSIENT ELASTOGRAPHY

Liver stiffness (LS) as measured by transient elastography (TE) performs well in the diagnosis of cirrhosis with an area under the receiver operating characteristic (AUROC) of 0.96, and at a cut-off of 17.6 kPa, the NPV and PPV for the diagnosis of cirrhosis are 92% and 91%, respectively[4]. A meta-analysis of 11 studies evaluating LS and HVPG demonstrated a significant correlation (r = 0.783, 95%CI: 0.737-0.823) and that LS also had good diagnostic performance for the assessment of CSPH, with a sensitivity of 87.5% and specificity of 85.3%[12]. A 2013 meta-analysis including 5 studies and 420 patients demonstrated that LS by TE is an accurate means of diagnosing CSPH, with an AUROC of 0.93 (95%CI: 0.90-0.95), sensitivity of 0.90 (95%CI: 0.81-0.95), and specificity of 0.79 (95%CI: 0.58-0.91)[10].

Several studies have subsequently been conducted to evaluate the accuracy of TE in the diagnosis of EV with variable findings. In a prospective study including patients with cirrhosis of multiple etiologies, a cut-off value of 27.5 kPa provided a NPV of 95% in diagnosing HREV[13]. However, subsequent meta-analyses demonstrated that LS alone is not sufficiently accurate to diagnose either EV or HREV. Based on these studies, the AUROC for TE in the diagnosis of HREV ranged from 0.78 to 0.83[14,15], and the AUROC for TE in the diagnosis of EV ranged from 0.82 (95%CI: 0.79-0.86) to 0.84 (95%CI: 0.80-0.87)[14].

It is important to note that these studies included patients with multiple and varied etiologies of chronic liver disease which contributed substantial heterogeneity[14-16] although the majority of patients across these studies had untreated viral or alcoholic cirrhosis[13]. In addition, the TE-LS cutoffs evaluated varied significantly across studies, ranging from 12.0 to 29.7 kPa for the detection of any EV and from 14.6 to 38.2 for the detection of HREV[13,14]. The optimal cutoffs for TE-LS used to stage fibrosis and diagnosis cirrhosis vary with etiology of liver disease and may be disease-specific. Therefore, this may be the case for TE in the diagnosis of EV and HREV and perhaps establishing disease-specific cut-offs would improve test characteristics. However, the sensitivity of TE in the diagnosis of EV or HREV is good but the specificity is only moderate. Therefore, it was concluded that although TE has a role in the assessment of PH, it should not be used alone in selecting patients for variceal screening[15-17].

COMBINATION OF LIVER STIFFNESS, SPLEEN DIAMETER, AND PLATELET COUNT

The role of LS in combination with other parameters has been evaluated. LS, SD and PC have been evaluated in various combinations for the prediction of EV. One such
score is called the liver stiffness – spleen diameter to platelet ratio (LSPS) and is calculated as follows: \(LS \times SD/PC\). LSPS is accurate in the diagnosis of CSPH with an AUROC of 0.918 (95% CI: 0.872-0.965, \(P < 0.0001\))\[^6\]. In a prospective study of patients with cirrhosis due to hepatitis B, it was found that LSPS < 3.5 has a 94.0% NPV for the prediction of HREV while LSPS > 5.5 has a PPV of 94.2. LSPS had excellent accuracy with AUROC of 0.953 and performed better in the prediction of HREV than any of the components individually and PC/SD\[^7\]. However, a second study including patients with diverse etiologies of cirrhosis showed that LSPS < 3.21 offered a better NPV in the prediction of EV, again demonstrating heterogeneity in optimal cutoffs\[^8\]. Furthermore, these studies suggested better performance of LSPS in Child A than Child B + C cirrhosis\[^9\].

Another study developed an EV prediction score using multivariable analysis of the individual parameters of the LSPS which is calculated accordingly: \(-4.364 + 0.538 \times (spleen diameter) - 0.049 \times (PC) - 0.044 \times (LS) + 0.001 \times (LS \times PC)\). This score had an AUROC of 0.909 (95% CI: 0.841-0.954, \(P < 0.0001\)) and it performed similarly when evaluated by etiology of liver disease\[^9\]. A third score, calculated simply by \(PC/LS\), was evaluated in a prospective study of 107 patients. It was found that values ≤ 122,000/μL × kPa predicted high-risk varices with 100% sensitivity and 100% NPV, which would prevent 20.6% of patients from receiving unnecessary screening endoscopy (\(p = 0.003\))\[^10\].

