World Journal of Gastroenterology

World J Gastroenterol 2017 April 14; 23(14): 2453-2634

Published by Baishideng Publishing Group Inc
EDITORIAL

2453 Noninvasive molecular analysis of *Helicobacter pylori*: Is it time for tailored first-line therapy?

Ierardi E, Giorgio F, Iannone A, Losurdo G, Principi M, Barone M, Pisani A, Di Leo A

REVIEW

2459 Pathogenesis and clinical spectrum of primary sclerosing cholangitis

Gidwaney NG, Pawa S, Das KM

2470 Biliary tract cancer stem cells - translational options and challenges

Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T

MINIREVIEWS

2483 Potential role of nutraceutical compounds in inflammatory bowel disease

Larussa T, Imeneo M, Luzza F

2493 Unusual gastric tumors and tumor-like lesions: Radiological with pathological correlation and literature review

Lin YM, Chiu NC, Li AFY, Liu CA, Chou YH, Chion YY

2505 New progress in roles of nitric oxide during hepatic ischemia reperfusion injury

Zhang YQ, Ding N, Zeng YF, Xiang YY, Yang MW, Hong FF, Yang SL

ORIGINAL ARTICLE

Basic Study

2511 Berberine displays antitumor activity in esophageal cancer cells *in vitro*

Jiang SX, Qi B, Yao WJ, Gu CW, Wei XF, Zhao Y, Liu YZ, Zhao BS

Case Control Study

2519 Clinical utility of the platelet-lymphocyte ratio as a predictor of postoperative complications after radical gastrectomy for clinical T2-4 gastric cancer

2527 Colors of vegetables and fruits and the risks of colorectal cancer

Lee J, Shin A, Oh JH, Kim J
Contents

Retrospective Cohort Study
2539 Impact of vitamin D on the hospitalization rate of Crohn's disease patients seen at a tertiary care center
Venkata KVR, Arora SS, Xie FL, Malik TA

2545 Barcelona clinic liver cancer nomogram and others staging/scoring systems in a French hepatocellular carcinoma cohort

Retrospective Study
2556 Laparoscopic approach to suspected T1 and T2 gallbladder carcinoma
Ome Y, Hashida K, Yokota M, Nagahisa Y, Okabe M, Kawamoto K

2566 Clinical characteristics of peptic ulcer perforation in Korea
Yang YJ, Bang CS, Shin SP, Park TY, Suk KT, Baik GH, Kim DJ

2575 Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer

Clinical Trials Study
2585 PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

2592 Endothelial progenitor cells in peripheral blood may serve as a biological marker to predict severe acute pancreatitis
Ha XQ, Song YJ, Zhao HB, Ta WW, Gao HW, Feng QS, Dong JZ, Deng ZY, Fan HY, Peng JH, Yang ZH, Zhao Y

2601 Comparative study of ROR2 and WNT5a expression in squamous/adenosquamous carcinoma and adenocarcinoma of the gallbladder
Wu ZC, Xiong L, Wang LX, Miao XY, Liu ZR, Li DQ, Zou Q, Liu KJ, Zhao H, Yang ZL

Observational Study
2613 Serum omentin and vaspin levels in cirrhotic patients with and without portal vein thrombosis

2625 Upper gastrointestinal cancer burden in Hebei Province, China: A population-based study
Li DJ, Liang D, Song GH, Li YW, Wen DG, Jin J, He YT
ABOUT COVER

Editorial board member of World Journal of Gastroenterology, Vicente Lorenzo-Zuniga, MD, PhD, Associate Professor, Chief Doctor, Staff Physician, Endoscopy Unit, Department of Gastroenterology, Hospital Universitari Germans Trias i Pujol/CIBERehd, Badalona 08916, Spain

AIMS AND SCOPE

World Journal of Gastroenterology (WJG), print ISSN 1007-9327, online ISSN 2219-2840, DOI: 10.3748 is a peer-reviewed open access journal. WJG was established on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. The WJG Editorial Board consists of 1375 experts in gastroenterology and hepatology from 68 countries.

The primary task of WJG is to rapidly publish high-quality original articles, reviews, and commentaries in the fields of gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastrointestinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional therapy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterology, pancreatology, gastrointestinal laboratory medicine, gastrointestinal molecular biology, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal therapeutics. WJG is dedicated to become an influential and prestigious journal in gastroenterology and hepatology, to promote the development of above disciplines, and to improve the diagnostic and therapeutic skill and expertise of clinicians.

