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Abstract
The epidemic nature of diabetes mellitus in different 
regions is reviewed. The Middle East and North Africa 

region has the highest prevalence of diabetes in 
adults (10.9%) whereas, the Western Pacific region 
has the highest number of adults diagnosed with 
diabetes and has countries with the highest prevalence 
of diabetes (37.5%). Different classes of diabetes 
mellitus, type 1, type 2, gestational diabetes and other 
types of diabetes mellitus are compared in terms of 
diagnostic criteria, etiology and genetics. The molecular 
genetics of diabetes received extensive attention in 
recent years by many prominent investigators and 
research groups in the biomedical field. A large array 
of mutations and single nucleotide polymorphisms 
in genes that play a role in the various steps and 
pathways involved in glucose metabolism and the 
development, control and function of pancreatic cells 
at various levels are reviewed. The major advances in 
the molecular understanding of diabetes in relation to 
the different types of diabetes in comparison to the 
previous understanding in this field are briefly reviewed 
here. Despite the accumulation of extensive data at 
the molecular and cellular levels, the mechanism of 
diabetes development and complications are still not 
fully understood. Definitely, more extensive research 
is needed in this field that will eventually reflect on 
the ultimate objective to improve diagnoses, therapy 
and minimize the chance of chronic complications 
development. 
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Core tip: Diabetes mellitus is rising to an alarming 
epidemic level. Early diagnosis of diabetes and prediabetes 
is essential using recommended hemoglobin A1c criteria 
for different types except for gestational diabetes. 
Screening for diabetes especially in underdeveloped 
countries is essential to reduce late diagnosis. Diabetes 
development involves the interaction between genetic 
and non-genetic factors. Biomedical research continues 
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to provide new insights in our understanding of the 
mechanism of diabetes development that is reviewed 
here. Recent studies may provide tools for the use of 
several genes as targets for risk assessment, therapeutic 
strategies and prediction of complications. 
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DEFINITION OF DIABETES MELLITUS
Diabetes mellitus is a group of metabolic diseases 
characterized by chronic hyperglycemia resulting 
from defects in insulin secretion, insulin action, or 
both. Metabolic abnormalities in carbohydrates, lipids, 
and proteins result from the importance of insulin 
as an anabolic hormone. Low levels of insulin to 
achieve adequate response and/or insulin resistance 
of target tissues, mainly skeletal muscles, adipose 
tissue, and to a lesser extent, liver, at the level of 
insulin receptors, signal transduction system, and/or 
effector enzymes or genes are responsible for these 
metabolic abnormalities. The severity of symptoms 
is due to the type and duration of diabetes. Some of 
the diabetes patients are asymptomatic especially 
those with type 2 diabetes during the early years of 
the disease, others with marked hyperglycemia and 
especially in children with absolute insulin deficiency 
may suffer from polyuria, polydipsia, polyphagia, 
weight loss, and blurred vision. Uncontrolled diabetes 
may lead to stupor, coma and if not treated death, due 
to ketoacidosis or rare from nonketotic hyperosmolar 
syndrome[1-3]. 

CLASSIFICATION OF DIABETES 
MELLITUS
Although classification of diabetes is important and has 
implications for the treatment strategies, this is not 
an easy task and many patients do not easily fit into 
a single class especially younger adults[1,4-6] and 10% 
of those initially classified may require revision[7]. The 
classical classification of diabetes as proposed by the 
American Diabetes Association (ADA) in 1997 as type 
1, type 2, other types, and gestational diabetes mellitus 
(GDM) is still the most accepted classification and 
adopted by ADA[1]. Wilkin[8] proposed the accelerator 
hypothesis that argues “type 1 and type 2 diabetes 
are the same disorder of insulin resistance set against 
different genetic backgrounds”[9]. The difference bet
ween the two types relies on the tempo, the faster 
tempo reflecting the more susceptible genotype and 
earlier presentation in which obesity, and therefore, 
insulin resistance, is the center of the hypothesis. Other 

predictors of type 1 diabetes include increased height 
growth velocity[10,11] and impaired glucose sensitivity 
of β cells[12]. The implications of increased free radicals, 
oxidative stress, and many metabolic stressors in 
the development, pathogenesis and complications 
of diabetes mellitus[13-18] are very strong and well 
documented despite the inconsistency of the clinical 
trials using antioxidants in the treatment regimens of 
diabetes[19-21]. The female hormone 17-β estradiol acting 
through the estrogen receptor-α (ER-α) is essential for 
the development and preservation of pancreatic β cell 
function since it was clearly demonstrated that induced 
oxidative stress leads to β-cell destruction in ER-α 
knockout mouse. The ER-α receptor activity protects 
pancreatic islets against glucolipotoxicity and therefore 
prevents β-cell dysfunction[22].

TYPE 1 DIABETES MELLITUS
Autoimmune type 1 diabetes
This type of diabetes constitutes 5%-10% of subjects 
diagnosed with diabetes[23] and is due to destruction 
of β cells of the pancreas[24,25]. Type 1 diabetes 
accounts for 80%-90% of diabetes in children and 
adolescents[2,26]. According to International Diabetes 
Federation (IDF), the number of youth (0-14 years) 
diagnosed with type 1 diabetes worldwide in 2013 was 
497100 (Table 1) and the number of newly diagnosed 
cases per year was 78900[27]. These figures do not 
represent the total number of type 1 diabetes patients 
because of the high prevalence of type 1 diabetes in 
adolescence and adults above 14 years of age. One 
reported estimate of type 1 diabetes in the United 
States in 2010 was 3 million[28,29]. The number of 
youth in the United States younger than 20 years with 
type 1 diabetes was estimated to be 166984 in the 
year 2009[30]. The prevalence of type 1 diabetes in the 
world is not known but in the United States in youth 
younger than 20 years was 1.93 per 1000 in 2009 
(0.35-2.55 in different ethnic groups) with 2.6%-2.7% 
relative annual increase[26,31]. Type 1 diabetes is mainly 
due to an autoimmune destruction of the pancreatic β 
cells through T-cell mediated inflammatory response 
(insulitis) as well as a humoral (B cell) response[25]. 
The presence of autoantibodies against the pancreatic 
islet cells is the hallmark of type 1 diabetes, even 
though the role of these antibodies in the pathogenesis 
of the disease is not clear. These autoantibodies 
include islet cell autoantibodies, and autoantibodies 
to insulin (IAA), glutamic acid decarboxylase (GAD, 
GAD65), protein tyrosine phosphatase (IA2 and 
IA2β) and zinc transporter protein (ZnT8A)[32]. These 
pancreatic autoantibodies are characteristics of type 
1 diabetes and could be detected in the serum of 
these patients months or years before the onset of 
the disease[33]. Autoimmune type 1 diabetes has 
strong HLA associations, with linkage to DR and DQ 
genes. HLA-DR/DQ alleles can be either predisposing 
or protective[1]. This autoimmune type 1 diabetes is 
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characterized by the absence of insulin secretion and is 
more dominant in children and adolescents. 