These studies together demonstrate that combinations of LS, SD, and PC can perform well in the diagnosis of CSPH and EV/HREV. However, despite their excellent test characteristics, these scores have not gained momentum, and one important reason for this is that calculating a score is cumbersome when applied to busy clinical practice because it requires an additional step. The Baveno VI consensus acknowledged this in favoring a method that combines data points sequentially rather than via a calculation.

LIVER STIFFNESS AND PLATELET COUNT: THE BAVENO VI CRITERIA

The combination of LS and PC has demonstrated high performance in the prediction of CSPH and EV, and the use of sequential clinical parameters is quick and simple to apply in clinical practice. A 2014 prospective, proof-of-concept study of 49 patients with TE-LS ≥ 13.6 kPa and EGD noted that 90% of patients with EV had a PC < 150000/mm\(^3\) and an abnormal ultrasound suggesting a simple sequential strategy could be used to avoid EGD in low-risk patients\[^12\]. A subsequent 2015 retrospective study of 271 patients (71 training, 200 validation) with Child Pugh A cirrhosis and LS > 13.6 kPa found that the optimal threshold for excluding HREV was the combination of LS ≤ 25 kPa and PC ≥ 100000/mm\(^3\). This combined model had a NPV of 100% for the prediction of HREV in both the training and validation cohorts\[^13\]. Of note, the majority of patients had hepatitis C cirrhosis and in addition, the frequency of GEV was low (10% overall) which is good in that it reflects real-life practice in compensated cirrhosis but worth noting because it does affect the model development and test characteristics\[^14\].

Based on these findings that HREV could be excluded with a very low miss rate\[^12\], the 2015 Baveno VI consensus conference recommended that surveillance endoscopy is not necessary for patients with compensated cirrhosis who have normal platelets > 150000/mm\(^3\) and LS < 20 kPa\[^15\]. Many studies including high-volume single center retrospective studies and meta-analyses have validated the Baveno VI recommendation in patients with different etiologies of cACLD (including hepatitis B, hepatitis C, alcohol, and non-alcoholic steatohepatitis) and variable prevalence of EV, ranging from 23% to 65%\[^16-31\]. Across all of these studies, the overall missed HREV rate has been 2% or less, in keeping with the proposed < 5% threshold defined by Baveno VI. In these studies, 20% of EGDs could have been saved by applying the criteria. As is most frequently the case, the most common etiologies across these multiple studies were viral and alcohol-related cirrhosis. However, a 2018 large multicenter cross-sectional study of 790 patients with cirrhosis due to nonalcoholic fatty liver disease (NAFLD) demonstrated a HREV miss rate of 0.9% using the Baveno VI criteria\[^32\]. A subsequent 2019 retrospective cross-sectional study evaluated Baveno VI in 227 patients with cAACL due to cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), which are mechanically distinct in that they may have a pre-sinusoidal component of PH. Baveno VI had a 0% false negative rate in the prediction of HREV in PBC and PSC\[^33\]. The robustness of the Baveno VI criteria in ruling out HREV led to its adoption in the AASLD practice.
guidance statement[4].

EXPANDING ON THE BAVENO VI CRITERIA

Noting that the total number of EGDs avoided using the Baveno VI criteria is low relative to the prevalence of HREVs, several studies have attempted to expand the Baveno VI and improve its discriminatory accuracy by adjusting the LS and PC cutoff values. Based on 2 large-scale retrospective studies, a PC > 110000/mm² and LS < 25 kPa was shown to potentially spare up to 40% of EGDs where the Baveno VI criteria would spare only 20% at an acceptable missed VNT rate of 1.6% (95% CI: 0.7% - 3.5%)[32,33]. This came to be known as the “Expanded Baveno VI criteria” and was initially shown to maintain a similar missed VNT rate of < 5% across different subgroups including hepatitis C, alcohol, non-alcoholic steatohepatitis, and PSC/PBC[32,34,35]. However, a large-scale retrospective study in an Asian population showed that while the Expanded Baveno VI criteria spared more EGDs compared to the Baveno VI criteria (51.7% vs 27.6%), it missed an unacceptable number of HREVs in comparison (6.8% vs 3.8%)[36].

