MINIREVIEWS

1. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance
 Ren SY, Wang WB, Gao RD, Zhou AM

12. Hepatitis B virus reactivation in rheumatoid arthritis
 Wu YL, Ke J, Zhang BY, Zhao D

23. Paradoxical role of interleukin-33/suppressor of tumorigenicity 2 in colorectal carcinogenesis: Progress and therapeutic potential
 Huang F, Chen WY, Ma J, He XL, Wang JW

ORIGINAL ARTICLE

Case Control Study

35. Changes in rheumatoid arthritis under ultrasound before and after sinomenine injection
 Huang YM, Zhuang Y, Tan ZM

Retrospective Study

51. Outcomes and complications of open, laparoscopic, and hybrid giant ventral hernia repair
 Yang S, Wang MG, Nie YS, Zhao XF, Liu J

62. Surgical resection of intradural extramedullary tumors in the atlantoaxial spine *via* a posterior approach
 Meng DH, Wang JQ, Yang KX, Chen WY, Pan C, Jiang H

71. Vancomycin lavage for the incidence of acute surgical site infection following primary total hip arthroplasty and total knee arthroplasty
 Duan MY, Zhang HZ

79. Distribution of transient receptor potential vanilloid-1 channels in gastrointestinal tract of patients with morbid obesity
 Atas U, Erin N, Tazegul G, Elpek GO, Yildirim B

91. Value of neutrophil-lymphocyte ratio in evaluating response to percutaneous catheter drainage in patients with acute pancreatitis
Influence of overweight and obesity on the mortality of hospitalized patients with community-acquired pneumonia

Wang N, Liu BW, Ma CM, Yan Y, Su QW, Yin FZ

Minimally invasive open reduction of greater tuberosity fractures by a modified suture bridge procedure

Kong LP, Yang JJ, Wang F, Liu FX, Yang YL

Increased levels of lactate dehydrogenase and hypertension are associated with severe illness of COVID-19

Age, alcohol, sex, and metabolic factors as risk factors for colonic diverticulosis

Yan Y, Wu JS, Pan S

Evaluation of right-to-left shunt on contrast-enhanced transcranial Doppler in patent foramen ovale-related cryptogenic stroke: Research based on imaging

Xiao L, Yan YH, Ding YF, Liu M, Kong LJ, Hu CH, Hui PJ

Characterization of focal hypermetabolic thyroid incidentaloma: An analysis with F-18 fluorodeoxyglucose positron emission tomography/computed tomography parameters

Lee H, Chung YS, Lee JH, Lee KY, Hwang KH

Clinical Trials Study

Low-dose intralesional injection of 5-fluorouracil and triamcinolone reduces tissue resident memory T cells in chronic eczema

Observational Study

Alterations in blink and masseter reflex latencies in older adults with neurocognitive disorder and/or diabetes mellitus

Predicting adolescent perfectionism: The role of socio-demographic traits, personal relationships, and media

Livazović G, Kuzmanović K

Novel m.4268T>C mutation in the mitochondrial tRNA^{Ile} gene is associated with hearing loss in two Chinese families

Zhao LJ, Zhang ZL, Fu Y

Superior mesenteric venous thrombosis: Endovascular management and outcomes

Alnahhal K, Toskich BB, Nussbaum S, Li Z, Erben Y, Hakaim AG, Farres H

Randomized Controlled Trial

Zinc carnosine-based modified bismuth quadruple therapy vs standard triple therapy for Helicobacter pylori eradication: A randomized controlled study

Ibrahim N, El Said H, Choukair A
CASE REPORT

- **236** Acquired coagulation dysfunction resulting from vitamin K-dependent coagulation factor deficiency associated with rheumatoid arthritis: A case report
 Huang YJ, Han L, Li J, Chen C

- **242** Intraoperative thromboelastography-guided transfusion in a patient with factor XI deficiency: A case report
 Guo WJ, Chen WY, Yu XR, Shen L, Huang YG

- **249** Positron emission tomography and magnetic resonance imaging combined with computed tomography in tumor volume delineation: A case report
 Zhou QP, Zhao YH, Gao L

- **254** Successful response to camrelizumab in metastatic bladder cancer: A case report
 Xie C, Yuan X, Chen SH, Liu ZY, Lu DL, Xu F, Chen ZQ, Zhong XM

- **260** HER2 changes to positive after neoadjuvant chemotherapy in breast cancer: A case report and literature review
 Wang L, Jiang Q, He MY, Shen P

- **268** Hyper-accuracy three-dimensional reconstruction as a tool for better planning of retroperitoneal liposarcoma resection: A case report
 Ye MS, Wu HK, Qin XZ, Luo F, Li Z