In addition to the importance of genetic pre
disposition in type 1 diabetes, several environmental 
factors have been implicated in the etiology of the 
disease[9,33]. Viral factors include congenital rubella[34,35], 
viral infection with enterovirus, rotavirus, herpes 
virus, cytomegalovirus, endogenous retrovirus[36,37] 
and Ljungan virus. Other factors include low vitamin 
D levels[38], prenatal exposure to pollutants, improved 
hygiene and living conditions decreased childhood 
infections in countries with high socioeconomic status 
leading to increased autoimmune diseases (hygiene 
hypothesis), early infant nutrition such as using 
cow’s milk formula instead of breast feeding[39] in 
addition to insulin resistance in early childhood due to 
obesity or increased height growth velocity. The role 
of environmental factors remains controversial[40]. 
Recent evidence supported the causative effect of viral 
infections in diabetes[41-43].

Type 1 diabetes often develops suddenly and 
can produce symptoms such as polydipsia, polyuria, 
enuresis, lack of energy, extreme tiredness, polyphagia, 
sudden weight loss, slow-healing wounds, recurrent 
infections and blurred vision[27] with severe dehydration 
and diabetic ketoacidosis in children and adolescents. 
The symptoms are more severe in children compared 
to adults. These autoimmune type 1 diabetes patients 
are also prone to other autoimmune disorders such 
as Graves’ disease, Hashimoto’s thyroiditis, Addison’
s disease, vitiligo, celiac sprue, autoimmune hepatitis, 
myasthenia gravis, and pernicious anemia[1]. The 
complete dependence on insulin of type 1 diabetes 
patients may be interrupted by a honeymoon phase 
which lasts weeks to months or in some cases 2-3 
years. In some children, the requirement for insulin 
therapy may drop to a point where insulin therapy 
could be withdrawn temporarily without detectable 
hyperglycemia[44].

Idiopathic type 1 diabetes
A rare form of type 1 diabetes of unknown origin 
(idiopathic), less severe than autoimmune type 1 
diabetes and is not due to autoimmunity has been 
reported. Most patients with this type are of African 
or Asian descent and suffer from varying degrees of 
insulin deficiency and episodic ketoacidosis[45]. 

Fulminant type 1 diabetes
This is a distinct form of type 1 diabetes, first des
cribed in the year 2000, and has some common 
features with idiopathic type 1 diabetes being non-
immune mediated[46,47]. It is characterized by keto
acidosis soon after the onset of hyperglycemia, high 
glucose levels (≥ 288 mg/dL) with undetectable 
levels of serum C-peptide, an indicator of endogenous 
insulin secretion[48]. It has been described mainly in 
East Asian countries and accounted for approximately 
20% of acute-onset type 1 diabetes patients in Japan 
(5000-7000 cases) with an extremely rapid and 
almost complete beta-cell destruction resulting in 
nearly no residual insulin secretion[48,49]. Both genetic 
and environmental factors, especially viral infection, 
have been implicated in the disease. Anti-viral immune 
response may trigger the destruction of pancreatic 
beta cells through the accelerated immune reaction 
with no detectable autoantibodies against pancreatic 
beta cells[48,50]. Association of fulminant type 1 diabetes 
with pregnancy has also been reported[51]. 

TYPE 2 DIABETES MELLITUS
The global prevalence of diabetes in adults (20-79 
years old) according to a report published in 2013 by 
the IDF was 8.3% (382 million people), with 14 million 
more men than women (198 million men vs 184 
million women), the majority between the ages 40 and 
59 years and the number is expected to rise beyond 
592 million by 2035 with a 10.1% global prevalence. 
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Table 1  Number of subjects with type 1 diabetes in children (0-14 years), with diabetes in adults (20-79 years) and with 
hyperglycemia (type 2 or gestational diabetes) in pregnancy (20-49 years)

Region Type 1 diabetes in children 
(0-14 yr)

Diabetes in adults 
(20-79 yr)

Hyperglycemia in pregnancy 
(20-49 yr)

2013 2013 2035 2013

Number
in

thousands

Newly 
diagnosed

in thousands

Number in 
millions

Comparative 
prevalence

Number in 
millions

Comparative 
prevalence

Cases in live 
births in 
millions

Comparative 
prevalence

Africa   39.1   6.4   19.8   5.7%   41.5   6.0%   4.6 14.4%
Europe 129.4 20.0   56.3   6.8%   68.9   7.1%   1.7 12.6%
Middle East and North Africa   64.0 10.7   34.6 10.9%   67.9 11.3%   3.4 17.5%
North America and Caribbean 108.6 16.7   36.8   9.6%   50.4   9.9%   0.9 10.4%
South and Central America   45.6   7.3   24.1   8.2%   38.5   8.2%   0.9 11.4%
South East Asia   77.9 12.5   72.1   8.7% 123.0   9.4%   6.3 25.0%
Western Pacific   32.5   5.3 138.2   8.1% 201.8   8.4%   3.7 11.9%
World 497.1 78.9 381.8   8.3% 592.0   8.8% 21.4 14.8%

