EDITORIAL

1384 Remission of type 2 diabetes mellitus
Nakhleh A, Halfin E, Shehadeh N

1390 Diabetes remission and nonalcoholic fatty pancreas disease
Wu WJ

1394 Management of gestational diabetes mellitus via nutritional interventions: The relevance of gastric emptying
Huang WK, Jalleh RJ, Rayner CK, Wu TZ

1398 MicroRNA-630: A promising avenue for alleviating inflammation in diabetic kidney disease
Donate-Correa J, González-Luis A, Diaz-Vera J, Hernandez-Fernaud JR

1404 Adiposity in Chinese people with type 1 diabetes
Wu NW, Lyu XF, An ZM, Li SY

1409 Diabetes and tuberculosis: An emerging dual threat to healthcare
Shetty S, Pappachan JM, Fernandez CJ

REVIEW

1417 Patient-centered care in diabetes care-concepts, relationships and practice
Chen TT, Su WC, Liu MI

1430 Insulin resistance as the molecular link between diabetes and Alzheimer's disease
Abdalla MMI

MINIREVIEWS

1448 Obstructive sleep apnea: Overlooked comorbidity in patients with diabetes
Tenda ED, Henrina J, Cha JH, Triono MR, Putri EA, Aristy DJ, Tahapary DL

1461 Update on evidence-based clinical application of sodium-glucose cotransporter inhibitors: Insight to uncommon cardiovascular disease scenarios in diabetes
Tao SB, Lu X, Ye ZW, Tong NW
ORIGINAL ARTICLE

Retrospective Cohort Study

1477 Association between glucose levels of children with type 1 diabetes and parental economic status in mobile health application

Retrospective Study

1489 Association between glucose-lowering drugs and circulating insulin antibodies induced by insulin therapy in patients with type 2 diabetes
Zhang P, Jiang Q, Ding B, Yan RN, Hu Y, Ma JH

1499 Clinical efficacy of endovascular revascularization combined with vacuum-assisted closure for the treatment of diabetic foot
Lei FR, Shen XF, Zhang C, Li XQ, Zhuang H, Sang HF

1509 Magnetic resonance imaging combined with serum endolipin and galactagoglobin-3 to diagnose cerebral infarction in the elderly with diabetes mellitus
Zhang YH, Liang D

1518 Dapagliflozin in heart failure and type 2 diabetes: Efficacy, cardiac and renal effects, safety
Yu PL, Yu Y, Li S, Mu BC, Nan MH, Pang M

Observational Study

1531 Cut-off value of glycated hemoglobin A1c for detecting diabetic retinopathy in the Chinese population
Wen Y, Wang Q

1537 Glymphatic function and its influencing factors in different glucose metabolism states

Clinical and Translational Research

1551 Does type 1 diabetes serve as a protective factor against inflammatory bowel disease: A Mendelian randomization study
Tong KK, Yu YF, Yang XY, Wu JY, Yu R, Tan CC

1562 Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease
Zhang MY, Zheng SQ

Basic Study

1589 Interactions between myoblasts and macrophages under high glucose milieu result in inflammatory response and impaired insulin sensitivity
Luo W, Zhou Y, Wang LY, Ai L
Contents

World Journal of Diabetes

Monthly Volume 15 Number 7 July 15, 2024

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603</td>
<td>Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease</td>
<td>Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD</td>
</tr>
<tr>
<td>1615</td>
<td>Evaluation of teplizumab's efficacy and safety in treatment of type 1 diabetes mellitus: A systematic review and meta-analysis</td>
<td>Ma XL, Ge D, Hu XJ</td>
</tr>
<tr>
<td>1627</td>
<td>Global trends in publications regarding macrophages-related diabetic foot ulcers in the last two decades</td>
<td>Wen JP, Ou SJ, Liu JB, Zhang W, Qu YD, Li JX, Xia CL, Yang Y, Qi Y, Xu CP</td>
</tr>
<tr>
<td>1645</td>
<td>Atrial fibrillation and prediabetes: A liaison that merits attention!</td>
<td>Batta A, Hatwal J</td>
</tr>
<tr>
<td>1651</td>
<td>Bidirectional link between periodontitis and systemic inflammation in diabetic retinopathy</td>
<td>Nishant P, Sinha S, Sinha RK, Morya AK</td>
</tr>
</tbody>
</table>