INDEXING/ABSTRACTING

World Journal of Gastroenterology (WJG) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as Scopus®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, Digital Object Identifier, and Directory of Open Access Journals. The 2015 edition of Journal Citation Reports® released by Thomson Reuters (ISI) cites the 2015 impact factor for WJG as 2.787 (5-year impact factor: 2.849), ranking WJG as 38 among 78 journals in gastroenterology and hepatology (quartile in category Q2).

FLYLEAF

I-IX

Editorial Board

EDITORS FOR THIS ISSUE

NAME OF JOURNAL

World Journal of Gastroenterology

ISSN

ISSN 1007-9327 (print)

ISSN 2219-2840 (online)

LAUNCH DATE

October 1, 1995

FREQUENCY

Weekly

EDITORS-IN-CHIEF

Damian Garcia-Olmo, MD, PhD, Doctor, Professor, Surgeon, Department of Surgery, Universitat Autonoma de Madrid; Department of General Surgery, Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief, Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 9001 F. Seventh St, Long Beach, CA 90822, United States

EDITORIAL BOARD MEMBERS

All editorial board members resources online at http://www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE

Jin-Lei Wang, Director
Yuan Qi, Vice Director
Ze-Mao Gong, Vice Director
World Journal of Gastroenterology
Baishideng Publishing Group Inc
8226 Regency Drive,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editoraloffice@wjgnet.com
Help Desk: http://www.tifpublishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER

Baishideng Publishing Group Inc
8226 Regency Drive,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.wjgnet.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE

April 14, 2017

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

Full instructions are available online at http://www.wjgnet.com/bpg/guidefit/204

ONLINE SUBMISSION

http://www.tifpublishing.com
Berberine displays antitumor activity in esophageal cancer cells in vitro

Shu-Xian Jiang, Bo Qi, Wen-Jian Yao, Cheng-Wei Gu, Xiu-Feng Wei, Yi Zhao, Yu-Zhen Liu, Bao-Sheng Zhao

AIM
To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms.

METHODS
Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting.

RESULTS
Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more...
susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G0/M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner.

CONCLUSION
Berberine is an inhibitor of human EC cell growth and could be considered as a potential drug for the treatment of EC patients.

Key words: Berberine; Esophageal cancer; Antitumor activity; Proliferation; Cell cycle; Apoptosis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Initial diagnosis of many esophageal cancer (EC) patients is made at an advanced stage of the disease, making surgery an undesirable option. Although advances in chemotherapy have been achieved, serious adverse effects usually limit clinical application. Exploring non-invasive strategies to prevent the growth of EC is urgently needed. The current research showed that berberine is an inhibitor of human EC cell growth and could be considered as a potential source of drugs for the treatment of EC patients.

INTRODUCTION
Esophageal cancer (EC) is the sixth most common malignant gastrointestinal carcinoma worldwide. More than 50% of the global incidence of EC is in China[1]. A report published in 2016 shows that there are an 477900 and 375000 estimated new EC cases and deaths, respectively, in China[2]. Histologically, EC is divided into two major types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). More than 90% of EC in China is ESCC. Although advances have been achieved in surgery and chemotherapy, the 5-year survival rate of EC in China is only 19.9%[3]. Esophagostomy is so far the only potentially curative approach for EC, but many patients are at an advanced stage of disease during initial diagnosis, thus ruling them out from surgery. Therefore, there is a critical need to develop alternative and novel approaches in EC therapy.

Berberine is a quaternary ammonium salt derived from Ranunculaceae and Papaveraceae families of plants. Apart from a broad range of bioactivities, such as anti-inflammatory, antibacterial and antidiabetic actions, accumulating studies have revealed that berberine exhibits antitumor properties by interfering with the multiple features of tumorigenesis and tumor development[4]. The antitumor activity of berberine is mainly mediated through the inhibition of cancer cell proliferation by inducing cell cycle arrest at the G1 or G2/M phases and initiation of apoptosis[5,6]. Previous studies have reported that berberine inhibits the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling cascades to inhibit cell proliferation in various cell lines derived from breast, lung, colon and liver cancer[9-12]. Berberine also activates AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, subsequently inhibiting mTOR, a downstream target of AMPK[12,13]. Although berberine possesses numerous anticancer activities in various cells, the effect of berberine on EC growth and its mechanism of action have not yet been fully elucidated. In this study, we reported that berberine inhibited EC cell growth by promoting cell cycle arrest at G2/M phase as well as apoptosis. The Akt, mTOR/p70S6K and AMPK signaling pathways were involved in the antitumor activity of berberine on EC.