Data extracted from International Diabetes Federation Diabetes Atlas, 6th ed, 2013.
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tissues. In addition to insulin resistance, the increased 
demand for insulin could not be met by the pancreatic 
β cells due to defects in the function of these cells[18]. 
On the contrary, insulin secretion decreases with the 
increased demand for insulin by time due to the gradual 
destruction of β cells[57] that could transform some of 
type 2 diabetes patients from being independent to 
become dependent on insulin. Most type 2 diabetes 
patients are not dependent on insulin where insulin 
secretion continues and insulin depletion rarely occurs. 
Dependence on insulin is one of the major differences 
from type 1 diabetes. Other differences include the 
absence of ketoacidosis in most patients of type 2 
diabetes and autoimmune destruction of β cells does 
not occur. Both type 1 and type 2 diabetes have genetic 
predisposition, however, it is stronger in type 2 but the 
genes are more characterized in type 1 (the TCF7L2 
gene is strongly associated with type 2 diabetes)[58]. 
Due to the mild symptoms of type 2 diabetes in the 
beginning, its diagnosis is usually delayed for years 
especially in countries where regular checkup without 
symptoms is not part of the culture. This delay 
in diagnosis could increase the incidence of long-
term complications in type 2 diabetes patients since 
hyperglycemia is not treated during this undiagnosed 
period. 

In addition to diabetes, insulin resistance has 
many manifestations that include obesity, neph
ropathy, essential hypertension, dyslipidemia (hyper
triglyceridemia, low HDL, decreased LDL particle 
diameter, enhanced postprandial lipemia and remnant 
lipoprotein accumulation), ovarian hyperandrogenism 
and premature adrenarche, non-alcoholic fatty liver 
disease and systemic inflammation[6,54]. The presence 
of type 2 diabetes in children and adolescence who are 

With 175 million cases still undiagnosed, the number of 
people currently suffering from diabetes exceeds half a 
billion. An additional 21 million women are diagnosed 
with hyperglycemia during pregnancy. The Middle East 
and North Africa region has the highest prevalence 
of diabetes (10.9%), however, Western Pacific region 
has the highest number of adults diagnosed with 
diabetes (138.2 millions) and has also countries with 
the highest prevalence (Figure 1)[27]. Low- and middle-
income countries encompass 80% of the cases, “where 
the epidemic is gathering pace at alarming rates”[27]. 
Despite the fact that adult diabetes patients are mainly 
type 2 patients, it is not clear whether the reported 
382 million adults diagnosed with diabetes also include 
type 1 diabetes patients. 

More than 90%-95% of diabetes patients belong 
to this type and most of these patients are adults. 
The number of youth (less than 20 years) with type 
2 diabetes in the United States in the year 2009 was 
0.46 in 1000 and accounted for approximately 20% of 
type 2 diabetes in youth[26]. The increased incidence of 
type 2 diabetes in youth is mainly due to the change in 
the lifestyle of the children in terms of more sedentary 
life and less healthy food. Obesity is the major reason 
behind insulin resistance which is mainly responsible 
for type 2 diabetes[52-54]. The ADA recommends sc
reening of overweight children and adolescence to 
detect type 2 diabetes[55,56]. The prevalence of obesity 
in children in on the rise[6] which is probably the main 
reason for the increased incidence of type 2 diabetes in 
the young (30.3% overall increase in type 2 diabetes 
in children and adolescence between 2001 and 
2009)[26]. 

Insulin resistance in type 2 diabetes patients 
increases the demand for insulin in insulin-target 
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Figure 1  Comparative prevalence of diabetes in adults (20-79 years) in countries with high prevalence (≥ 10%). Data extracted from International Diabetes 
Federation Diabetes Atlas, 6th ed, 2013.
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not obese[59-61], the occasional severe dehydration and 
the presence of ketoacidosis in some pediatric patients 
with type 2 diabetes[55] had led to the misclassification 
of type 2 to type 1 diabetes. 

Some patients with many features of type 2 dia
betes have some type 1 characteristics including the 
presence of islet cell autoantibodies or autoantibodies 
to GAD65 are classified as a distinct type of diabetes 
called latent autoimmune diabetes in adults (LADA)[62]. 
People diagnosed with LADA do not require insulin 
treatment. In a recent study, Hawa et al[63] reported 
7.1% of European patients with type 2 diabetes with 
a mean age of 62 years, tested positive for GAD 
autoantibodies and the prevalence of LADA was higher 
in patients diagnosed with diabetes at a younger age. 
This classification of LADA as a distinct type of diabetes 
is still controversial[6,64-66]. 

Insulin resistance and signaling
Defects in the insulin-dependent substrate proteins 
IRS-1 and IRS-2 mediated signaling pathway are 
implicated in the development of metabolic disorders, 
mainly diabetes. This pathway mediates the cellular 
response to insulin and involves a large array of 
insulin-stimulated protein kinases including the serine/
threonine kinase AKT and protein kinase C (PKC) that 
phosphorylate a large number of Ser/Thr residues in 
the insulin receptor substrate (IRS) proteins involved 
in the metabolic response to insulin[67]. In addition, 
other non-insulin dependent kinases including the 
AMP-activated protein kinase, c-Jun N-terminal 
protein kinase and G protein-coupled receptor 
kinase 2 that are activated under various conditions 
can phosphorylate the two insulin responsive 
substrates[67-71]. Disruption in the AKT and PKC kinases 
is central to the development of diabetes[72] and is 
associated with all major features of the disease 
including hyperinsulinemia, dyslipidemia and insulin 
resistance[73]. Replacing the wild type IRS-1 with a 
mutant version of the protein having alanine instead 
of tyrosine in three locations using genetic knock-
in approach provided evidence to the central role of 
IRS-1 phosphorylation in the development of insulin 
resistance[74]. Using a similar approach to generate 
IRS-1 mutant with a single mutation involving a 
specific tyrosine residue, confirmed the role of 
IRS-1 phosphorylation in the development of insulin 
resistance pathogenesis[75]. The large cumulative 
evidence indicates a complex array of factors including 
environmental factors[76] and a wide range of cellular 
disturbances in glucose and lipid metabolism in various 
tissues[77] contribute to the development of insulin 
resistance. This condition generates complex cellular 
metabolic changes in a variety of tissues, mainly liver 
and muscles, that include the inability of the liver 
to transport and dispose glucose, control glucose 
production via gluconeogenesis, impaired storage 
of glucose as glycogen, de novo lipogenesis and 