- **275** Recurrent postmenopausal bleeding - just endometrial disease or ovarian sex cord-stromal tumor? A case report
 Wang J, Yang Q, Zhang NN, Wang DD

- **283** Complex proximal femoral fracture in a young patient followed up for 3 years: A case report
 Li ZY, Cheng WD, Qi L, Yu SS, Jing JH

- **289** Bilateral Hypertrophic Olivary Degeneration after Pontine Hemorrhage: A Case Report
 Zheng B, Wang J, Huang XQ, Chen Z, Gu GF, Luo XJ

- **296** Clinical characteristics and outcomes of primary intracranial alveolar soft-part sarcoma: A case report
 Chen JY, Cen B, Hu F, Qiu Y, Xiao GM, Zhou JG, Zhang FC

- **304** Removal of laparoscopic cerclage stitches via laparotomy and rivanol-induced labour: A case report and literature review
 Na XN, Cai BS

- **309** Cerebral venous sinus thrombosis in pregnancy: A case report
 Zhou B, Huang SS, Huang C, Liu SY

- **316** Eustachian tube teratoma: A case report
 Li JY, Sun LX, Hu N, Song GS, Dou WQ, Gong RZ, Li CT
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>Lunate dislocation with avulsed triquetral fracture: A case report</td>
<td>Li LY, Lin CJ, Ko CY</td>
</tr>
<tr>
<td>361</td>
<td>Diagnostic and surgical challenges of progressive neck and upper back painless masses in Madelung’s disease: A case report and review of literature</td>
<td>Yan YJ, Zhou SQ, Li CQ, Ruan Y</td>
</tr>
<tr>
<td>371</td>
<td>Suspected cerebrovascular air embolism during endoscopic esophageal varices ligation under sedation with fatal outcome: A case report</td>
<td>Zhang CMJ, Wang X</td>
</tr>
<tr>
<td>381</td>
<td>An atypical primary malignant melanoma arising from the cervical nerve root: A case report and review of literature</td>
<td>Shi YF, Chen YQ, Chen HF, Hu X</td>
</tr>
<tr>
<td>388</td>
<td>Epidural blood patch for spontaneous intracranial hypotension with subdural hematoma: A case report and review of literature</td>
<td>Choi SH, Lee YY, Kim WJ</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of *World Journal of Clinical Cases*, Ravi Kant, MD, Associate Professor, Division of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/Anmed Campus, Anderson, SC 29621, United States. rkant82@hotmail.com

AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (*WJCC*, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The *WJCC* is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for *WJCC* as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The *WJCC*’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Lin-Yu-Tong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
CASE REPORT

Positron emission tomography and magnetic resonance imaging combined with computed tomography in tumor volume delineation: A case report

Qi-Ping Zhou, Yu-Hua Zhao, Lei Gao

ORCID number: Qi-Ping Zhou 0000-0002-4215-1531; Yu-Hua Zhao 0000-0001-5700-3358; Lei Gao 0000-0002-4239-7718.

Author contributions: Zhou QP and Zhao YH wrote the manuscript; Gao L was involved in the patient’s medical care, initiated and supervised the study, and wrote and revised the manuscript; all authors have given final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest to disclose.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: China

Qi-Ping Zhou, Yu-Hua Zhao, TheSecond Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 51006, Guangdong Province, China

Lei Gao, Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China

Corresponding author: Lei Gao, PhD, Doctor, Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Neihuanxi Road, Panyu District, Guangzhou 51006, Guangdong Province, China. dxcflik@gzucm.edu.cn

Abstract

BACKGROUND
Accurate delineation of the target area for patients with hypopharyngeal cancer is the key to achieving an ideal radiotherapy effect. Since computed tomography (CT) alone can no longer meet the treatment needs, fusing CT images with magnetic resonance imaging (MRI) or positron emission tomography (PET) images can overcome the disadvantages of CT. Herein, we present a clinical case of hypopharyngeal cancer to delineate the tumor volume using combined MRI-CT and PET-CT fusion images to examine if they could accurately cover the tumor volume.

CASE SUMMARY
A 67-year-old male patient with hypopharyngeal carcinoma could not tolerate chemotherapy and surgery due to complicated health issues such as diabetic nephropathy and other underlying diseases. After multidisciplinary consultations, clinicians eventually agreed to undergo radiotherapy to control the progression of his tumor. He was examined by CT, MRI, and 18-fluorodeoxyglucose-PET for treatment planning, and CT images were fused with PET and MRI images while delineating tumor volume.

