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Abstract
BACKGROUND 
Thrombocytopenia 2, an autosomal dominant inherited disease characterized by 
moderate thrombocytopenia, predisposition to myeloid malignancies and normal 
platelet size and function, can be caused by 5’-untranslated region (UTR) point 
mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related 
transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been 
identified as negative regulators of ANKRD26. However, the positive regulators of 
ANKRD26 are still unknown.

AIM 
To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on 
ANKRD26 transcription.

METHODS 
Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) 

https://www.f6publishing.com
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and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differen-
tiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases 
(Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. 
Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of 
the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between 
ANKRD26 expression and overall survival in cancer patients.

RESULTS 
In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 
and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with 
three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate 
ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5’-UTR of 
ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb 
upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a 
more favorable prognosis in breast and lung cancer patients.

CONCLUSION 
We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and 
identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many 
tissue-derived cancers.

Key Words: Ankyrin repeat domain containing 26; GATA binding protein 2; Thrombocytopenia 2; Transcriptional regulation; 
Myeloid-derived cell lines

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The 5’-untranslated region mutation of ankyrin repeat domain containing 26 (ANKRD26) plays an important role 
in the pathology of thrombocytopenia 2 (THC2). Considering the predisposition of THC2 patients to myeloid malignancies, 
further revealing the molecular mechanism of ANKRD26 transcription is warranted. Although Runt related transcription 
factor 1 and friend leukemia integration 1 have been shown to negatively regulate ANKRD26 expression, no known positive 
regulators have been reported. Here, we first revealed that GATA binding protein 2 mediates high ANKRD26 expression by 
binding to its promoter region. We discovered that high ANKRD26 expression was always associated with favorable overall 
survival. Our study provides insights into the regulatory network of ANKRD26 and the pathological process of THC2.

Citation: Jiang YZ, Hu LY, Chen MS, Wang XJ, Tan CN, Xue PP, Yu T, He XY, Xiang LX, Xiao YN, Li XL, Ran Q, Li ZJ, Chen L. 
GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines. World J Stem 
Cells 2024; 16(5): 538-550
URL: https://www.wjgnet.com/1948-0210/full/v16/i5/538.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i5.538

INTRODUCTION
Ankyrin repeat domain containing protein 26 (ANKRD26) acts as a regulator of adipogenesis and is involved in the 
regulation of feeding behavior[1-3]. The ANKRD26 gene is located on chromosome 10 and shares regions of homology 
with the primate-specific gene family POTE. According to the Human Protein Atlas database, the ANKRD26 protein is 
localized to the Golgi apparatus and vesicles, and its expression can be detected in nearly all human tissues[4]. Moreover, 
UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by 
spectrin helices and ankyrin repeats[5,6].

The most common disease related to ANKRD26 is thrombocytopenia 2 (THC2), which is a rare autosomal dominant 
inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9]. Caused by the 
variants in the 5’-untranslated region (UTR) of ANKRD26, THC2 is defined by a decrease in the number of platelets in 
circulating blood and results in increased bleeding and decreased clotting ability[8,10]. Due to the point mutations that 
occur in the 5’-UTR of ANKRD26, its negative transcription factors (TFs), Runt related transcription factor 1 (RUNX1) and 
friend leukemia integration 1 (FLI1), lose their repression effect[11]. The persistent expression of ANKRD26 increases the 
activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways, which 
are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet 
formation by megakaryocytes (MKs)[11]. However, the positive regulators of ANKRD26, which might be associated with 
THC2 pathology, are still unknown.

https://www.wjgnet.com/1948-0210/full/v16/i5/538.htm
https://dx.doi.org/10.4252/wjsc.v16.i5.538
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In this study, we demonstrated that GATA binding protein 2 (GATA2) functions as a positive regulator of ANKRD26 
by binding to its promoter region and identified its precise binding sites. Furthermore, we scanned the expression levels 
of ANKRD26 in human cancers and reported that high ANKRD26 expression was linked to more favorable overall 
survival. In summary, this is the first study in which the regulatory effect of GATA2 on ANKRD26 in THC2 cells has been 
investigated. The results of this study will enhance our understanding of the regulatory network of ANKRD26 and the 
pathological process of THC2.