hypertriglyceridemia[77]. Among the factors implicated 
in the development of insulin resistance, obesity is 
the most predominant risk factor leading to insulin 
insensitivity and diabetes which involves several 
mechanisms that participate in the pathogenesis of 
the disease[78]. Obesity-induced insulin resistance is 
directly linked to increased nutrient flux and energy 
accumulation in tissues that directly affect cell res
ponsiveness to insulin[77]. However, it seems that other 
insulin-independent mechanisms are involved in the 
overall metabolic disturbances of glucose homeostasis 
and diabetes including activities in extra-hepatic 
tissues in addition to the central role of liver. 

OTHER TYPES OF DIABETES MELLITUS
Monogenic diabetes
Characterization of the genetic etiology of diabetes 
enables more appropriate treatment, better prognosis, 
and counseling[79]. Monogenic diabetes is due to a 
genetic defect in single genes in pancreatic β cells which 
results in disruption of β cell function or a reduction 
in the number of β cells. Conventionally, monogenic 
diabetes is classified according to the age of onset 
as neonatal diabetes before the age of six months or 
Maturity Onset Diabetes of the Young (MODY) before 
the age of 25 years. However, certain familial defects 
are manifested in neonatal diabetes, MODY or adult 
onset diabetes[2,9,80]. Others believe that classification 
of diabetes as MODY and neonatal diabetes is obsolete 
and monogenic diabetes is currently used relating 
specific genetic etiologies with their specific treatment 
implications[79]. Beta cell differentiation depends on the 
expression of the homeodomain transcription factor 
PDX1 where mutation in the gene results in early 
onset diabetes (MODY) and its expression decreases 
before the onset of diabetes[81]. The angiopoietin-
like protein 8 (ANGPTL8) may represent a potential 
“betatrophin” that acts to promote the proliferation 
of beta cells, however, studies using mice lacking 
the ANGPTL8 active gene or overexpressed protein 
indicated that it did not seem to play a role in beta 
cells proliferation[82].

Mitochondrial diabetes is due to a point mutation in 
the mitochondrial DNA associated with deafness and 
maternal transmission of the mutant DNA can result in 
maternally-inherited diabetes[1,83].

Mutations that result in mutant insulin or the 
inability to convert proinsulin to insulin result in glucose 
intolerance in some of these cases. Genetic defects 
in the insulin receptor or in the signal transduction 
pathway of insulin have been demonstrated to result in 
hyperinsulinemia and modest hyperglycemia to severe 
diabetes[1]. 

Disease of the exocrine pancreas
Damage of the β cells of the pancreas due to diffused 
injury of the pancreas can cause diabetes. This damage 
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could be due to pancreatic carcinoma, pancreatitis, 
infection, pancreatectomy, and trauma[1]. Atrophy 
of the exocrine pancreas leads to progressive loss 
of the β cells[84]. Accumulation of fat in the pancreas 
or pancreatic steatosis could lead to diabetes due to 
decreased insulin secretion but may require a long 
time before the damage to β cells occurs[85]. In most 
cases, extensive damage of the pancreas is required 
before diabetes occurs and the exocrine function of the 
pancreas is decreased in these patients[86]. Cirrhosis in 
cystic fibrosis may contribute to insulin resistance and 
diabetes[2]. 

Hormones and drugs 
Diabetes has been found in patients with endocrine 
diseases that secrete excess hormones like growth 
hormone, glucocorticoids, glucagon and epinephrine 
in certain endocrinopathies like acromegaly, Cushing’s 
syndrome, glucagonoma, and pheochromocytoma, 
respectively[1]. Some of these hormones are used as 
drugs such as glucocorticoids to suppress the immune 
system and in chemotherapy and growth hormone to 
treat children with stunted growth. 

Genetic syndromes
Diabetes has been detected in patients with various 
genetic syndromes such as Down syndrome, Klinefelter 
syndrome, Turner syndrome and Wolfram syndrome[1]. 

PREDIABETES
Individuals with prediabetes do not meet the criteria 
of having diabetes but are at high risk to develop 
type 2 diabetes in the future. According to the ADA 
Expert Committee, individuals are defined to have 
prediabetes if they have either impaired fasting plasma 
glucose (IFG) levels between 100-125 mg/dL (5.6-6.9 
mmol/L) or impaired glucose tolerance test (IGT) with 
2-h plasma glucose levels in the oral glucose tolerance 
test (OGTT) of 140-199 mg/dL (7.8-11.0 mmol/L). 
The World Health Organization (WHO) still adopts the 
range for IFG from 110-125 mg/dL (6.1-6.9 mmol/
L). Prediabetes has been shown to correlate with 
increased cardiovascular mortality[87,88] and cancer[89]. 
The definition of prediabetes with the indicated cut off 
values is misleading since lower levels of glucose in the 
normal range are still correlated with cardiovascular 
disease in a continuous glycemic risk perspective[90]. 
In accordance with the recommendation of the ADA 
in 2009 to use hemoglobin A1c (HbA1c) to diagnose 
diabetes, ADA also recommended the use of an HbA1c 
(5.7%-6.4%) to diagnose prediabetes[91]. The number 
of people with IGT according to IDF was 316 million 
in 2013 (global prevalence 6.9% in adults) and is 
expected to rise to 471 million in 2030[27]. According 
to a report in 2014 by the Center for Disease Control 
and Prevention, 86 million Americans (1 out of 3) have 
prediabetes[92]. Four of the top ten countries with the 

