Contents

OPINION REVIEW

5124 Malignant insulinoma: Can we predict the long-term outcomes?
Cigrovski Berkovic M, Ulamec M, Marinovic S, Balen I, Mrzljak A

MINIREVIEWS

5133 Practical points that gastrointestinal fellows should know in management of COVID-19
Sahin T, Simsek C, Balaban HY

5146 Nanotechnology in diagnosis and therapy of gastrointestinal cancer
Liang M, Li LD, Li L, Li S

5156 Advances in the clinical application of oxycodone in the perioperative period
Chen HY, Wang ZN, Zhang WY, Zhu T

ORIGINAL ARTICLE

Clinical and Translational Research

5165 Circulating miR-627-5p and miR-199a-5p are promising diagnostic biomarkers of colorectal neoplasia

Retrospective Cohort Study

5185 Management and outcome of bronchial trauma due to blunt versus penetrating injuries

Retrospective Study

5196 Ovarian teratoma related anti-N-methyl-D-aspartate receptor encephalitis: A case series and review of the literature
Li SJ, Yu MH, Cheng J, Bai WX, Di W

5208 Endoscopic surgery for intraventricular hemorrhage: A comparative study and single center surgical experience
Wang FB, Yuan XW, Li JX, Zhang M, Xiang ZH

5217 Protective effects of female reproductive factors on gastric signet-ring cell carcinoma
Li Y, Zhong YX, Xu Q, Tian YT