MATERIALS AND METHODS
Cell lines
K562 and HEL cells were cultured in RPMI 1640 medium (Gibco, C11875500BT) supplemented with 10% foetal bovine 
serum and 1% penicillin/streptomycin. All human induced pluripotent stem cells (hiPSCs) were cultured in Matrigel-
coated 6-well cell culture plates with Essential 8 (E8) medium (Cellapy, CA1014500). hiPSCs derived from bone marrow 
(hiPSC-BM) (SHAMUi001-A, https://hpscreg.eu/cell-line/SHAMUi001-A) were induced as previously described, and 
hiPSCs derived from the urothelium (hiPSC-U) were obtained from Cellapy (hiPSC-U1)[12].

Chemicals and antibodies
The following antibodies were used for western blot and chromatin immunoprecipitation (ChIP) analyses: Rabbit anti-
ANKRD26 (GeneTex, GTX128255), rabbit anti-GATA2 (Cell Signaling Technology, #79802S), rabbit anti-RUNX1 (Abcam, 
ab272456), rabbit anti-FLI1 (Abcam, ab133485), mouse anti-GAPDH (Beyotime, AF0006) and rabbit anti-normal IgG (Cell 
Signaling Technology, #2729P).

Western blot analysis
Cells were lysed with ice-cold western and IP cell lysis buffer (Beyotime, P0013) containing protease inhibitors. After 
protein quantification, equal amounts of protein from each sample were separated by sodium-dodecyl sulfate gel electro-
phoresis (Solarbio, P1200-1/P1200-2) and transferred to polyvinylidene fluoride membranes (Millipore, 0000227526). 
Then, the membranes were incubated with primary antibodies. The samples were incubated overnight at 4 °C, followed 
by three washes with TBST. Next, the membranes were incubated with horseradish peroxidase-conjugated secondary 
antibodies [goat anti-rabbit IgG/HRP (Solarbio, SE134) and goat anti-mouse IgG/HRP (Solarbio, SE131)] for 1 h at room 
temperature. Blots were visualized using SuperSignal™ West Atto Chemiluminescent Substrate (Thermo Scientific, 
A38555).

Dual-luciferase reporter assay
The promoter region (2 kb upstream of the translation start site) of ANKRD26 was amplified by polymerase chain 
reaction (PCR) and cloned with a luciferase reporter vector (P2000). The promoter regions of the P2000 GATA2M1 and 
P2000 GATA2M2 vectors were constructed by mutating all the bases 821-825 bp and 1685-1689 bp upstream of the 
ANKRD26 gene TSS to adenine (A). These two mutated promoters were amplified by PCR and cloned with luciferase 
reporter vectors. Then, K562 cells were cotransfected with luciferase reporter vectors and the GATA2 overexpression 
plasmid using Lipofectamine 3000 transfection reagent (Invitrogen, L3000-05). After 48 h of incubation, a dual-luciferase 
reporter assay was performed using the Dual-Luciferase Reporter Assay System (Promega, E1910). Renilla luciferase 
activity was used to normalize the transfection efficiency.

ChIP assay
ChIP assays were conducted using a SimpleChIPPlus Enzymatic Chromatin IP Kit (Magnetic Beads, Cell Signaling 
Technology, 9005 S) with an anti-GATA2 antibody (Cell Signaling Technology, #79802S). Assays were performed using 
chromatin prepared from K562 cells. The cells were first crosslinked with 1% formaldehyde in phosphate buffered saline 
(PBS) at room temperature for 10 min, quenched with 2.5 M glycine at room temperature for 5 min and washed with ice-
cold PBS three times. Sonication was used for DNA fragmentation. The supernatants were immunoprecipitated by 
incubation with 5 μL of anti-GATA2 (Cell Signaling Technology, #79802S), 10 μL of anti-histone H3 (D2B12) XP rabbit 
mAb (Cell Signaling Technology, #4620) as a positive control and 2 μL of rabbit anti-normal IgG (Cell Signaling 
Technology, #2729) as a negative control at 4 °C for 16 h. Then, the immunocomplexes were rotationally incubated with 
30 μL of ChIP-Grade Protein G Magnetic Beads for 2 h at 4 °C and then washed three times with low-salt wash buffer and 
one time with high-salt wash buffer at 4 °C for 5 min per wash. Chromatin was eluted by ChIP elution buffer for 30 min 
at 65 °C with gentle vortex mixing (1200 rpm), and crosslinking was reversed by treatment with 5 M NaCl and proteinase 
K overnight at 65 °C. The samples were then incubated with RNase at 37 °C for 1 h. ChIP DNA was purified and 
subsequently quantified by quantitative real-time PCR (RT-qPCR). The sequences of primers used for ANKRD26 are 
listed in Supplementary Table 1.