highest prevalence of prediabetes are in the Middle 
East Arab States of the Gulf (Kuwait, Qatar, UAE and 
Bahrin with prevalence of 17.9%, 17.1%, 16.6% 
and 16.3%, respectively)[27]. The number of people 
diagnosed with prediabetes is different according to 
the method and criteria used to diagnose prediabetes. 
The number of people with prediabetes defined by 
IFG 100-125 mg/dL is 4-5 folds higher than those 
diagnosed using the WHO criteria of 110-125 mg/
dL[93]. Diabetes and prediabetes diagnosed using an 
HbA1c criteria give different estimates compared to 
methods using FPG or OGTT. Higher percentages of 
prediabetes were diagnosed using HbA1c compared 
to FPG[94-96]. Prediabetes is associated with metabolic 
syndrome and obesity (especially abdominal or vis
ceral obesity), dyslipidemia with high triglycerides 
and/or low HDL cholesterol, and hypertension[97]. 
Not all individuals with prediabetes develop diabetes 
in the future, exercise with a reduction of weight 
5%-10% reduces the risk of developing diabetes consi
derably (40%-70%)[98]. Individuals with an HbA1c of 
6.0%-6.5% have twice the risk of developing diabetes 
(25%-50%) in five years compared to those with an 
HbA1c of 5.5%-6.0%[99]. 

DIAGNOSTIC CRITERIA FOR DIABETES 
MELLITUS
Diabetes mellitus is diagnosed using either the 
estimation of plasma glucose (FPG or OGTT) or 
HbA1c. Estimation of the cut off values for glucose 
and HbA1c is based on the association of FPG or 
HbA1c with retinopathy. Fasting plasma glucose of 
≥ 126 mg/dL (7.0 mmol/L), plasma glucose after 
2-h OGTT ≥ 200 mg/dL (11.1 mmol/L), HbA1c ≥ 
6.5% (48 mmol/mol) or a random plasma glucose 
≥ 200 mg/dL (11.1 mmol/L) along with symptoms 
of hyperglycemia is diagnostic of diabetes mellitus. 
In addition to monitor the treatment of diabetes, 
HbA1c has been recommended to diagnose diabetes 
by the International Expert Committee in 2009[100] 
and endorsed by ADA[101], the Endocrine Society, the 
WHO[102] and many scientists and related organizations 
all over the world. The advantages and disadvantages 
of the different tests used to diagnose diabetes have 
been reviewed by Sacks et al[103]. The advantages of 
using HbA1c over FPG to diagnose diabetes include 
greater convenience and preanalytical stability, lower 
CV (3.6%) compared to FPG (5.7%) and 2h OGTT 
(16.6%), stronger correlation with microvascular 
complications especially retinopathy, and a marker 
for glycemic control and glycation of proteins which is 
the direct link between diagnosis of diabetes and its 
complications[104-109]. It is recommended to repeat the 
HbA1c test in asymptomatic patients within two weeks 
to reaffirm a single apparently diagnostic result[110]. 

A cut off value for HbA1c of ≥ 6.5% (48 mmol/
mol) has been endorsed by many countries and dif
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ferent ethnic groups, yet ethnicity seems to affect 
the cut off values to diagnose diabetes[111,112]. Cut-
off values of 5.5% (37 mmol/mol)[113] and 6.5% (48 
mmol/mol)[114] have been reported in a Japanese 
study, 6.0% (42 mmol/mol) in the National Health 
and Nutrition Examination Survey (NHANES III), 
6.2% (44 mmol/mol) in a Pima Indian study, 6.3% 
(45 mmol/mol) in an Egyptian study as reported by 
Davidson[105]; and three cut-off values for Chinese[112]. 
The Australians recommended the use of two cut-
off values: ≤ 5.5% to “rule-out” and ≥ 7.0% to 
“rule-in” diabetes[115]. Variations in the prevalence of 
diabetes[94,116-119] and prediabetes[120] due to ethnicity 
have been documented. Most studies diagnosed less 
subjects with diabetes using HbA1c compared to 
FPG or OGTT[121-123]. Yet, other studies reported more 
subjects diagnosed with diabetes using HbA1c[96,124-126]. 

GESTATIONAL DIABETES
Hyperglycemia in pregnancy whether in the form of 
type 2 diabetes diagnosed before or during pregnancy 
or in the form gestational diabetes has an increased 
risk of adverse maternal, fetal and neonatal outcome. 
Mothers with gestational diabetes and babies born 
to such mothers have increased risk of developing 
diabetes later in life. Hyperglycemia in pregnancy is 
responsible for the increased risk for macrosomia (birth 
weight ≥ 4.5 kg), large for gestational age births, 
preeclampsia, preterm birth and cesarean delivery 
due to large babies[127]. Risk factors for gestational 
diabetes include obesity, personal history of gestational 
diabetes, family history of diabetes, maternal age, 
polycystic ovary syndrome, sedentary life, and ex
posure to toxic factors[3]. 

Diagnosis of type 2 diabetes before or during 
pregnancy is based on criteria mentioned before. 
Fasting plasma glucose ≥ 126 mg/dL (7.0 mmol/L) 
or 2-h plasma glucose ≥ 200 mg/dL (11.1 mmol/L) 
after a 75 g oral glucose load. However, gestational 
diabetes has been diagnosed at 24-28 wk of gestation 
in women not previously diagnosed with diabetes 
using two approaches: the first approach is based 
on the “one-step” International Association of the 
Diabetes and Pregnancy Study Groups (IADPSG) 
consensus[128] and recently adopted by WHO[129]. 
Gestational diabetes is diagnosed using this method by 
FPG ≥ 92 mg/dL (5.1 mmol/L), 1-h plasma glucose 
after a 75 g glucose load ≥ 180 mg/dL (10.0 mmol/L) 
or 2-h plasma glucose after a 75 g glucose load ≥ 
153 mg/dL (8.5 mmol/L). This criteria is derived from 
the Hyperglycemia and Adverse Pregnancy Outcome 
(HAPO) study[127] even though the HAPO study showed 
a continuous relationship between hyperglycemia 
and adverse short-term pregnancy outcome with no 
threshold reported[130]. The second approach is used in 
the United States and is based on the “two-step” NIH 
consensus[131]. In the first step 1-h plasma glucose 
after a 50 g glucose load under nonfasting state ≥ 