5230 Risk factors of mortality and severe disability in the patients with cerebrovascular diseases treated with perioperative mechanical ventilation
Zhang JZ, Chen H, Wang X, Xu K
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5266</td>
<td>Long-term outcomes of high-risk percutaneous coronary interventions under extracorporeal membrane oxygenation support: An observational study</td>
<td>Huang YX, Xu ZM, Zhao L, Cao Y, Chen Y, Qiu YG, Liu YM, Zhang PY, He JC, Li TC</td>
</tr>
<tr>
<td>5275</td>
<td>Health care worker occupational experiences during the COVID-19 outbreak: A cross-sectional study</td>
<td>Li XF, Zhou XL, Zhao SX, Li YM, Pan SQ</td>
</tr>
<tr>
<td>5287</td>
<td>Enhanced recovery after surgery strategy to shorten perioperative fasting in children undergoing non-gastrointestinal surgery: A prospective study</td>
<td>Ying Y, Xu HZ, Han ML</td>
</tr>
<tr>
<td>5297</td>
<td>Orthodontic treatment combined with 3D printing guide plate implant restoration for edentulism and its influence on mastication and phonic function</td>
<td>Yan LB, Zhou YC, Wang Y, Li LX</td>
</tr>
<tr>
<td>5306</td>
<td>Effectiveness of psychosocial intervention for internalizing behavior problems among children of parents with alcohol dependence: Randomized controlled trial</td>
<td>Omkarappa DB, Rentala S, Nattala P</td>
</tr>
<tr>
<td>5317</td>
<td>Crouzon syndrome in a fraternal twin: A case report and review of the literature</td>
<td>Li XJ, Su JM, Ye XW</td>
</tr>
<tr>
<td>5324</td>
<td>Laparoscopic duodenoejunostomy for malignant stenosis as a part of multimodal therapy: A case report</td>
<td>Murakami T, Matsui Y</td>
</tr>
<tr>
<td>5331</td>
<td>Chordoma of petrosal mastoid region: A case report</td>
<td>Hua JJ, Ying ML, Chen ZW, Huang C, Zheng CS, Wang YJ</td>
</tr>
<tr>
<td>5337</td>
<td>Pneumatosis intestinalis after systemic chemotherapy for colorectal cancer: A case report</td>
<td>Liu H, Hsieh CT, Sun JM</td>
</tr>
<tr>
<td>5343</td>
<td>Mammary-type myofibroblastoma with infarction and atypical mitosis-a potential diagnostic pitfall: A case report</td>
<td>Zeng YF, Dai YZ, Chen M</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 10 Number 16 June 6, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5365</td>
<td>Neonatal hemorrhage stroke and severe coagulopathy in a late preterm infant after receiving umbilical cord milking: A case report</td>
<td>Lu Y, Zhang ZQ</td>
</tr>
<tr>
<td>5373</td>
<td>Heel pain caused by os subcalcis: A case report</td>
<td>Saijilafu, Li SY, Yu X, Li ZQ, Yang G, Lv JH, Chen GX, Xu RJ</td>
</tr>
<tr>
<td>5380</td>
<td>Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report</td>
<td>Yao JW, Qiu L, Liang P, Liu HM, Chen LN</td>
</tr>
<tr>
<td>5387</td>
<td>Idiopathic membranous nephropathy in children: A case report</td>
<td>Cui KH, Zhang H, Tao YH</td>
</tr>
<tr>
<td>5394</td>
<td>Successful treatment of aortic dissection with pulmonary embolism: A case report</td>
<td>Chen XG, Shi SY, Ye YY, Wang H, Yao WF, Hu L</td>
</tr>
<tr>
<td>5400</td>
<td>Renal papillary necrosis with urinary tract obstruction: A case report</td>
<td>Pan HH, Luo YJ, Zhu QG, Ye LF</td>
</tr>
<tr>
<td>5414</td>
<td>Successful living donor liver transplantation with a graft-to-recipient weight ratio of 0.41 without portal flow modulation: A case report</td>
<td>Kim SH</td>
</tr>
<tr>
<td>5420</td>
<td>Treatment of gastric hepatoid adenocarcinoma with pembrolizumab and bevacizumab combination chemotherapy: A case report</td>
<td>Liu M, Luo C, Xie ZZ, Li X</td>
</tr>
<tr>
<td>5428</td>
<td>Ipsilateral synchronous papillary and clear renal cell carcinoma: A case report and review of literature</td>
<td>Yin J, Zheng M</td>
</tr>
<tr>
<td>5441</td>
<td>PIGN mutation multiple congenital anomalies-hypotonia-seizures syndrome 1: A case report</td>
<td>Hou F, Shan S, Jin H</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5446</td>
<td>Pediatric acute myeloid leukemia patients with i(17)(q10) mimicking acute promyelocytic leukemia: Two case reports</td>
<td>Yan HX, Zhang WH, Wen JQ, Liu YH, Zhang BJ, Ji AD</td>
</tr>
<tr>
<td>5456</td>
<td>Fatal left atrial air embolism as a complication of percutaneous transthoracic lung biopsy: A case report</td>
<td>Li YW, Chen C, Xu Y, Weng QP, Qian SX</td>
</tr>
<tr>
<td>5463</td>
<td>Diagnostic value of bone marrow cell morphology in visceral leishmaniasis-associated hemophagocytic syndrome: Two case reports</td>
<td>Shi SL, Zhao H, Zhou BJ, Ma MB, Li XJ, Xu J, Jiang HC</td>
</tr>
<tr>
<td>5470</td>
<td>Rare case of hepatocellular carcinoma metastasis to urinary bladder: A case report</td>
<td>Kim Y, Kim YS, Yoo JJ, Kim SG, Chin S, Moon A</td>
</tr>
<tr>
<td>5479</td>
<td>Osteotomy combined with the trephine technique for invisible implant fracture: A case report</td>
<td>Chen LW, Wang M, Xia HB, Chen D</td>
</tr>
<tr>
<td>5487</td>
<td>Clinical diagnosis, treatment, and medical identification of specific pulmonary infection in naval pilots: Four case reports</td>
<td>Zeng J, Zhao GL, Yi JC, Liu DD, Jiang YQ, Lu X, Liu YB, Xue J, Dong J</td>
</tr>
<tr>
<td>5502</td>
<td>Mixed large and small cell neuroendocrine carcinoma of the stomach: A case report and review of literature</td>
<td>Li ZF, Lu HZ, Chen YT, Bai XF, Wang TB, Fei H, Zhao DB</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5510</td>
<td>Pleural involvement in cryptococcal infection</td>
<td>Georgakopoulou VE, Damaskos C, Sklapani P, Trakas N, Gkoufa A</td>
</tr>
<tr>
<td>5515</td>
<td>Electroconvulsive therapy plays an irreplaceable role in treatment of major depressive disorder</td>
<td>Ma ML, He LP</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Shivanshu Misra, MBBS, MCh, MS, Assistant Professor, Surgeon, Department of Minimal Access and Bariatric Surgery, Shivani Hospital and IVF, Kanpur 208005, Uttar Pradesh, India. shivanshu_medico@rediffmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
June 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/GerInfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Osteotomy combined with the trephine technique for invisible implant fracture: A case report