RT-qPCR
The primer sequences for ANKRD26, GATA2, RUNX1, FLI1 and the housekeeping gene GAPDH were predicted using 
Primer3 and can be found in Supplementary Table 1. mRNA isolation, reverse transcription, and RT-qPCR were 
performed as previously described[13]. Total RNA was extracted using TRIzol Reagent (TaKaRa, 9109) according to the 
manufacturer’s instructions. First-strand cDNA was synthesized from l μg of RNA using the PrimeScript RT Reagent Kit 

https://hpscreg.eu/cell-line/SHAMUi001-A
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
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Figure 1 The expression of ankyrin repeat domain containing 26 varied in induced pluripotent stem cells derived from bone marrow and 
the urothelium. A: Schematic structure of the 5’-untranslated region ankyrin repeat domain containing 26 (ANKRD26) region and its relationship with the Runt 
related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) binding sites. The bases in red represent the mutation sites reported in the literature; B: 
Agarose gels after polymerase chain reaction to assess the expression of ANKRD26, RUNX1 and FLI1 in HEL, K562, human induced pluripotent stem cells derived 
from bone marrow, and human induced pluripotent stem cells derived from urothelium. UTR: Untranslated region; ANKRD26: Ankyrin repeat domain containing 26; 
RUNX1: Runt related transcription factor 1; FLI1: Friend leukemia integration 1; hiPSC-BM: Human induced pluripotent stem cells derived from bone marrow; hiPSC-
U: Human induced pluripotent stem cells derived from urothelium.

with gDNA Eraser (TaKaRa, RR047A). qPCR was performed in triplicate in 20-μL reactions containing SYBR Premix Ex 
Taq II (TaKaRa, RR820A). The reaction protocol was as follows: Heating for 30 s at 95 °C, followed by 40 cycles of 
amplification (5 s at 95 °C and 30 s at 60 °C).

Transcriptome sequencing and data analysis for iPSCs
Total RNA was extracted from bone marrow- and urothelium-derived iPSCs using TRIzol reagent, as previously 
described[14]. Then, the RNA quality and quantity were analyzed by an Agilent 2100 Bioanalyzer. After the cDNA 
libraries for all the samples were prepared using the Illumina RNA Prep with Enrichment Kit (Illumina), they were 
sequenced on the Illumina NovaSeq 6000 platform with the PE150 strategy. Next, the output of sequencing data (fastq 
format) was cleaned using SOAPnuke and quality controlled by FastQC, as previously described[15]. HISAT2 and 
Stringtie were used to align the clean reads to the human reference genome (GRCH38) and to profile gene expression for 
each sample[16]. The fragments per kilobase per million mapped reads (FPKM) method was used to normalize the gene 
expression in each sample. Differential expression analysis was performed as previously described[15]. HISAT2 and 
Stringtie were used to align the clean reads to the human reference genome (GRCH38) and to profile gene expression for 
each sample[16]. The FPKM method was used to normalize the gene expression in each sample. Differential expression 
analysis was performed as previously described[15].

Statistical analysis
All the statistical analyses were performed using GraphPad Prism 9.0 software. The mean ± SD method was used to 
present the values of replicates, and P values were calculated using Student’s t test. P < 0.05 was considered to indicate 
statistical significance.