Subsequently, a large meta-analysis including 30 studies and 8469 patients reproduced a similar finding, that although the Expanded Baveno VI criteria could reduce the proportion of unnecessary EGDs, it would do so at a higher rate of missed HREVs[37]. Thus, the Expanded Baveno VI criteria are not recommended. LS < 25 kPa with a PC > 125000/mm² was evaluated as an alternate expansion of the Baveno VI criteria and was shown to spare an additional 15% of endoscopies above the Baveno VI criteria with an acceptable missed HREV rate in a large retrospective study of 442 patients[38] but this was not subsequently validated. This same study looked at PC > 150000/mm² and model for end stage liver disease 6 as a method of ruling out HREV but misclassified 10% of patients[39].

Some studies have examined disease-specific cut-offs. A large-scale NAFLD patient cohort was also used to identify a NAFLD-specific LS and PC cutoff to be applied in a similar fashion and found that the best thresholds to rule out HREVs were PC > 110000/mm² and either LS < 30 kPa with the medium-sized probe or LS < 25 kPa using the extra-large probe[40]. They demonstrated that applying these criteria in the NAFLD population would reduce the number of screening EGDs by almost half with an acceptable HREV miss rate of < 5%[40]. However, this has not subsequently been validated and an additional challenge is that LS measurements are less accurate in obese patients, in fact, TE is not technically feasible in approximately 20% of patients[40]. One retrospective study of hepatitis B-related compensated cirrhosis showed that after removing patients meeting Baveno VI criteria, the remaining patients could be further selected for absence of HREV using LS, PC, or the Lok index cutoff [- 5.56 - 0.0089 × PC (10⁷/mm²) + 1.26 × (Aspartate Transaminase/Alanine Aminotransferase) + 5.27 × International Normalized Ratio Lok] = [exp (logodds)]/[1 + exp (logodds)][27] stratified by alanine aminotransferase and total bilirubin[41]. This study is specific to hepatitis B and does not put forth a single recommendation but rather suggests that Baveno VI can be optimized further.

SPLEEN STIFFNESS MEASUREMENT

Portal hypertension leads to splenic congestion which leads to architectural changes in the splenic arteries and veins, resulting in fibrosis of the spleen and therefore, a rise in spleen stiffness. Methods for measuring spleen stiffness include shear wave elastography, TE, and acoustic radiation force impulse imaging. Of these methods, acoustic radiation force impulse imaging has been studied most frequently because this method is not limited by the presence of ascites or obesity[47]. Spleen stiffness measurement (SSM) appears to perform well in the prediction of CSPH: In a prospective study of 78 patients, SSM was able to diagnose HVPG ≥ 10 mmHg and HVPG ≥ 12 mmHg with AUROCs of 0.97 and 0.95, respectively[27]. Some studies have indicated that SSM is superior to LS in diagnosing CSPH[36,40]; however, other studies provide contrary views[43-45]. According to present literature, it is difficult to determine which metric is superior.

Several studies have explored SSM in the prediction of EV[40,46-47]. A prospective study of 135 patients demonstrated that patients with any EV had higher SSM than those with no EV (3.37 m/s vs 2.79 m/s, P < 0.001); and patients with HREVs had an even greater difference in SSM (3.96 m/s vs 2.93 m/s, P < 0.001)[45]. In addition, at a
cutoff value of < 3.20 m/s, NPV for excluding HREV was 99%. SSM was therefore evaluated in 2 prospective studies and demonstrated good diagnostic accuracy for prediction of any EV, with AUROC of 0.872 to 0.933 at a cutoff of 2.89-3.18 m/s, and good diagnostic accuracy for the prediction of HREV, with AUROC of 0.930-0.969 at cutoffs of 3.30 m/s. One study demonstrated that the combination of SSM by TE at a cutoff of ≤ 46 kPa and Baveno VI criteria would have safely spared (0 HREV missed) 37.4% of EGDs compared with only 16.5% when using the Baveno VI criteria alone.

In these studies, SSM has demonstrated good performance across different subgroups including viral, non-viral, and Child B cirrhosis, but these subgroups all used different SSM cutoffs which complicates translation to clinical practice. In subsequent meta-analyses, heterogeneity in the technique of obtaining SSM and in cutoffs used was a problem and as a result, diagnostic accuracy was not as high. Furthermore, SSM is not widely available at this time and therefore this cannot be recommended on a large scale.