Liang-Wen Chen, Min Wang, Hai-Bin Xia, Dong Chen

BACKGROUND
Implant fracture is one of the most serious mechanical complications of dental implants. Conventional treatment necessitates visibility of the apical portion of the fractured implant, whereas for deep and invisible implant fractures, the traditional trephine method has been ineffective. Surgical removal of the marginal bone to expose the fracture surface would be a time-consuming and extensively damaging procedure. Here, we propose a novel technique to address invisible implant fractures.

CASE SUMMARY
A 50-year-old woman was referred to our department with the chief complaint that her right mandibular implant tooth had fallen out 3 mo earlier. Cone-beam computed tomography examination showed an implant fracture with a fracture surface 5.1 mm below the crestal ridge. The patient was treated with osteotomy combined with the trephine technique to expose the surgical field and remove the implant. The invisible fractured implant was successfully removed, with minimal trauma. A modified Wafer technique-supported guided bone regeneration treatment was then administered to restore the buccal bone wall and preserve the bone mass. Six months later, fine regenerative bone and a wide alveolar crest in the edentulous area were observed, and a new implant was placed. Four months later, restoration was completed using a cemented ceramic prosthesis. Clinical and radiographic examinations 12 mo after loading fulfilled the success criteria. The patient reported no complaints and was satisfied.

CONCLUSION
Osteotomy combined with the trephine technique can be effectively used to address deep and invisible implant fractures.

Key Words: Dental implant; Invisible implant fracture; Osteotomy; Explanation trephine; Transformed Wafer technique; Case report
Core Tip: This article provides up-to-date knowledge regarding the clinical presentation, incidence, risk factors, diagnosis, and management of implant fractures. Conventional treatment requires that the apical portion of the fractured implant be visible. For deep and invisible implant fractures, the traditional trephine method has been ineffective. We developed a novel method of osteotomy combined with the trephine technique that can effectively address deep and invisible implant fractures. Meanwhile, modified Wafer technique-supported guided bone regeneration treatment was conducted simultaneously to preserve the bone mass in the surgical area.

INTRODUCTION

Clinical presentation
Implant fracture is a kind of destructive mechanical complication, which is generally accompanied by the following clinical characteristics: Loss of retention, marginal bone resorption[1], soft tissue inflammation[2], and occlusal disorder[3]. Consequently, implant fracture can cause significant loss to patients’ economies, time, and emotions. According to research involving large amounts of data and long-term follow-up, the incidence of implant fracture was between 0.4%[4] and 0.92%[5] after over 5 years of loading.

Diagnosis
The diagnosis of implant fractures requires the detection of implant mobility by clinical examination and of the fracture line by X-ray images[1]. Once diagnosed as an implant fracture, conventional treatment options are: (1) Complete removal of the remaining fractured implant using trephines[6]; (2) Removal and replacement of the coronal portion of the fractured implant with a new prosthetic restoration[7]; (3) Leaving the remaining apical part integrated into the bone and placing a fixed bridge instead[8,9]; and (4) Using a computer-aided design/computer-aided manufacturing surgical guide to remove the buried implant[10].

Treatment
However, conventional treatments necessitate visibility of the fractured implant. In case of deep and invisible implant fractures, the position and orientation of the implants are not perceptible. No effective solution has been reported for invisible implant fractures. Surgical removal of the marginal bone to expose the fracture surface could be time-consuming and extensively damaging. Herein, we report a novel method to address invisible implant fractures, as an attempt to form new treatment modalities for such cases. This manuscript was prepared according to the CARE checklist[11].

CASE PRESENTATION

Chief complaints
A 50-year-old non-smoking woman was referred to our clinic in August 2017 with the chief complaint that her mandibular right implant tooth (tooth 46) had fallen out 3 mo earlier.