140 mg/dL (7.8 mmol/L) is followed by a second step 
under fasting conditions after a 100 g glucose load for 
those who screened abnormal in the first step. The 
diagnosis of gestational diabetes is made when at least 
two of the four plasma glucose levels are met. The 
four plasma glucose levels according to Carpenter/
Coustan criteria are: FPG ≥ 95 mg/dL (5.3 mmol/L); 
1-h ≥ 180 mg/dL (10.0 mmol/L); 2-h ≥ 155 mg/dL 
(8.6 mmol/L); and 3-h ≥ 140 mg/dL (7.8 mmol/L)[1]. 

The use IADPSC criteria in comparison with the 
Carpenter/Coustan criteria was associated with a 
3.5-fold increase in GDM prevalence as well as sig
nificant improvements in pregnancy outcomes, and 
was cost-effective[132]. In another retrospective cohort 
study of women diagnosed with gestational diabetes, 
Ethridge et al[133] have shown that newborns of women 
diagnosed with gestational diabetes by IADPSG ap
proach have greater measures of fetal overgrowth 
compared with Carpenter-Coustan “two-step” approach 
neonates. A strategy of using fasting plasma glucose as 
a screening test and to determine the need for OGTT is 
valid[134,135]. According to Sacks[136], correlation of glucose 
concentrations and the risk of subsequent complications 
will eventually lead to universal guidelines. 

The use of ADA/WHO cut off value of HbA1c ≥ 
6.5% (48 mmol/mol) to diagnose gestational diabetes 
is not recommended by the “one step” IADPSC criteria 
or the “two-step” NIH criteria. Further investigation 
is required in light of recent reports on HbA1c in 
combination with OGTT and its usefulness to predict 
adverse effect of gestational diabetes or obviate the 
use OGTT in all women with gestational diabetes[137-141].

DIABETES AND GENETICS
Diabetes is a complex disease that involves a wide 
range of genetic and environmental factors. Over the 
past several years, many studies have focused on 
the elucidation of the wide spectrum of genes that 
played a role in the molecular mechanism of diabetes 
development[142-144]. However, despite the vast flow of 
genetic information including the identification of many 
gene mutations and a large array of single nucleotide 
polymorphisms (SNPs) in many genes involved in the 
metabolic pathways that affect blood glucose levels, 
the exact genetic mechanism of diabetes remains 
elusive[145,146]. Evidently, a major complication is the 
fact that a single gene mutation or polymorphism 
will not impose the same effect among different 
individuals within a population or different populations. 
This variation is directly or indirectly affected by the 
overall genetic background at the individual, family 
or population levels that are potentially further 
complicated by interaction with highly variable en
vironmental modifier factors[147,148]. 

Molecular genetics and type 2 diabetes
One of the major focuses of biomedical research is to 
delineate the collective and broad genetic variants in the 
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human genome that are involved in the development 
of diabetes. This major effort will potentially provide 
the necessary information to understand the molecular 
genetics of the different forms of diabetes including 
type 1, type 2 and monogenic neonatal diabetes 
among individuals of all populations and ethnic groups. 
Despite the fact that linkage and association studies 
allowed the identification and characterization of 
many candidate genes that are associated with type 
2 diabetes[144,149,150], however, not all of these genes 
showed consistent and reproducible association with 
the disease[151]. Genome wide association studies 
(GWAS) in various populations identified 70 loci 
associated with type 2 diabetes and revealed positive 
linkage of many mutations and SNPs that influence 
the expression and physiological impact of the related 
proteins and risk to develop type 2 diabetes. One study 
involved several thousand type 2 diabetes patients and 
control subjects from the United Kingdom allowed the 
identification of several diabetes putative loci positioned 
in and around the CDKAL1, CDKN2A/B, HHEX/IDE 
and SLC30A8 genes in addition to the contribution 
of a large number of other genetic variants that are 
involved in the development of the disease[152]. Two 
similar studies from the Finns and Swedish populations 
and the United States resulted in the identification of 
similar single nucleotide variants[153] that are linked to 
the risk of acquiring type 2 diabetes[154,155]. The study 
in the United States population included in addition to 
type 2 diabetes, the association of the identified SNPs 
with the level of triglycerides in the tested subjects[155]. 
These SNPs are located near several candidate genes 
including IGFBP2 and CDKAL1 and other genes in 
addition to several other variants that are located near 
or in genes firmly associated with the risk of acquiring 
type 2 diabetes. Other GWAS analysis studies were 
performed in the Chinese, Malays, and Asian-Indian 
populations which are distinct from the European and 
United States populations in addition to meta-analysis 
of data from other populations in the region revealed 
relevant findings among patients with European 
ancestry[156]. The results of the combined analysis 
showed significant association of SNPs in the CDKAL1, 
CDKN2A/B, HHEX, KCNQ1 and SLC30A8 genes after 
adjustment with gender and body mass index. More 
recently, meta-analysis of GWAS data involving African 
American type 2 diabetes patients identified similar loci 
to the previous studies with the addition of two novel 
loci, HLA-B and INS-IGF[157]. These results provide 
strong evidence of common genetic determinants 
including common specific genes that are linked to 
diabetes. A small list of specific genetic markers seem 
strongly associated with the risk of developing type 2 
diabetes including the TCF7L2[158] and CAPN10[159,160] 
genes which also play a significant role in the risk and 
pathogenesis of the disease[158,159]. The association 
of TCF7L2 gene variants with type 2 diabetes and 
its mechanism of action received special attention 
by several investigators[161,162]. Over expression of 