RESULTS
ANKRD26 gene expression is different in iPSCs derived from bone marrow and urothelium
Sustained ANKRD26 expression in the late stage of megakaryopoiesis is due to point mutations in the 5’-UTR of 
ANKRD26, which is in or close to the binding sites of RUNX1 and FLI1 (Figure 1A)[11,17]. To investigate whether there 
are positive regulators of ANKRD26, we examined its expression, together with its two negative regulators, RUNX1 and 
FLI1, in two classic THC2 model cell lines, HEL and K562. RUNX1 and FLI1 expression was greater in HEL cells than in 
K562 cells. ANKRD26 expression was greater in K562 cells than in HEL cells (Figure 1B). Next, we employed hiPSC-BM 
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Figure 2 The transcription factor GATA binding protein 2 is potentially involved in regulating ankyrin repeat domain containing 26 
expression. A: A heatmap showing the expression patterns of transcription factor (TF) genes in human induced pluripotent stem cells derived from bone marrow 
(hiPSC-BM) and human induced pluripotent stem cells derived from urothelium (hiPSC-U); B: A volcano plot showing the differentially expressed TF genes in hiPSC-
BM and hiPSC-U. Red dots represent TF genes with significant differential expression; C: Venn diagram showing overlaps of ankyrin repeat domain containing 26 
(ANKRD26) related transcription factors from the Cistrome DB, animal TFDB, ENCODE and transcriptome (differentially expressed transcription factors)[41]. DETFs: 
Differentially expressed transcription factors; GATA2: GATA binding protein 2; hiPSC-BM: Human induced pluripotent stem cells derived from bone marrow; hiPSC-U: 
Human induced pluripotent stem cells derived from urothelium.

and hiPSC-U cells to obtain further insights into the regulatory mechanisms of ANKRD26 at an early stage and examined 
the expression of RUNX1, FLI1 and ANKRD26 in these cells. In the present study, RUNX1 and FLI1 were not detected in 
these iPSCs, but ANKRD26 was detected only in the hiPSC-BM (Figure 1B). Thus, we proposed that there might be other 
positive regulators of ANKRD26.

GATA2 is a potential regulator of ANKRD26
Then, we performed transcriptome sequencing and screened the expression of all TF genes in both kinds of iPSCs. A 
heatmap (Figure 2A) and a volcano plot (Figure 2B) were used to show the differential expression of TF genes in hiPSC-
BM and hiPSC-U. We detected significant differences in the expression of some TF genes (P < 0.05, fold change > 2) in the 
two types of iPSCs, such as FEZF2, OLIG3, PAX7 and GATA2. In total, 68 TF genes were more highly expressed in hiPSC-
BM cells than in hiPSC-U cells. Next, we searched for potential TFs for ANKRD26 in three databases, namely, the 
Cistrome DB, animal TFDB and ENCODE[18-20]. Interestingly, GATA2 was the only TF identified by our transcriptome 
sequencing and the three datasets (Figure 2C and Supplementary Table 2), which strongly supports it as a potential 
regulator of ANKRD26.

ANKRD26 expression is upregulated by GATA2 overexpression
To verify the regulatory effect of GATA2 on the transcription of the ANKRD26 gene, we analyzed the expression of 
GATA2 and ANKRD26 in HEL, K562, hiPSC-BM and hiPSC-U cells. Although GATA2 was expressed in HEL cells, 
ANKRD26 was not detected, probably due to the dominant repressive effect of its suppressors RUNX1 and FLI1 (Figures 
1B and 3A). In other cells, such as K562 and hiPSC-BM cells, we found that GATA2 was co-expressed with ANKRD26 
(Figures 1B and 3A). To study the positive regulatory effect of GATA2 on ANKRD26 expression, we transfected GATA2 
plasmids into K562 cells and observed that ANKRD26 expression was significantly increased at both the mRNA and 

https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
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Figure 3 The expression of ankyrin repeat domain containing 26 is upregulated by the overexpression of GATA binding protein 2. A: 
Agarose gels after polymerase chain reaction (PCR) to assess the expression of GATA binding protein 2 (GATA2) in HEL, K562, human induced pluripotent stem 
cells derived from bone marrow (hiPSC-BM) and human induced pluripotent stem cells derived from urothelium (hiPSC-U); B: Quantitative real-time PCR (RT-qPCR) 
analyses showing the promoting effect of GATA2 on ankyrin repeat domain containing 26 (ANKRD26) mRNA expression. K562 cells were transfected with GATA2 
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plasmids and control plasmids; C: Western blots showing the effect of GATA2 on promoting ANKRD26 protein expression in K562 cells; D: RT-qPCR analyses 
showing the effect of GATA2 on promoting ANKRD26 mRNA expression. HEL cells were transfected with GATA2 plasmids and control plasmids; E: Western blots 
showing the effect of GATA2 on promoting ANKRD26 expression at the protein level in HEL cells. The error bars represent the means ± SD of triplicate samples. bP 
< 0.01, calculated by Student’s t test. GATA2: GATA binding protein 2; ANKRD26: Ankyrin repeat domain containing 26; RUNX1: Runt related transcription factor 1; 
FLI1: Friend leukemia integration 1; hiPSC-BM: Human induced pluripotent stem cells derived from bone marrow; hiPSC-U: Human induced pluripotent stem cells 
derived from urothelium.