CONCLUSION
The image fusion of MRI-CT and PET-CT has both advantages and disadvantages. Compared with CT images alone, the combination of MRI-CT and PET-CT fusion images can precisely cover the gross tumor volume in hypopharyngeal carcinoma and avoid overestimation or incomplete coverage of tumor volume.
Key Words: Hypopharyngeal carcinoma; Computed tomography; Magnetic resonance imaging; Positron emission tomography; Image fusion; Tumor volume delineation; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Magnetic resonance imaging (MRI) and computed tomography (CT) image fusion or positron emission tomography (PET) and CT image fusion is often used to delineate the target areas of hypopharyngeal cancer. Both have their advantages and disadvantages. We report an elderly patient with hypopharyngeal cancer who needed radiotherapy. By combining MRI-CT and PET-CT fusion images to delineate the gross tumor volume, the radiation dose can be maximized, the coverage range is more accurate, and the surrounding normal organs and tissues can be effectively spared.

INTRODUCTION

Hypopharyngeal carcinoma is one of the malignant tumors that occur in the head and neck, accounting for 0.15%-0.24% of the total malignant tumors. The anatomical structure is complex, the early symptoms are often unclear, and lymph node metastasis is easy to develop; thus, all three factors contribute to the poor prognosis of hypopharyngeal carcinoma, and the 5-year survival rate is only about 51.3%[1]. Therefore, it is of great significance to make an early diagnosis and plan the treatment accordingly. The main treatments for hypopharyngeal cancer are surgery and radiotherapy.

Currently, patients with previously untreated and newly diagnosed hypopharyngeal cancer have options for surgery to remove the primary tumor and lymph node metastasis, radiotherapy, systemic medical treatment, including traditional chemotherapy and immunotherapy. Radiotherapy can treat hypo-pharyngeal carcinoma in patients who are not suitable for surgery of the primary tumor. Besides, a small number of patients use radiotherapy as a palliative approach[2]. Intensity-modulated radiation therapy (IMRT) is the mainstream of modern radiotherapy technology and is an effective treatment method for head and neck cancer patients. IMRT can precisely deliver a high radiation dose to the tumor while maintaining a low dose target area for essential tissues and organs around the tumor. The proper delineation of gross tumor volume (GTV, including the gross tumor volume of hypopharyngeal tumor and the involved lymph node) is the key to realizing the overall radiotherapy effect of hypopharyngeal cancer. However, the wrong target volume affects the treatment and damages normal tissues and organs, mainly when critical anatomical structures frequently surround the head and neck tumor. The accurate delineation of GTV is essential for optimal radiation treatment of any tumor, as it can maximize radiation dose to the tumor and minimize that to nontumor tissue[3]. Before outlining GTV, most radiotherapy plans are based on computed tomography (CT) positioning images, which can be used directly in the calculation of radiotherapy dose because of the fast speed of spiral CT scanning, small image distortion, little influence by organs movement, and the linear relationship between CT value and human body density. However, the disadvantage of CT lies in its poor resolution of the boundary of human soft tissue and its inability to define the tumor area accurately. Therefore, only relying on CT images can no longer meet the needs of treatment. Besides, positron emission tomography (PET) and magnetic resonance imaging (MRI) have advantages in accurately diagnosing tumors. PET is an imaging technique that reflects the gene, molecule, metabolism, and functional state of lesions. It uses positron nuclide labeled glucose as an imaging agent to reflect the metabolic changes of lesions through the uptake of imaging agents and to provide clinical
biometabolic information of diseases. As cancer cells multiply rapidly and metabolize profusely, only radionuclide-containing imaging agents can be used to contrast them. The advantage of MRI is that it has superior soft tissue contrast and fewer dental artifacts, which can clearly distinguish tumors from surrounding soft tissues\(^4\). Previous studies\(^5,6\) have shown that it is challenging to delineate GTV based CT images alone; however, an accurate delineation can significantly improve while image fusion occurs between CT and PET or CT and MRI. So far, no relevant studies have combined the fusion images of PET-CT and MRI-CT to provide full play and combine their respective strengths to bring the images closer to the actual volume of tumor. Therefore, we would like to present a clinical case to emphasize the awareness of this condition and show that the combination can play a significant role in delineating tumor volume.

CASE PRESENTATION

Chief complaints
A 67-year-old male patient had pharyngalgia and dysphagia without an obvious cause. The symptoms gradually worsened, and he had later developed dyspnea. After completing relevant examinations, he was diagnosed with hypopharyngeal carcinoma.