SYSTEMATIC REVIEWS

META-ANALYSIS

SCIENTOMETRICS

LETTER TO THE EDITOR
ABOUT COVER
Peer Review of *World Journal of Diabetes*, Erkan Gokce, MD, Professor, Department of Radiology, Tokat Gaziosmanpasa University, School of Medicine, Tokat 60100, Türkiye. drerkangokce@gmail.com

AIMS AND SCOPE
The primary aim of *World Journal of Diabetes (WJD, World J Diabetes)* is to provide scholars and readers from various fields of diabetes with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJD mainly publishes articles reporting research results and findings obtained in the field of diabetes and covering a wide range of topics including risk factors for diabetes, diabetes complications, experimental diabetes mellitus, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes, diabetic angiopathies, diabetic cardiomyopathies, diabetic coma, diabetic ketoacidosis, diabetic nephropathies, diabetic neuropathies, Donohue syndrome, fetal macrosomia, and prediabetic state.

INDEXING/ABSTRACTING
The *WJD* is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2024 Edition of Journal Citation Reports® cites the 2023 journal impact factor (JIF) for *WJD* as 4.2; JIF without journal self cites: 4.1; 5-year JIF: 4.2; JIF Rank: 40/186 in endocrinology and metabolism; JIF Quartile: Q1; and 5-year JIF Quartile: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Cover Editor: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Diabetes

ISSN
ISSN 1948-9358 (online)

LAUNCH DATE
June 15, 2010

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Lu Cai, Md. Shahidul Islam, Michael Horowitz

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
July 15, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/GerInfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Diabetes remission and nonalcoholic fatty pancreas disease

Wen-Jun Wu

Abstract

This editorial focuses on the relationship between nonalcoholic fatty pancreas disease (NAFPD) and the development and remission of type 2 diabetes (T2D). NAFPD is characterized by intrapancreatic fatty deposition associated with obesity and not associated with alcohol abuse, viral infections, and other factors. Ectopic fat deposition in the pancreas is associated with the development of T2D, and the underlying mechanism is lipotoxic β-cell dysfunction. However, the results on the relationship between intrapancreatic fat deposition (IPFD) and β-cell function are conflicting. Regardless of the therapeutic approach, weight loss improves IPFD, glycemia, and β-cell function. Pancreatic imaging is valuable for clinically monitoring and evaluating the management of T2D.

Key Words: Diabetes remission; Type 2 diabetes; Pancreatic fat content; β cell function; Weight loss

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Excess fat in the pancreas impairs β-cell function. The remission of type 2 diabetes and the improvement of β-cell function are achieved by decreasing intrapancreatic fat deposition during weight loss.

Citation: Wu WJ. Diabetes remission and nonalcoholic fatty pancreas disease. World J Diabetes 2024; 15(7): 1390-1393

URL: https://www.wjgnet.com/1948-9358/full/v15/i7/1390.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i7.1390
INTRODUCTION

The remission of type 2 diabetes (T2D) is achievable despite the need for drug therapy. In clinical practice, T2D remission is defined as glucose levels lower than the thresholds established by the World Health Organization and the American Diabetes Association for 3 months without glucose-lowering pharmacotherapy[1]. Several interventions can effectively achieve T2D remission, including nutrition and weight management, pharmacotherapy, and bariatric surgery[2-4]. The mechanism shared by these therapeutic approaches is the improvement of β-cell function, especially first-phase insulin secretion (FPIS)[5]. β cells, located in the pancreatic islets of Langerhans, secrete insulin in response to an increase in postprandial glucose levels. Glucose-stimulated insulin secretion occurs in an early phase and a late phase, characterized by fast and slow secretory activity, respectively. FPIS dysfunction is an early marker of β-cell dysfunction during T2D progression. Studies on weight loss-induced T2D remission demonstrated that responders had shorter diabetes duration, better β-cell function, and less pancreatic fat at baseline than non-responders; nonetheless, there was no between-group difference in hepatic fat[6-8]. Hepatic insulin sensitivity improved regardless of the duration of diabetes, whereas β-cell dysfunction increased with the duration of diabetes[7]. Weight loss was positively associated with diabetes remission[9,10]. Weight loss can decrease excess fat deposition in the liver and pancreas, reduce insulin resistance, and restore β-cell function; the reverse is also true[8,11]. This evidence supports Taylor’s twin-cycle hypothesis and suggests that the capacity to regain β-cell function may be related to intrapancreatic fat deposition (IPFD) and duration of diabetes.

