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Supplementary Figure 1 Preferred Reporting Items for Systematic Reviews and

Meta-Analyses flow chart.
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Supplementary Figure 2 Baseline characteristics. A: Forest and funnel plots for age.
Mean difference (MD) = -0.24, 95%CI: -0.69 to 0.21, P = 0.3031; I2 = 92%; B: Forest and
funnel plots for body mass index. MD =-0.22, 95%CI: -0.69 to 0.25, P = 0.3542; I =42%;
C: Forest and funnel plots for body surface area. MD = -0.01, 95%CI: -0.08 to 0.07, P =

0.8754; I> = 90%; D: Forest and funnel plots for systolic blood pressure. MD = 0.97,
95%CI: -1.20 to 3.04, P = 0.3580; I2=78%; E: Forest and funnel plots for diastolic blood
pressure. MD = 2.75, 95%CI: 0.35-5.16, P = 0.0248; [2=89%; F: Forest and funnel plots
for heart rate. MD = -1.35, 95%CI: -4.58 to 1.89, P = 0.4141; 12=90%.
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Supplementary Figure 3 Electrocardiographic data. A: Forest and funnel plots for PR
interval. Mean difference (MD) = 17.49, 95%ClI: 11.70-23.29, P < 0.0001; I>= 3%; B: Forest
and funnel plots for QRS complex. MD = -7.35, 95%CI: -9.17 to -5.53, P < 0.0001; 2=
44%; C: Forest and funnel plots for QTc interval. MD = -4.95, 95%CI: -7.69 to -2.22, P =
0.0004; I2= 0%; D: Forest and funnel plots for R1/S5 wave. MD = 11.11, 95%CI: 7.19-
15.02, P < 0.0001; I2=71%; E: Forest and funnel plots for atrioventricular block. Odds
ratio (OR) = 3.84, 95%Cl: 2.27-6.50, P < 0.0001; I>= 0%; F: Forest and funnel plots for
sinus bradycardia. OR = 0.79, 95%CI: 0.52-1.20, P = 0.2692; I> = 85%; G: Forest and
funnel plots for ST-segment elevation. OR =4.31, 95%Cl: 2.34-7.97, P < 0.0001; I?= 89%;
H: Forest and funnel plots for ascending concave ST-segment elevation (domed). OR
=1.39, 95%CI: 1.13-1.72, P = 0.0020; I> = 0%; I: Forest and funnel plots for ascending
convex ST-segment elevation. OR = 5.78, 95%ClI: 0.31-109.60, P = 0.2424; I> = 88%; ]
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Forest and funnel plots for ST-segment elevation. OR = 3.69, 95%CI: 0.87-15.63, P =
0.0767; I?= 0%; K: Forest and funnel plots for inverted T-wave. OR = 3.80, 95%CI: 1.48-
9.72, P =0.0054; I?=77%; L: Forest and funnel plots for pathologic Q wave. OR = 0.40,
95%Cl:0.17-0.96, P = 0.0392; I>= 0%; M: Forest and funnel plots for right bundle branch
block. OR = 0.53, 95%CI: 0.26-1.08, P = 0.0809; I>= 77%; N: Forest and funnel plots for
left atrial enlargement. OR = 3.53, 95%CI: 1.87-6.68, P = 0.0001; I>=49%; O: Forest and
funnel plots for left ventricular hypertrophy. OR = 2.12, 95%ClI: 0.66-6.80, P = 0.2088;
I?=96%; P: Forest and funnel plots for right atrial enlargement. OR = 6.15, 95%ClI: 3.16-

11.95, P < 0.0001; I2= 0%; Q: Forest and funnel plots for right ventricular hypertrophy.