protein levels (Figure 3B and C). Interestingly, the expression of RUNX1 was significantly increased at the mRNA and 
protein levels (Figure 3B and C), while the expression of FLI1 mRNA and protein was also increased but not significantly 
different in K562GATA2+ cells (Figure 3B and C). Then, we transfected the GATA2 plasmids into HEL cells and examined the 
expression levels of GATA2, ANKRD26, RUNX1 and FLI1. Unexpectedly, the expression patterns of these genes in HEL 
cells following GATA2 overexpression were the same as those in K562 cells following GATA2 overexpression (Figure 3D 
and E). This might suggest that the positive regulation by the overexpression of GATA2 would take over the repressive 
effect of RUNX1 and FLI1.

Because the expression of ANKRD26 varied between hiPSC-BMs and hiPSC-Us (Figure 1B), we next transfected the 
GATA2 plasmids into bone marrow (THP-1 and MOLM13)- and urothelium (LNCaP and DU145)-derived cell lines. The 
results showed that in these cell lines, overexpressed GATA2 can consistently stimulate the expression of ANKRD26 at 
both the mRNA and protein levels (Figure 4). Taken together, these findings indicate that GATA2 does not increase the 
expression of ANKRD26 via the downregulation of RUNX1 or FLI1.

GATA2 promotes ANKRD26 expression by binding to its promoter region
Next, we established a dual-luciferase reporter covering the 2 kb region upstream of the TSS of the ANKRD26 gene 
(Figure 5A). K562 cells were co-transfected with the GATA2 expression plasmids and these dual-luciferase reporter 
constructs. Compared with that in the empty vector group, luciferase activity was significantly greater in the GATA2 
overexpression group, indicating that GATA2 binds to this region (Figure 5B). Furthermore, using bioinformatics tools, 
we identified 3 potential consensus binding motifs for GATA2 in the promoter region of ANKRD26 (Figure 5C). These 
motifs were searched against the 5’-UTR of ANKRD26, and 8 hits were found (Figure 5D). PCR primers encompassing 
these sites were designed, ChIP assays were performed, and two potential sites were identified (Figure 5E).

To further confirm the binding sites of GATA2 in the ANKRD26 promoter region, we performed a site-directed 
mutagenesis experiment by modifying the bases in the two binding sites to disrupt the binding of GATA2 (Figure 5F). 
Then, we found that the luciferase activities of both mutated dual-luciferase reporters were significantly decreased 
(Figure 5G). Taken together, our findings reveal that GATA2 promotes ANKRD26 transcriptional activity by directly 
binding to two sites in the ANKRD26 promoter region and that these two sites are indispensable for ANKRD26 gene 
transcription.

The importance of ANKRD26 in cancers
We next explored the expression patterns of ANKRD26 in other human diseases, such as cancers. We downloaded 
ANKRD26 gene expression profiles (from the GPL570 and GPL96 platforms) from the GENT2 database and compared the 
expression levels of ANKRD26 in normal and cancer tissues of various cancer types (Figure 6A)[21]. ANKRD26 
expression was significantly different (P < 0.05) between cancer and normal tissues of multiple cancer types (15 and 16 
cancer types from the GPL570 and GPL96 platforms, respectively), including brain, breast, lung, and blood (Sup-
plementary Table 3). Next, we analyzed the relationship between ANKRD26 expression and the overall survival rate of 
cancer patients. Notably, in breast and lung cancers, high expression of ANKRD26 was significantly associated with 
survival, although its expression might not be significantly different in patients with different tumor grades (Figure 6B). 
Furthermore, considering its association with THC2, we analyzed the expression of ANKRD26 in blood cancers 
(leukemia, lymphoma, and myeloma) (Figure 6C). Interestingly, lymphoma and myeloma were found to have the highest 
and lowest expression of ANKRD26, respectively. The overall survival rate of patients with lymphoma was much greater 
than that of patients with leukemia (Figure 6D); the reason might be complicated, as the factors influencing the two 
subtypes of blood cancer are excessive. However, the potential function of ANKRD26 in hematopoietic differentiation 
might also be a factor, and further experiments are needed.