History of present illness
A pharyngeal mass biopsy revealed that the dimension of the tumor was 6.0 cm × 4.5 cm × 12.5 cm. The postoperative pathological diagnosis showed squamous cell carcinoma with small focal high-grade neuroendocrine carcinoma. The clinical stage was confirmed as T4N3Mx based on the results of MRI.

History of past illness
No data were available.

Personal and family history
The patient claimed to have been an alcoholic for more than 20 years and did not have a history of smoking or a notable family medical history.

Physical examination
The patient was emaciated and anemic, and had multiple enlarged lymph nodes on both sides of his neck.

Laboratory examinations
No data were available.

Imaging examinations
MRI of the nasopharynx and neck showed thickened left piriform fossa wall with a soft tissue mass, filling of the laryngopharynx oropharynx cavity, and involving the right piriform fossa, consistent with hypopharyngeal carcinoma. There were multiple lymph nodes in the bilateral neck, of which the larger one was located in bilateral neck areas II-III, suggesting lymph node metastasis.

FINAL DIAGNOSIS
Hypopharyngeal carcinoma.

TREATMENT
Neither surgery nor chemotherapy was applied to the patient due to multiple associated diseases, such as diabetic nephropathy, renal insufficiency, and emphysema. Besides, surgery could not achieve a radical cure. Hence, radiotherapy was the only option to control tumor progression after a multi-department consultation in our hospital. He was examined by CT, MRI, and 18-fluorodeoxyglucose (\(^{18}\)FDG)-PET for his treatment plan, including CT fused with PET and MRI to delineate the tumor volume (Figure 1).
Figure 1 Scan of the patient’s skull base and the site of tumor invasion (red circle). The magnetic resonance imaging-computed tomography (CT) fusion image has a high resolution of soft tissue, including the tumor boundary and lymph nodes. However, compared with the positron emission tomography (PET)-CT fusion image, the bone invasion site is not shown (blue arrow). The PET-CT fusion image shows the tumor and its invasion by hypermetabolism with a high sensitivity for tumor recognition. However, the decreased glucose uptake of tumor necrotic tissues did not develop (red arrow), causing false-negative results.

OUTCOME AND FOLLOW-UP

Fortunately, the patient recovered and was discharged after radiotherapy. The patient was reexamined by MRI scans 3 mo later and showed no signs of tumor recurrence.

DISCUSSION

MRI permits multi-sequencing and multi-parametric imaging with higher soft tissue resolution than CT, making the actual boundary between tumor and soft tissue more precise, and causes no radiation damage\[7\]. MRI-CT image fusion can avoid overestimation of clinical tumor volume by CT images only. Tzikas et al\[8\] compared fused MRI-CT with only CT images in radiotherapy plan, and found that the dose distribution generated by fused MRI-CT image could achieve better treatment results, leading to a lower complication rate of principal organs at risk than that of CT images. Although MRI complements the lack of soft tissue resolution of CT images, both have a limited sensitivity and specificity concerning the presence or extent of nodal involvement, because they mainly rely on the size criterion. Thus, MRI-CT fusion images cannot reveal nodal disease in normal-size lymph nodes. Besides, accuracy is lacking in defining the dimension of malignant bone infiltration vs concomitant infectious bone reactions\[9\]. Our research also showed that MRI-CT fusion images failed to show the bone invasion site.

In PET, 18F-labeled FDG (\(^{18}\)F-FDG fluorinated deoxyglucose) is used as the tracer. The level of glucose utilization can determine the tumor and invasion site, and metabolic imaging is one of the most sensitive methods for the early diagnosis of malignant tumors. PET can reflect the differences in the metabolic status and biochemical changes of tumor tissues at the molecular level by providing living biological information while determining the clinical tumor volume, making up for the shortcoming of CT to provide information of the vitality of tumors. PET-CT image fusion can simultaneously show metabolic activity and anatomical location to achieve a more accurate delineation of GTV and provide more effective protection for the surrounding normal organs and tissues. However, the distribution of 18F-FDG is not limited to malignant tissues; thus, PET-CT fusion images can also lead to false negative and false positive results in tumor diagnosis\[7\]. False-positive results in PET-CT may occur due to inflammation, limited spatial resolution, and lack of a standard method for segmentation\[4\]. However, false-negative results may occur in some slow-growing or low-malignant tumor cells or in necrotic tumor tissues, where glucose metabolism is reduced.

CONCLUSION

The image fusion of MRI-CT and PET-CT has both advantages and disadvantages. Hence, combining the two can cover the GTV of hypopharyngeal cancer more
accurately than CT images alone, which is more likely to improve the radiotherapy effect and reduce the risk of recurrence and is worthy of further development in clinical practice.

REFERENCES