OR =2.08, 95%CI: 1.53-2.81, P < 0.0001; I2=0
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Supplementary Figure 4 Echocardiographic parameters. A: Forest and funnel plots for
A wave. Mean difference (MD) = -1.50, 95%CI: -3.84 to 0.85, P = 0.2106; I> = 89%; B:
Forest and funnel plots for E wave. MD = -5.71, 95%ClI: -19.42 to 8.01, P = 0.4148; I2=
97%; C: Forest and funnel plots for E/ A ratio. MD = -0.07, 95%ClI: -0.11 to -0.03, P =
0.0011; I2= 0%; D: Forest and funnel plots for left ventricular ejection fraction. MD = -
0.08, 95%CI: -0.88 to 0.72, P = 0.8412; I>2= 55%; E: Forest and funnel plots for left atrial
diameter. MD = 1.64, 95%Cl: 0.16-3.12, P = 0.0296; I?= 87%; F: Forest and funnel plots
for left ventricular end-diastolic diameter/dimension. MD = -0.87, 95%ClI: -1.58 to -
0.17, P = 0.0153; I2 = 87%; G: Forest and funnel plots for left ventricular end-diastolic
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diameter/dimension indexed. MD = -0.36, 95%CI: -1.36 to 0.63, P = 0.4721; I2= 95%;
H: Forest and funnel plots for left ventricular end-diastolic volume. MD = -4.10, 95%CI:
10.48; 2.28, P = 0.2080; I2 = 65%; I: Forest and funnel plots for left ventricular end-
systolic diameter/dimension. MD = -0.90, 95%ClI: -1.26 to -0.53, P < 0.0001; I2=16%; ]
Forest and funnel plots for left ventricular end-systolic volume. MD = -0.05, 95%ClI: -
0.70 to 0.60, P = 0.8789; I>= 0%; K: Forest and funnel plots for left ventricular mass.
MD =17.29, 95%CI: -1.05 to 35.62, P = 0.0646; I>= 82.7%; L: Forest and funnel plots for
left ventricular mass index. MD =5.02, 95%CI: 1.79-8.26, P = 0.0023; I2= 75%; M: Forest
and funnel plots for maximal wall thickness. MD = 1.05, 95%ClI: 0.28-1.83, P = 0.0080
I2=86%; N: Forest and funnel plots for posterior wall thickness. MD = 1.07, 95%CI:
0.36-1.78, P = 0.0033; I2= 88%; O: Forest and funnel plots for right ventricular diameter.
MD = -0.60, 95%CI: -1.39 to 0.18, P = 0.1324; I = 86%; P: Forest and funnel plots for
relative wall thickness. MD = 0.03, 95%CI: 0.001-0.06, P = 0.0126; I2= 86%; Q: Forest
and funnel plots for ventricular septum/ septal wall thickness. MD = 0.85, 95%CI: 0.62-
1.07, P <0.0001; I>= 83%; R: Forest and funnel plots for aortic root. MD = 0.30, 95%ClI:
0.08-0.53, P = 0.0087; I2= 0%.

Supplementary Table 1 Research strategy

Number PubMed search-November 29, 2024 Records

1 (("Athletes"[Mesh]) AND "Cardiomegaly, Exercise-Induced"[Mesh]) 31
AND "Adolescent"[Mesh]

2 (("Athletes"[Mesh]) AND "Adolescent"[Mesh]) AND "Adaptation, 141
Physiological"[Mesh]

3 'Sport' AND “Athlete” AND 'adolescent' AND 'myocardial adaptation' 79

4 'Sport' AND “Athlete” AND 'adolescent' AND 'cardiac adaptation' with 80
limits (clinical trials; adolescent: 13 - 18)

5 'Sport' AND “Athlete” AND 'adolescent' AND 'cardiac remodeling' 146

6 'Sport' AND “Athlete” AND 'adolescent' AND 'Electrocardiography' with 24

limits (clinical trials)
7 'Sport' AND “Athlete” AND 'adolescent’ AND 'Echocardiography' with 39

limits (clinical trials)
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8 'Sport' AND ‘Athlete’ AND 'adolescent’ AND 'Magnetic Resonance 187