DISCUSSION
In hematopoietic stem and progenitor cells, FLI1 plays a key role in proliferation and differentiation[22]. RUNX1 is 
indispensable for the establishment of definitive hematopoiesis, and studies of iPSCs derived from patients with familial 
platelet disorder with a predisposition to acute myeloid leukemia (FPD/AML) have revealed that RUNX1 mutations also 
cause megakaryopoiesis defects[23,24]. Bluteau et al[11] reported that RUNX1 and FLI1 are two critical transcription 
factors that regulate ANKRD26 expression, and losing the binding of these two critical TFs causes persistent ANKRD26 
expression, which is the most important factor that contributes to THC2 expression. It is reasonable to assume that 
ANKRD26 plays an important role in the downstream pathway of RUNX1 because the clinical features of FPD/AML are 
similar to those of THC2, and RUNX1 is an essential regulatory factor of ANKRD26. To observe the relationship between 
ANKRD26 and these two TFs (RUNX1 and FLI1) at an early stage, in our study, we measured the expression of 

https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
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Figure 4 The regulation of ankyrin repeat domain containing 26 by GATA binding protein 2 overexpression in bone marrow- and 
urothelium-derived cell lines. A-D: Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses showing that GATA binding protein 2 
(GATA2) promoted ankyrin repeat domain containing 26 (ANKRD26) expression in two bone marrow-derived cell lines (THP-1 and MOLM-13); E-H: RT-qPCR and 
western blot analyses showing that GATA2 promoted ANKRD26 expression in two urothelium-derived cell lines (LNCaP and DU145). The error bars represent the 
means ± SD of triplicate samples. aP < 0.05; bP < 0.01, calculated by Student’s t test. GATA2: GATA binding protein 2; ANKRD26: Ankyrin repeat domain containing 
26.
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Figure 5 GATA binding protein 2 promotes ankyrin repeat domain containing 26 expression by binding to its promoter region. A: Schematic 
diagram of the ankyrin repeat domain containing 26 (ANKRD26) gene promoter reporter constructs. The constructs are named P-length. The open box shows the first 
exon of ANKRD26, and the positions relative to the major ANKRD26 transcription start site (+1) are indicated. The pRP represents an empty vector (mock); B: The 
empty (mock) or ANKRD26 (P2000) dual-luciferase reporter constructs were cotransfected into K562 cells with control plasmids or plasmids expressing GATA binding 
protein 2 (GATA2) in synergy. Cell extracts were analyzed for luciferase activity; C: DNA consensus motifs of GATA2; D: The eight potential GATA2 binding sites on 
the ANKRD26 promoter region. Red-marked sites are on the sense strand, and blue-marked sites are on the antisense strand; E: Chromatin immunoprecipitation 
assays performed in K562 cells show that GATA2 directly binds to the ANKRD26 promoter region. The binding sites of GATA2BS1 to GATA2BS8 encompass the 8 
predicted binding sites in (D). C1, which encompasses the region without GATA2 binding sites, was used as the negative control; F: Schematic diagram of site-
directed mutagenesis of GATA2 binding sites in the ANKRD26 promoter. The two potential GATA2 binding sites are indicated as open boxes (GATA2BS1 and 
GATA2BS2). The indicated point mutation is denoted by a cross; G: Dual-luciferase assays showing that two mutated GATA2 binding sites block GATA2 Luciferase-
promoting activity. The error bars represent the means ± SDs of triplicate samples. aP < 0.05; bP < 0.01, calculated by Student’s t test. GATA2: GATA binding protein 
2.

ANKRD26, RUNX1 and FLI1 in K562 cells, HEL cells and two tissue-derived iPSCs (hiPSC-BM and hiPSC-U). With the 
same expression levels of RUNX1 and FLI1, we unexpectedly found that the ANKRD26 expression pattern differed 
between the two types of tissue-derived iPSCs. We first showed that GATA2 positively regulates ANKRD26 expression. 
Taken together, these three TFs (GATA2, RUNX1 and FLI1) contribute to the regulation of ANKRD26 expression.