MATERIALS AND METHODS

Reagents
Berberine hydrochloride was obtained from Ye-Yuan (Shanghai, China). 3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), propidium iodide (PI) cell cycle assay kit, Annexin V-FITC/PI apoptosis detection kit and western blot analysis ECL were purchased from Beyotime (Jiangsu, China). RPMI 1640 and fetal bovine serum (FBS) were obtained from Thermo Fisher Scientific (Waltham, MA, United States). All primary antibodies, including against p21, Akt, p-Akt (Ser473), mTOR, p-mTOR (Ser2448), p70S6K, p-p70S6K (Thr389), AMPK, p-AMPK (Thr172) and β-actin, were from Cell Signaling Technology (Danvers, MA, United States). All other common chemicals and buffers were from Boster (Wuhan, China).

Cell culture and maintenance
Human ESCC cell line KYSE-70 and EAC cell line...
SKGT4 were purchased from Kebai Technology (Nanjing, China). The culture medium for both cell lines was RPMI 1640 supplemented with 10% FBS, 100 U/mL penicillin and 100 μg/mL streptomycin. The cells were incubated in a humidified atmosphere with 5% CO₂ at 37 °C.

Cell viability assay
Cell viability was measured by MTT assay. KYSE-70 (10⁴/well) and SKGT4 (5000/well) were seeded in 96-well culture plates and incubated overnight at 37 °C in a humidified 5% CO₂ incubator. On the following day, cells were treated with berberine hydrochloride at indicated concentrations for indicated durations. Then, 10 μL MTT dye was added to each well at a final concentration of 5 mg/mL. For an additional 4 h after incubation, blue MTT formazan crystals were dissolved in 100 μL/well of DMSO. The absorbance at 562 nm was measured on a Multiskan Spectrum microplate reader (Thermo Fisher Scientific). Cell viability was calculated by dividing the OD of samples by the OD of the control group. All experiments were repeated three times.

Flow cytometric analyses of cell cycle and apoptosis
KYSE-70 cells (8 × 10⁴/well) were seeded in six-well plates in complete culture medium. After incubating for 12 h, cells were treated with berberine hydrochloride (50 μmol/L). Cells were harvested separately at 12 and 24 h later, and immediately fixed with 75% ethanol. For the cell cycle progression analysis, cells were stained with PI staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min, and fluorescence intensity was measured by BD FACSCalibur (BD Biosciences, San Jose, CA, United States). For apoptosis analysis, cells were stained with the Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using the ModFit software (BD Biosciences).

Western blot analysis
Cell lysates were prepared with RIPA lysis buffer (50 mM Tris-HCl, 150 mmol/L NaCl, 0.1% SDS, 1% NP40, 0.5% sodium deoxycholate, 1 mmol/L phenylmethylsulfonyl fluoride, 100 μmol/L leupeptin, and 2 μg/mL aprotinin, pH 8.0). Protein extract (20 μg) was subjected to SDS-PAGE and transferred onto nitrocellulose membranes (Amersham Biosciences, Piscataway, NJ, United States). After blocking with 5% nonfat dry milk, membranes were incubated at 4 °C overnight with each of the following primary antibodies: p21, pAKT (Ser473), AKT, p-mTOR (Ser2448), mTOR, pp70S6K (Thr389), p70S6K, p-AMPK (Thr172), AMPK (all 1:1000 dilution) and β-actin. Membranes were washed with phosphate buffered saline plus Tween (PBST) buffer and incubated with horseradish peroxidase-conjugated secondary antibodies. After incubation, the membranes were washed three times with PBST and immersed in a SuperSignal West Pico Chemiluminescent Substrate from the detection kit (Thermo Fisher Scientific). Chemiluminescent detection of western blots was performed using an Amersham Imager 600 System (GE Healthcare Bio-Sciences, Pittsburgh, PA, United States).

Statistical analysis
Data were analyzed using Student’s t-test, and all data were expressed as mean ± SE of the mean. P < 0.05 was considered statistically significant.

RESULTS
Growth suppressive effect of berberine on human EC cells
To examine the biological consequences of berberine, we first examined its effect on the proliferation of ESCC and EAC cells. We observed that berberine significantly suppressed KYSE-70 proliferation after treatment with different concentrations (20, 40, 60
G2/M phase arrest, Western blot analysis was used to determine the expression of p21; a key cell cycle negatively regulated protein. As shown in Figure 2C, after application of berberine at 50 \(\mu \text{mol/L} \) for 24 h, p21 level was increased. This indicates that berberine-induced cell cycle arrest at G2/M phase in KYSE-70 cells is mediated through p21 down-regulation.