the protein was shown to decrease the sensitivity of 
beta islet cells to secrete insulin[163,164] and was more 
precisely involved in the regulation of secretary granule 
fusion that constitute a late event in insulin secretion 
pathway[165]. The role of TCF7L2 in insulin secretion 
was partially clarified[166] that involves modifying the 
effect of incretins on insulin secretion by lowering 
the sensitivity of beta cells to incretins. Several other 
genes have been found to be significantly associated 
with the risk of developing type 2 diabetes including 
a specific SNP in a hematopoietically-expressed 
homeobox (HHEX) gene[167]. The islet zinc transporter 
protein (SLC30A8)[168] showed positive correlation with 
the risk of developing type 2 diabetes where variant 
mutations in this gene seem protective against the 
disease which provides a potential tool for therapy[169]. 
More recently, a low frequency variant of the HNF1A 
identified by whole exome sequencing was associated 
with the risk of developing type 2 diabetes among 
the Latino population and potentially may serve as 
a screening tool[170]. Genetic variants and specific 
combined polymorphisms in the interleukin and related 
genes including interlukin-6 (IL-6), tumor necrosis 
factor-α and IL-10 genes were found to be associated 
with greater risk of developing type 2 diabetes[171], in 
addition to genetic variants in the genes for IL12B, 
IL23R and IL23A genes[172]. In a study involving the 
hormone sensitive lipase responsible for lipolysis 
in adipose tissues, a deletion null mutation, which 
resulted in the absence of the protein from adipocytes, 
was reported to be associated with diabetes[173]. Nine 
specific rare variants in the peroxisome proliferator-
activated receptor gamma (PPARG) gene that resulted 
in loss of the function of the protein in adipocytes 
differentiation, were significantly associated with the 
risk of developing type 2 diabetes[174]. In addition, 
certain SNPs in the alpha 2A adrenergic receptor 
(ADRA2A) gene, involved in the sympathetic nervous 
system control of insulin secretion and lipolysis, 
were found to be associated with obesity and type 
2 diabetes[175]. Link analysis between the melatonin 
MT2 receptor (MTNR1B) gene, a G-protein coupled 
receptor, identified 14 mutant variants from 40 
known variants revealed by exome sequencing, to be 
positively linked with type 2 diabetes[176]. The authors 
suggested that mutations in the MT2 gene could 
provide a tool with other related genes in modifying 
therapy for type 2 diabetes patients based on their 
specific genetic background to formulate personalized 
therapies which potentially may ensures the optimum 
response. Interestingly, mutations in the clock[177,178] 
and Bmal1[179] transcription factor genes which are 
involved in beta cells biological clock affecting growth, 
survival and synaptic vesicle assembly in these cells, 
resulted in reduced insulin secretion and diabetes. 
Evidently, prominent metabolic functions involve the 
production of specific reactive metabolites, leading to 
oxidative stress, which affect lipids, proteins and other 
biological compounds leading to serious damage in 
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various tissues and organs. Mutations and SNPs in the 
antioxidant genes, including superoxide dismutase, 
catalase and glutathione peroxidase, that decrease their 
activity are implicated in the risk and pathogenesis 
of type 2 diabetes[180]. The metabolic syndrome was 
shown to be associated with the development of type 
2 diabetes in a population that is described as highly 
endogenous especially in individuals over 45 years 
of age[181]. Since consanguinity marriages is high in 
this population, screening for this syndrome among 
families could provide an informative marker on the 
risk of developing type 2 diabetes[181].   

Molecular genetics of type 1 diabetes
Even though type 1 diabetes is basically described as 
an autoimmune disease that results in the destruction 
of pancreatic beta cells, however, single gene 
mutations and SNPs have been found to be associated 
with the susceptibility to this type of diabetes. Initially, 
two gene mutations were linked to the development 
of type 1 diabetes including the autoimmune regulator  
(AIRE) gene which affect the immune tolerance to self 
antigens leading to autoimmunity[182] and the FOXP3 
gene which results in defective regulatory T cells[183]. 
In addition, a mutation in the histone deacetylase 
SIRTI gene predominantly expressed in beta cells 
involved in the regulation of insulin secretion[184] and 
played a role in modulating the sensitivity of peripheral 
tissues to insulin[185] was detected in type 1 diabetes 
patients[186]. Recently, additional mutations and SNPs 
in the CTLA-4 +49A/G and HLA-DQB1 and INS gene 
VNTR alleles were found to be associated with type 1 
diabetes, which have the advantage of differentiating 
between Latent autoimmune type 1 diabetes and type 
2 diabetes[187]. The HLA-DQB1, in combination with 
HLA-DR alleles and a polymorphism in PTPN22 gene 
seem to be associated with the age onset of late type 
1 diabetes[188,189]. Two specific polymorphisms in the 
promoter region of a transmembrane protein (DC-
SIGN) gene expressed in macrophages and played an 
important role of T- cell activation and inflammation 
were found to be protective against type 1 diabetes[190]. 
An innovative non-parametric SNP enrichment tool 
using summary GWAS DATA allowed the identification 
of association between several transcription factors 
and type 1 diabetes and are located in a type 1 
diabetes susceptibility region[191]. Nine SNP variants 
in several genes associated with type 1 diabetes, not 
including the major histocompatibility gene region, 
were identified using extensive GWAS analysis[192]. 
Furthermore, several novel SNPs in a region in ch
romosome 16 located in the CLEC16A gene were 
shown to be associated with type 1 diabetes and seem 
to function through the reduced expression of DEX1 in 
B lymphoblastoid cells[193]. Since more than 40 regions 
in the human genome were identified to be associated 
with the susceptibility to type 1 diabetes[194-196], a 
weighted risk model was developed utilizing selected 

genes SNPs could be used for testing infants for these 
genetic markers that could provide insights in the 
susceptibility to type 1 diabetes development or safe 
prevention of the disease among young children[197].   