VIDEO CAPSULE ENDOSCOPY

Video capsule endoscopy (VCE) has been evaluated for the diagnosis of HREV. However, a Cochrane systematic review of 6 studies could not substantiate VCE as a non-invasive method of assessing for EV. The pooled sensitivity was 73.7% (95%CI: 52.4%–87.7%) and the pooled specificity was 90.5% (95%CI: 84.1%–94.4%). It was concluded that the sensitivity of VCE is not sufficient to replace EGD as a method of variceal screening in these patients. Given its higher specificity, it was recommended that it could be considered in patients who refuse or have a contraindication to EGD. However, this is not likely cost-saving, not widely available, and is still a procedure requiring endoscopy staff and specialized equipment and with a certain level of procedural risk (e.g. capsule retention).

EVENDO SCORE

Despite the excellent performance characteristics of LS and PC, TE is far from widely available and therefore there is interest in developing prediction scores independent of LS. With this in mind, the EVendo score was recently developed and validated in a multi-center study of 238 patients with cirrhosis. The score was developed using a machine learning algorithm to identify factors significantly associated with the presence of EVs and HREVs. The investigators then developed the EVendo score, which is calculated as follows:

$$[(9.5 \times \text{international normalized ratio} + \text{aspartate transaminase}/35)/(\text{platelets}/150 + \text{blood urea nitrogen}/20 + \text{hemoglobin 15})] + 1$$

point for ascites. This score identified patients with EVs in the training set with an AUROC of 0.84 and was then validated in an independent prospective cohort with good performance (AUROC of 0.82 for EV in all patients, AUROC of 0.81 in subgroup of patients with Child-Pugh A cirrhosis). The score identified patients with HREV in the training set with an AUROC of 0.74, in the validation set with an AUROC of 0.75, and in patients with Child-Pugh A cirrhosis with an AUROC of 0.75. An EVendo score below 3.90 would have spared 30.5% patients from EGDs, missing only 2.8% of VNT and 40.0% patients with Child-Pugh A cirrhosis from EGDs, missing only 1.1% of VNT.

The EVendo score is advantageous in that it relies on routinely collected laboratory values, has robust performance characteristics across a broad array of liver disease etiologies, and can be readily calculated using a published on-line calculator (https://www.mdcalc.com/evendo-score-esophageal-varices). As such, it is convenient for clinical use to risk stratify and triage patients with cirrhosis who are being considered for EV screening (Figure 1). However, further validation in larger cohorts will be useful to better define its clinical utility and suitability for broader use (Tables 1 and 2).

CONCLUSION

In summary, the use of non-invasive testing to stratify cACLD patients for screening endoscopy and individualize care for PH shows promise and will continue to become more important as the cACLD population grows. However, several important caveats
Table 1 Test characteristics for noninvasive detection of esophageal varices

<table>
<thead>
<tr>
<th>Non-invasive test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>LR (+)</th>
<th>LR (-)</th>
<th>AUROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/SD</td>
<td>89%-93%</td>
<td>74%-84%</td>
<td>73%</td>
<td>74%</td>
<td>3.5</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>84%</td>
<td>62%-68%</td>
<td>73%</td>
<td>73%</td>
<td>2.3-2.58</td>
<td>0.24-0.26</td>
<td>0.82-0.84</td>
</tr>
<tr>
<td>LSPS</td>
<td>94% (LSPS > 5.5)</td>
<td>94% (LSPS < 3.5)</td>
<td>0.882-0.953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV prediction score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.909</td>
</tr>
<tr>
<td>SSM</td>
<td>78%-94%</td>
<td>76%-78%</td>
<td>99%</td>
<td>3.4</td>
<td>0.82-0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVendo</td>
<td>92.3%</td>
<td>65.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
</tr>
<tr>
<td>Capsule endoscopy</td>
<td>73.7%-83%</td>
<td>84%-90.5%</td>
<td></td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other noninvasive scores exist and may be used, as shown in Table 1; EVendo score selected based on it having the highest sensitivity, negative predictive value, and endoscopies saved, though it has not yet been validated outside of the United States. EV: Esophageal varices; PPV: Positive Predictive Value; NPV: Net present value; AUROC: Area under the receiver operating characteristic; PC/SD: Platelet count to spleen diameter ratio; TE: Transient elastography; LSPS: Liver stiffness–spleen diameter to platelet ratio; SSM: Spleen stiffness measurement.