Apoptotic effect of berberine on EC cells

To evaluate whether the antiproliferative activity of berberine was related to its apoptotic effect, KYSE-70 cells were treated with 50 \(\mu \text{mol/L} \) berberine, and flow cytometric analyses were performed by double staining with Annexin-V FITC/PI. As shown in Figure 3, berberine significantly increased KYSE-70 cell apoptosis (0.15% vs 43.73% at 12 h, \(P < 0.05 \); 0.83% vs 81.86% at 24 h, \(P < 0.05 \)). We next evaluated the effect of berberine on KYSE-70 cell morphology. Phase contrast imaging (Figure 4) showed that untreated control KYSE-70 cells were epithelial-like adherent cells, with a flat and polygonal shape, that grew homogeneously and showed strong refraction. When treated with berberine, the cells showed reduced refraction and shrunk to a round shape. The treated cells grew in a scattered way, resulting in loss of intercellular conjunction. Consistent with the data in Figure 1, phase contrast imaging showed
that berberine suppressed proliferation and promoted apoptosis.

Berberine inhibited cell proliferation through Akt/mTOR/p70S6k and AMPK signaling pathways

Previous studies have indicated that inhibiting Akt/mTOR/p70S6K signaling and activating AMPK contribute to berberine-induced loss of cell viability\(^{9,14}\). To address whether these signaling molecules are related to the biological consequences of berberine in KYSE-70 cells, western blot analyses were performed to examine the phosphorylation levels of these signaling molecules. Cells were treated with 50 μmol/L berberine for 6, 12 or 24 h, in comparison with control cells at each time point. Berberine markedly reduced phosphorylation of Akt at Ser473, mTOR at Ser2448 and p70S6K at Thr389, starting as early as 6 h after treatment and sustaining a reduced level for 24 h. Berberine clearly enhanced AMPK phosphorylation at Thr172 after 6 h treatment, and maintained increasing levels for 24

Figure 3 Berberine promotes apoptosis in KYSE-70 cells. A: KYSE-70 cells were treated with 50 μmol/L berberine for 12 and 24 h. Apoptotic rates were measured using flow cytometry; B: Apoptotic cell values are expressed as mean ± SE of three experiments. *P < 0.05, **P < 0.01 vs controls.

Figure 4 Berberine treatment induced morphological changes of KYSE-70 cells. Control cells and 50 μmol/L berberine-treated cells were observed under a phase contrast microscope at 12, 24 and 48 h after treatment. Bar represents all images equal to 200 μmol/L.
a potent inhibitor of human EC cell growth and could be considered as a potential source of drugs for the treatment of EC patients.

Cell cycle arrest and apoptosis are closely linked to cell proliferation in mammalian cells\cite{17}. The major regulatory mechanism of cell growth, the cell cycle dictates the timing of DNA synthesis, and is divided into four distinct phases: M phase (chromosome segregation and mitosis), G1 phase (before DNA replication), S phase (DNA replication) and G2 phase (before mitosis). The cell cycle process includes mechanisms to warrant error amendment, and if not, the cells commit apoptosis, which is one of the most important contributors to the suppression of malignant transformation and elimination of tumors. Control of cell numbers is determined by a complicated balance of cell proliferation and death.

Previous studies have shown that berberine induces cell cycle arrest in various human cancer cells\cite{9,11}. To determine whether berberine prompts cell cycle arrest of KYSE-70 cells, the cell cycle distribution was analyzed by flow cytometry after application of berberine. Our results demonstrated that berberine significantly blocked KYSE-70 cells at the G2/M phase of the cell cycle, suggesting that berberine inhibits KYSE-70 cell proliferation by inducing G2/M cell cycle arrest. These data are in agreement with previous studies in human breast cancer cells and liver cancer cells\cite{10,11}. Appropriate control over cell cycle progression depends on many factors, such as cyclin-dependent kinase inhibitor p21 facilitating cell cycle arrest in response to a variety of stimuli. Our results showed that berberine augmented p21 level in KYSE-70 cells, indicating that berberine-induced cell cycle arrest in G2/M phase may be through regulation of cell cycle protein p21.