History of present illness
According to the medical record, the implant (Ankylos®, 4.5 mm × 9.5 mm, Germany) was placed in the tooth 46 position in October 2013 and loaded after 6 mo. The patient complained of implant restoration mobility after 2 years of function, with the symptoms worsening while chewing. In May 2017, the patient experienced a foreign body in her mouth, which was the fractured portion of the implant connected to the prosthesis (Figure 1A).

History of past illness
The patient reported no history of systemic diseases, long-term medication, or family genetic history.
Personal and family history
No smoking and drinking history, and no hereditary family history were reported.

Physical examination
The patient’s blood pressure was 110/70 mmHg, with a pulse rate of 80 beats per minute (bpm).

Laboratory examinations
The routine blood indicators and coagulation profile were within normal range.

Imaging examinations
Cone-beam computed tomography (CBCT) examination showed that the residual portion of the implant was osseointegrated with no signs of peri-implantitis. Moreover, there appeared to be a high-density image above the fracture surface of the implant. The remaining apical portion of the implant was 6.0 mm away from the inferior alveolar nerve canal, 3.9 mm away from the buccal cortical bone wall, 5.1 mm away from the lingual bone wall, and 5.1 mm away from the crestal ridge (Figure 1B and C).

FINAL DIAGNOSIS
The patient was diagnosed with implant fracture.

TREATMENT
Treatment planning
The risks and benefits of each treatment option were discussed in detail with the patient. The first plan was the fabrication of a three-dimensional (3D) surgical guide for the trephine to achieve precise removal of the remaining implant. However, the 3D surgical guide required at least 20 mm of the trephine with the graduated part, whereas the existing trephines measured only 16 mm. The second plan involved fixed partial restoration, leaving the apical portion of the fractured implant integrated into the bone. However, the patient rejected this plan as she was unwilling to risk damage to her healthy teeth. Consequently, a third treatment plan to perform osteotomy combined with the trephine technique to remove the invisible fractured implant was devised, which was approved by the patient. Informed consent was obtained before treatment.

Surgical procedure
The rapidly growing gingiva had closed the gingival outlet of the implant (Figure 2A). After local anesthesia was administered, a crestal full-thickness flap was raised and an implant hole filled with granulation tissue was observed (Figure 2B). Granulation tissue was removed using a dental excavator and a turbine drill. Thereafter, two vertical incisions and one horizontal incision were made using an ultrasonic osteotome on the buccal side of the alveolar bone where the remaining implant was located (Figure 3A). The buccal bone plate was removed using a bone chisel and hammer (Figure 3B) and soaked in saline temporarily. After the buccal bone plate was removed, the broken end of the fractured implant (Figure 1A) was visible. The trephine portion, which was inserted into the implant, was removed using a surgical trephine. The challenge was to remove the invisible fractured implant; however, this was successfully performed using a high-speed trephine. The extracted implant was then confirmed by radiography (Figure 1B and C).
Figure 2 Occlusal view before remaining implant removal. A: The rapidly growing gingiva had closed the gingival outlet of the implant; B: After a crestal full-thickness flap was raised, the implant hole filled with granulation tissue was observed.

Figure 3 The osteotomy procedure. A: Two vertical incisions and one horizontal incision were made using an ultrasonic osteotome on the buccal plate; B: The buccal bone plate was removed with a bone chisel and a hammer; C: The broken end of the fractured implant was clearly exposed.

Next, the remaining implant was completely removed with a graduated trephine (Nobel Biocare®, Figure 4A), with the inner diameter of the trephine slightly larger than the outer diameter of the implant. From the occlusal view, a ring of uniform thickness was created around the remaining implant, which did not cause any unnecessary bone defects of the lateral wall and was achieved with minimal bone removal (Figure 4B). The remaining implant was then removed (Figure 4C). The surface of the implant was covered with a thin layer of osseointegrated alveolar bone (Figure 4D). After the surgery, a modified Wafer technique was performed; the buccal bone plate was repositioned in situ using a titanium screw with slight rotation (Figure 5A) to build the external wall of the osteogenic space. Guided bone regeneration (GBR) was performed. The alveolar bone defect was filled with demineralized bovine bone matrix (DBBM; Geistlich Bio-Oss), and the filled defect was covered with a biological membrane (Geistlich Bio-Gide). Finally, the wound was closed up tightly (Figure 5B).