Table 2 Test characteristics for noninvasive detection of high risk esophageal varices

<table>
<thead>
<tr>
<th>Non-invasive test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>LR (+)</th>
<th>LR (-)</th>
<th>AUROC</th>
<th>HREV missed</th>
<th>EGDs saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/SD</td>
<td>85%</td>
<td>66%</td>
<td>0.03</td>
<td>0.83</td>
<td>0.78-0.83</td>
<td>7%</td>
<td></td>
<td>0</td>
<td>20.6%; 6.3%</td>
</tr>
<tr>
<td>TE</td>
<td>78%-82%</td>
<td>76%-77%</td>
<td>100% (< 122000); 96% (< 92000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLT/log<sub>10</sub>LS</td>
<td>100% (< 122k); 94% (< 92k)</td>
<td>0.78-0.83</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baveno VI</td>
<td>87%-97%</td>
<td>32%-41%</td>
<td>98%-100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded Baveno VI</td>
<td>90%</td>
<td>51%</td>
<td>92%-96%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>81%-98%</td>
<td>52%-66%</td>
<td>99.4%</td>
<td>2.5</td>
<td>0.807</td>
<td>2%</td>
<td></td>
<td></td>
<td>35.8%</td>
</tr>
<tr>
<td>EVendo</td>
<td>100%</td>
<td>49.3%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsule endoscopy</td>
<td>72%-73.7%</td>
<td>90.5%-91%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other noninvasive scores exist and may be used, as shown in Table 2; EVendo score selected based on it having the highest sensitivity, negative predictive value, and endoscopies saved, though it has not yet been validated outside of the United States. HREV: High risk esophageal varices; PPV: Positive Predictive Value; NPV: Net present value; AUROC: Area under the receiver operating characteristic; PC/SD: Platelet count to spleen diameter ratio; TE: Transient elastography; PLT: Platelets; LS: Liver stiffness; SSM: Spleen stiffness measurement.

need to be kept in mind.

Non-invasive prediction of EV cannot be applied to patients with decompensated cirrhosis given the paucity of applicable data and the much higher pre-test probability of HREV. Although the AASLD guidance statement recommends that patients meeting Baveno VI criteria can safely avoid screening EGD, there is still uncertainty regarding follow-up of patients who have been ruled out for HREV. It has been suggested that these patients can be followed with annual TE and PC and undergo screening when they no longer meet the Baveno VI criteria. However, long-term follow-up studies are needed to determine whether this strategy is sufficiently accurate to identify the development of HREV in someone who was previously at low risk. There is a lack of randomized controlled trial data to inform the selection of higher-risk patients by non-invasive methods for variceal screening EGD; while prospective data exist in this regard, e.g. with the EVendo score^[50], further clinical validation is encouraged. Finally, despite the high performance of TE, there is considerable interest in developing scores that do not require TE given that it is not widely available; moreover, its measurement can be affected by several factors including obesity, ascites, and alcohol use, which may limit its application in advanced
Figure 1 Proposed algorithm for noninvasive esophageal variceal assessment to risk stratify patients using the EVendo score. Patients with known (biopsy-proven) or suspected cirrhosis. Excluded from the original study were patients who: (1) Had a prior upper endoscopy (EGD) for esophageal variceal screening, surveillance, or treatment; (2) Had a prior EGD that incidentally revealed esophageal varices; (3) Had noncirrhotic etiologies for portal hypertension; (4) Were on dialysis; or (5) Were on anticoagulants that would affect international normalized ratio. Online calculator and additional guidelines available here: https://www.mdcalc.com/evendo-score-esophageal-varices. Other noninvasive scores exist and may be used, as shown in Tables 1 and 2; EVendo score selected and shown here based on it having the highest sensitivity, negative predictive value, and EGDs saved, though it has not yet been validated outside of the United States. EGD: Endoscopy; EV: Esophageal varices.

REFERENCES

30. Bae J, Sinn DH, Kang W, Gwak GY, Choi MS, Paik YH, Lee JH, Koh KC, Paik SW. Validation of the...
Baveno VI and the expanded Baveno VI criteria to identify patients who could avoid screening endoscopy. *Liver Int* 2018; 38: 1442-1448 [PMID: 29495113 DOI: 10.1111/liv.13732]