In our study, we first identified the promoting effect of GATA2 on ANKRD26 expression by binding to its promoter 
region. It has been reported that GATA2 might regulate megakaryopoiesis at the level of MK progenitors[25]. By 
analyzing the gene expression data in the BloodSpot database (https://www.bloodspot.eu/), we also observed that the 
expression of GATA2 and ANKRD26 gradually decreased with MK differentiation and that the expression of RUNX1 and 
FLI1 did not obviously differ (Supplementary Figure 1)[26]. Therefore, we can speculate that GATA2 dominates 
ANKRD26 regulation at an early stage of differentiation, which is consistent with its expression pattern. However, during 
the late stage of MK differentiation, GATA2 expression is decreased, and the repressive effect of RUNX1 and FLI1 
regulates ANKRD26 expression. In addition, ANKRD26 expression was measured in HEL cells overexpressing GATA2. 

https://www.bloodspot.eu/
https://www.bloodspot.eu/
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
https://f6publishing.blob.core.windows.net/82a55176-22da-4cb2-8874-4e0c0abbf04d/WJSC-16-538-supplementary-material.zip
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Figure 6 The importance of ankyrin repeat domain containing 26 in cancers. A: Two boxplots of ankyrin repeat domain containing 26 (ANKRD26) 
gene expression profiles from the GPL570 and GPL96 platforms. Red indicates a boxplot of cancer samples. Blue indicates a boxplot of normal samples; B: Kaplan-
Meier plots by median cutoff showing an association between ANKRD26 expression and overall survival (left is in breast cancer, and right is in lung cancer); C: Box 
and dot plot of each subtype of blood cancer; D: Kaplan-Meier plots by subtypes showing an association between ANKRD26 expression and blood cancer subtypes.
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This finding also proved that the repressive effect of RUNX1 and FLI1 would be disrupted if GATA2 expression was 
sufficient.

GATA2 was first reported in 1994 and was shown to encode an essential transcriptional regulator in multilineage 
hematopoiesis[27]. It is a transcriptional activator that regulates endothelin-1 gene expression in endothelial cells and 
binds to the consensus sequence[28]. In our study, we found that the GATA2 motif MA1 (5’-AGATA-3’) plays a major 
role in regulating ANKRD26 (Figure 5C). As one of the six GATA family TFs, the pioneering TF GATA2 can facilitate the 
opening of heterochromatin and the subsequent binding of other TFs and further induce gene expression from previously 
inaccessible regions of the genome[29].

In addition to affecting THC2, ANKRD26 is related to many other diseases, such as diabetes, epidermodysplasia 
verruciformis, non-Langerhans cell histiocytosis and psychiatric disorders, although the underlying mechanism has yet to 
be elucidated[30-35]. Recent studies have shown that ANKRD26 is a distal appendage protein that plays an essential role 
in centrosome amplification[36,37]. Centrosome amplification is always observed in a variety of human cancers and 
promotes genome instability and tumor development[38,39]. To explore the role of ANKRD26 in cancer, we analyzed the 
change in the expression of ANKRD26 in cancers derived from different tissues by using the GENT2 platform. In our 
study, we showed that there is a significant difference in ANKRD26 expression in many cancer tissues, and patients with 
higher ANKRD26 expression had a more favorable prognosis in breast and lung cancers. In hepatocytes, ANKRD26 is 
regarded as an important factor in restricting polyploidization and preventing chronic injury because it can activate the 
PIDDosome-P53 axis after centrosome amplification[40]. Further investigation into whether ANKRD26 functions as a 
potential tumor suppressor by inducing apoptosis after centrosome amplification in cancer cells and whether the 
impairment of proplatelet formation in THC2 patients is caused by excessive ANKRD26, which limits MK polyploidy, is 
urgently warranted.

CONCLUSION
In conclusion, we first identified that GATA2 enhanced ANKRD26 expression, and we also identified the precise binding 
sites of GATA2 on the ANKRD26 promoter region. In addition, we discovered that high ANKRD26 expression was 
always linked to favorable overall survival. Hence, our study further revealed the transcriptional regulatory network of 
ANKRD26 and contributed to further exploration of the pathological process of THC2.
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