The PI3K/Akt/mTOR signaling pathway plays a crucial role in controlling cell proliferation and apoptosis\cite{18}. Constitutive activation of this pathway is considered to be important in cell growth and homeostasis\cite{19}. Specifically, activated mTOR directly phosphorylates many downstream targets including p70S6K to promote protein synthesis\cite{20}. As a major regulator of cellular energy metabolism, AMPK is a negative regulator of the mTOR pathway\cite{20,21}. Berberine regulation of cell proliferation and survival has been shown to involve Akt, mTOR/p70S6K and AMPK signaling pathways\cite{10,12}. Our results showed that berberine treatment inhibited the phosphorylation of Akt and mTOR, as well as mTOR downstream target p70S6K, but enhanced the phosphorylation of AMPK. A previous study reported that, in breast cells, berberine transiently activated AMPK and inhibited Akt, but did not inhibit mTOR activity\cite{22}. Our results showed that treatment with berberine induced sustained alterations (6-24 h) of increased levels of Akt and mTOR phosphorylation in KYSE-70 cells or increased level of AMPK phosphorylation in KYSE-70 cells. These results suggest that berberine alters Akt, mTOR and AMPK activities in various cells by interfering with the multiple AMPK signaling pathways

\section*{DISCUSSION}

The low survival rate of EC patients is associated with poor prognosis of the disease and advanced stage at initial diagnosis, thus making surgery an undesirable option. Although advances have been achieved in chemotherapy, the serious adverse effects usually limit clinical application\cite{14}. Therefore, there is a critical need to develop non-invasive strategies to confine the growth or prevent the occurrence of EC.

Compounds derived from plants have been identified as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability and low toxicity when compared with chemotherapy\cite{15,16}. A compound derived from an alkaloid-containing plant, berberine, has been shown to possess numerous anticancer activities in various cells by interfering with the multiple aspects of tumorigenesis and tumor progression\cite{6-12}. Despite this, it has remained unconfirmed whether berberine exerts an antitumor effect against EC. In the present study, we found that berberine induced strong growth inhibition of the human ESCC cell line KYSE-70 and EAC cell line SKGT4 in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible than SKGT4 cells to the inhibitory effects of berberine. Our findings indicate that berberine is a potent inhibitor of human EC cell growth and could

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{Effects of berberine on AMPK and AKT/mTOR/p70S6K activities. KYSE-70 cells were treated with 50 μmol/L berberine for 6, 12 and 24 h, and protein expressions of p-AKT, AKT, p-mTOR, mTOR, p-p70S6K, p70S6K, p-AMPK and AMPK were analyzed by western blotting.}
\end{figure}

h after treatment. These data suggest that inhibition of Akt-mTOR/p70S6K and activation of AMPK are important targets of berberine activity (Figure 5).
activity in an individual cell-dependent manner.

In conclusion, it is suggested that berberine inhibits EC cell growth by promoting cell cycle arrest at G2 phase and the apoptotic process. The Akt, mTOR/p70S6K and AMPK signaling pathways are involved in the antitumor activity of berberine on EC. We have shown that berberine is an inhibitor of human EC cell growth and could be considered as a potential source of drugs for the treatment of EC patients.

COMMENTS

Background

The initial diagnosis of many esophageal cancer (EC) patients is at an advanced stage, making surgery an undesirable option. Although advances have been achieved in chemotherapy, serious adverse effects usually limit its clinical application. Therefore, there is an urgent need to find non-invasive strategies to confine the growth or prevent the occurrence of EC. Berberine, a compound derived from an alkaloid-containing plant, has been shown to possess numerous anticancer activities in various cells by interfering with the multiple aspects of tumorigenesis and tumor progression. Despite this, it has remained unconfirmed whether berberine exerts antitumor effects against EC.

Research frontiers

Accumulating studies have revealed that berberine exhibits antitumor activity by interfering with the multiple features of tumorigenesis and tumor development.

Innovations and breakthroughs

This study revealed that berberine inhibited EC cell growth by promoting cell cycle arrest at G2/M phase and the apoptosis process. Human esophageal squamous cell carcinoma cells were more susceptible to the inhibitory activity of berberine than human esophageal adenocarcinoma cells. Inhibition of Akt, mTOR/p70S6K and activated AMPK signaling pathways was involved in the antitumor activity of berberine on EC.

Terminology

Berberine is a quaternary ammonium salt derived from Ranunculaceae and Papaveraceae families of plants. Apart from a broad range of bioactivities that includes anti-inflammatory, antibacterial and anti-diabetic activity, berberine has been shown to have antitumor activity, which it exerts by interfering with the multiple features of tumorigenesis and tumor development.

Peer-review

EC is still a cancer with poor prognosis. The testing of chemosensitivity of cancer cells in the esophagus to berberine is important. This enables classification of the condition for selected patients with esophageal cancer to be treated. Berberine can provide treatment options for adjuvant or preparative treatment.

REFERENCES

20. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano
Jiang SX et al. Role of berberine against esophageal cancer