OUTCOME AND FOLLOW-UP

Six months after GBR, fine regenerative bone and wide alveolar crest in the edentulous area were observed. A new implant (Ankylos®, 4.5 mm × 9.5 mm, Germany) was placed in the #30 position. Four months later, restoration was completed using a cemented ceramic prosthesis. Periapical radiographic examination immediately after crown restoration showed a well-osseointegrated implant (Figure 6A). Furthermore, the clinical and radiographic examinations performed 12 mo after loading fulfilled the success criteria outlined by Papaspyridakos et al[13] (Figure 6B)[12,13]. The patient reported no complaints and was very satisfied.
DISCUSSION

The risk factors for implant fractures remain unclear. The possible risk factors include: (1) Implant diameter and length\cite{5,14}—it is considered that the smaller the diameter, the lower the resistance of the implant to fracture; (2) Implant location (i.e., type of bone)\cite{5,15,16}, as implants placed in the anterior or premolar region bear less mechanical overloading than those in the posterior region; (3) Direct adjacency to cantilever\cite{17}; (4) Parafunctional habits (teeth clenching and bruxism)\cite{9,18}; and (5) Patient-related factors (smoking and alcohol intake)\cite{19,20}.
This case presents a novel method for managing invisible implant fractures. In brief, buccal bone plate osteotomy was conducted at the fractured implant site, followed by complete removal of the implant with a trephine to achieve minimal trauma. Subsequently, the modified Wafer technique was used to preserve the horizontal alveolar dimension. It is worth mentioning that the incision of the buccal bone plate was based on the CBCT results. Accurate osteotomy depth control was achieved by marking the ultrasonic osteotome in advance. In the present case, the surface of the removed implant was covered with a thin layer of osseointegrated alveolar bone. It was assumed that the trephine did not cut into the implant, and no titanium particles remained in the operation area.

The use of cortical bone plate supported GBR for bone mass preservation was inspired by the 3D bone reconstruction technique named the Bilaminar cortical tenting grafting technique proposed by Yu et al.[21] and the Wafer technique proposed by Merli et al.[22] According to the bilaminar cortical tenting grafting technique, an autogenic bone block is bisected into two cortical laminae to construct the buccal and palatal walls of an alveolar ridge defect, and the inter-laminar space is filled with bone graft. In the Wafer technique, an autogenous plate is horizontally harvested and vertically fixed, partially supported by the residual bone wall, and the biomaterial is filled in. Both the techniques provide sufficient bone mass. We used the modified Wafer technique at the implant removal defect site to reconstruct the horizontal alveolar dimension, with the buccal bone plate obtained from the bone defect, thus avoiding a second surgical area[23].

Osteotomy combined with the trephine technique has many advantages in addressing deep and invisible implant fractures. This procedure avoids excessive bone removal or titanium particles, which can affect wound healing. The limitation of this technique is that immediate implantation cannot be achieved owing to insufficient primary stability. Therefore, this technique must be used in conjunction with delayed implantation, which is more time-consuming.

CONCLUSION

This article proposes a novel osteotomy combined with the trephine technique, which effectively addressed an invisible implant fracture 5.1 mm beneath the alveolar crest. In addition, this article provides up-to-date knowledge regarding the clinical presentation, incidence, risk factors, diagnosis, and management of dental implant fractures.

FOOTNOTES

Author contributions: Chen LW collected the data and drafted the article; Xia HB and Wang M collected the data; Chen D designed the study and revised the manuscript; and all authors approved the final version to be submitted.

Informed consent statement: The patient voluntarily provided written informed consent for publication of this report, personal medical information, and the accompanying images.

Conflict-of-interest statement: The authors declare no conflicts of interest.
CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Liang-Wen Chen 0000-0001-6455-0368; Min Wang 0000-0003-0085-6995; Hai-Bin Xia 0000-0003-2550-1146; Dong Chen 0000-0002-1075-8291.

S-Editor: Liu JH
L-Editor: A
P-Editor: Liu JH

REFERENCES

7 Jin SY, Kim SG, Oh JS, You JS, Jeong MA. Incidence and Management of Fractured Dental Implants: Case Reports. Implant Dent 2017; 26: 802-806 [PMID: 28846561 DOI: 10.1097/ID.0000000000000653]
Chen et al. Case report of implant fracture