IPFD AND β-CELL FUNCTION

Animal studies in vitro and in vivo demonstrated that IPFD impaired β-cell function[12]. Moreover, there is evidence that lipotoxic β-cell dysfunction occurs in humans. A meta-analysis of cross-sectional studies showed that nonalcoholic fatty pancreas disease (NAFPD) was associated with a significantly greater risk of T2D[13]. Of four longitudinal studies, three showed that NAFPD increased T2D incidence[14-17]. Magnetic resonance imaging (MRI) showed that T2D was associated with decreased pancreatic volume, IPFD, and pancreas with irregular borders[18]. Moreover, pancreatic morphology changed as T2D progressed. Other studies found that a 6-month remission of T2D was related to less irregularity in pancreatic borders and no increase in pancreatic volume[19], and a 2-year remission of T2D was associated with regular borders and restoration of the pancreatic volume[20].

The correlation between IPFD and β-cell function is unclear. Some studies demonstrated that IPFD affects β-cell function in patients with glucose tolerance[21-23]. Other studies found no link between IPFD and β-cell function[24-26]. One explanation for the conflicting results is cohort differences in age, ethnicity, glucose metabolic status, and the duration of diabetes. After controlling for age, T2D duration, and the effects of drug therapy, pancreatic fat quantified by MR Dixon imaging revealed that IPFD correlated negatively with β-cell function[27]. Furthermore, a longitudinal study showed that IPFD was linked to lower insulin secretory capacity in patients with T2D[28]. Weight loss also decreased IPFD in T2D and was associated with increased insulin secretory capacity[29,30]. Thus, IPFD influences β-cell function.

The mechanism by which IPFD affects β-cell function is lipotoxicity. Evidence from cellular and animal models demonstrated that IPFD inhibited insulin secretion and caused the atrophy of β-cells[31]. The detailed molecular mechanisms include oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, hypertriglyceridemia, and an increase in proinflammatory factors.

CLINICAL IMPLICATIONS

Early diagnosis and treatment to preserve and restore β-cell function are clinically important for T2D remission. Pancreatic morphology and IPFD are closely related to β-cell function. Thus, imaging-based fat quantification is recommended during routine clinical examination for two reasons. First, T2D is often accompanied by decreased pancreatic volume, IPFD, and pancreas with irregular borders. Second, weight loss and the consequent intrapancreatic fat loss are essential for T2D remission.

The fat content of the pancreas can be determined by ultrasound (US), computed tomography (CT) and MRI[32]. Despite the low cost, convenience, and wide applicability, US has low sensitivity for pancreatic fat quantification in individuals with obesity. CT is precise, and measurements are reproducible; however, ionizing radiation limits the use of CT for follow-up monitoring. MRI is safe and non-radioactive and accurately quantifies fat deposition. MRI is ideal for pancreatic fat quantification despite the high cost and long processing time.

CONCLUSION

The epidemic of T2D and associated complications are a global health priority. T2D remission is crucial to improve the health of individuals with T2D and reduce economic and health burden. β-cell function is a key factor for the onset development and remission of T2D. Evidence suggests that IPFD impairs β-cell function and affects T2D onset more strongly than intrahepatic fat deposition. The quantification of pancreatic fat is useful for the early screening, remission prediction, and personalized management of T2D. In future, it is very essential to explore potential therapeutic approaches that target pancreatic fat reduction.
FOOTNOTES

Author contributions: Wu WJ reviewed the literature and wrote the manuscript.

Conflict-of-interest statement: There are no potential conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Wen-Jun Wu 0000-0001-9746-8694.

S-Editor: Chen YL
L-Editor: A
P-Editor: Zhang YL

REFERENCES