Molecular genetics of monogenic diabetes
A large array of genes were identified to be involved 
in the development of monogenic diabetes[80] which 
represent about 2%-5% of diabetes patients. Mono
genic diabetes results primarily from gene defects that 
lead to a decrease in beta cell number or function. 
Monogenic diabetes genes were identified using linkage 
studies or code for proteins that directly affected 
glucose homeostasis. The majority of genes responsible 
for monogenetic diabetes code for either transcription 
factors that participate in the control of nuclear gene 
expression or proteins that are located on the cell 
membrane, cytoplasm and endoplasmic reticulum, 
proteins involved in insulin synthesis and secretion, 
exocrine pancreatic proteins and autoimmune diabetes 
proteins[80]. The collective function of these proteins is 
their participation in glucose metabolism at different 
levels. Evidently, the hierarchy of a specific gene in 
the overall glucose metabolism pathway determines 
the onset of diabetes in the patient and whether it is 
neonataly expressed or have late onset expression 
(adulthood). Consequently, molecular defects in the 
structure and function of these genes lead to the 
disturbance of plasma glucose level, the primary 
pathological sign of diabetes. The molecular mechanism 
of permanent neonatal diabetes mellitus (PNDP) in 
addition to MODY explains the observed phenotype 
of monogenetic diabetes that involves loss of function 
of the expressed mutant protein. The first gene 
implicated in monogenic diabetes was the glucokinase 
(GCK) gene[198] which functions as a pancreatic sensor 
for blood glucose where more than 70 mutations in 
the gene were identified that affected its activity[199]. A 
recent study on GCK gene mutations causing neonatal 
and childhood diabetes showed that the majority 
of mutations resulted in the loss of the enzyme 
function primarily due to protein instability[148,150]. Two 
hepatocytes nuclear factor genes that code for the 
HNF4A and HNF1A transcription factors were closely 
associated with MODY1 and MODY2[148,149]. Definitely, 
a whole list of other genes involved in monogenic 
diabetes are either overlooked or included in the 
genetic determinants of type 1 and type 2 diabetes 
which will be identified and clarified through more 
careful future studies.  

MOLECULAR GENETICS OF DIABETES 
COMPLICATIONS
In addition to the genetic determinants of diabetes, 
several gene mutations and polymorphisms have been 
associated with the clinical complications of diabetes. 
The cumulative data on diabetes patients with a 
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variety of micro- and macrovascular complications 
support the presence of strong genetic factors involved 
in the development of various complications[200]. A list 
of genes have been reported that are associated with 
diabetes complications including ACE and AKR1B1 in 
nephropathy, VEGF and AKRB1 in retinopathy and 
ADIPOQ and GLUL in cardiovascular diseases[200]. 
A study on Chinese patients revealed a single SNP 
in the promoter region of the smooth muscle actin 
(ACTA2) gene correlates with the degree of coronary 
artery stenosis in type 2 diabetes patients[201]. 
Furthermore, the alpha kinase 1 gene (ALPK1) iden
tified as a susceptibility gene for chronic kidney 
disease by GWAS[202], was demonstrated in type 2 
diabetes patients[203]. Three additional genes have 
been strongly correlated with this risk of diabetic 
retinopathy (DR) including the vascular endothelial 
growth receptor, aldose reductase and the receptor for 
advanced glycation products genes[204] where specific 
polymorphisms in these genes seem to increase the 
risk of DR development in diabetes patients[204]. A 
significant differential proteome (involving 56 out of 
252 proteins) is evident that characterizes vitreous 
samples obtained from diabetes patients with the 
complication in comparison to diabetes patients 
without the complication and control individuals[205]. 
Interestingly, a large portion of these proteins (30 
proteins) belong to the kallikrein-kinin, coagulation 
and complement systems including complement 
C3, complement factor 1, prothrombin, alpha-1-
antitrypsin and antithrombin III that are elevated in 
diabetic patients with retinopathy[205]. In addition, 
2 single nucleotides polymorphisms in the human 
related B7-I gene seem to mediate podocyte injury 
in diabetic nephropathy[206]. Furthermore, increased 
concentration of the ligand of B7-1 correlates with 
the progression of end-stage renal disease (ESRD) 
in diabetes patients[206]. These results indicate that 
B7-I inhibition may serve as a potential target for 
diabetes nephropathy prevention and/or treatment. 
Recently, it was shown that direct correlation is evident 
between circulating levels of tumor necrosis factors 1 
and 2 and increased risk of ESRD in American Indian 
patients[207]. The link between diabetes and proper 
bone development and health is evident. Studies using 
animal models with major significant reduction in insulin 
receptor (IR) in osteoprogenitor cells resulted in thin 
and rod-like weak bones with high risk of fractures[208]. 
Similar findings were observed in animal models with 
bone-specific IR knockdown animals which points 
to the central role of IR in the proper development 
of bones[208]. Type 2 diabetes is also associated with 
mitochondrial dysfunction in adipose tissues. Using 
knockout animal models of specific mitochondrial 
genes led to significant reduction in key electron 
transport complexes expression and eventually 
adipocytes death[209]. These animals exhibited Insulin 
resistance in addition to other complications that can 
potentially lead to cardiovascular disease[209].

CONCLUSION
Diabetes mellitus is the epidemic of the century and 
without effective diagnostic methods at an early stage, 
diabetes will continue to rise. This review focuses 
on the types of diabetes and the effective diagnostic 
methods and criteria to be used for diagnosis of 
diabetes and prediabetes. Evidently, diabetes is a 
complex disease with a large pool of genes that are 
involved in its development. The precise identification 
of the genetic bases of diabetes potentially provides 
an essential tool to improve diagnoses, therapy (more 
towards individualized patient targeted therapy) and 
better effective genetic counseling. Furthermore, 
our advanced knowledge of the association between 
medical genetics and the chronic complications of 
diabetes, will provide an additional advantage to 
delay or eradicate these complications that impose an 
immense pressure on patient’s quality of life and the 
significantly rising cost of health-care services.  
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