Imaging' with limits (clinical trials)

Overall record 727
No duplicates 620
Manual search 0
Excluded per title/ Abstract 555
Full text 65
Included 7

Supplementary Table 2 Excluded studies

Studies

Part A Number of studies
Respiratory/ metabolic/immune adaptation to exercise 7
Psychological adaptation 4
Physiological adaptation/response 54
Bone adaptation 13
Muscle adaptation 23
Temperature response 5
Testing performance 19
Training/ physical fitness 20
Cardiac damage/markers 4
Injuries 43
Surgery 43
Genetics 2
Blood test 6
Hydration/nutrition 7
Cardiac remodeling 5
Cardiomyopathy/ pathological hypertrophy 6
Impact of puberty/growth 3
Adults 87
Children <11 years 3
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Review article
Case report
Non-athletes
Study design

Animal

Part B

Kozupitsa GS, Babkin SM, Kel'tsev DI. Cardiac diastolic function in
children and adolescents during prompt and long-term adaptation to
physical exercise. Kardiologiia 1992; 32: 74-77

Aymen Mohamed BA, Anis G, Ahmed FR, et al. Correlation between
changes in electrocardiographic and echocardiographic measurements and
the nature of the sport practiced. Ann Cardiol Angeiol (Paris).
2023;72(2):101580

Birat A, Ratel S, Dodu A, et al. A long-duration race induces a decrease of
left ventricular strains, twisting mechanics and myocardial work in trained
adolescents. Eur | Sport Sci. 2023;23(7):1394-1404

Wernstedt P, Sjostedt C, Ekman I, et al. Adaptation of cardiac morphology
and function to endurance and strength training. A comparative study
using MR imaging and echocardiography in males and females. Scand |
Med Sci Sports. 2002;12(1):17-25

Perkins DR, Talbot JS, Lord RN, et al. Adaptation of Left Ventricular Twist
Mechanics in Exercise-Trained Children Is Only Evident after the
Adolescent Growth Spurt. | Am Soc Echocardiogr. 2024;37(5):538-549
Stavrou V, Tsarouhas K, Karetsi E, Michos P, Daniil Z, I Gourgoulianis K.
Adolescent Finswimmers: Early Myocardial Adaptations in Different
Swimming Styles. Sports (Basel). 2018;6(3):78

Rodriguez-Lépez AM, Javier G, Carmen P, et al. Athlete Heart in Children
and Young Athletes. Echocardiographic Findings in 331 Cases. Pediatr
Cardiol. 2022;43(2):407-412

Galetta F, Franzoni F, D'alessandro C, et al. Body composition and cardiac

32
162
1

1
555

Reason for exclusion

Not on racial disparities

Not on racial disparities

Not on racial disparities

Not on racial disparities

Not on racial disparities

Not on racial
disparities/No  relevant
subgroup

Not on racial
disparities/No relevant
subgroup

Not on racial
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dimensions in elite rhythmic gymnasts. | Sports Med Phys Fitness.
2015;55(9):946-952

Zacher ], Blome I, Schenk A, Gorr E. Cardiac adaptations in elite female
football- and volleyball-athletes do not impact left ventricular global strain
values: a speckle tracking echocardiography study. Int | Cardiovasc Imaging.
2020;36(6):1085-1096

Rowland TW, Unnithan VB, MacFarlane NG, Gibson NG, Paton JY.
Clinical manifestations of the 'athlete's heart' in prepubertal male runners.
Int ] Sports Med. 1994;15(8):515-519

Gerling S, Pollinger T, Dechant M], Melter M, Krutsch W, Michel H.
Coronary artery z score values in adolescent elite male soccer players.
Cardiol Young. 2021;31(3):381-385

Zdravkovic M, Milovanovic B, Hinic S, et al. Correlation between ECG
changes and early left ventricular remodeling in preadolescent footballers.
Physiol Int. 2017;104(1):42-51

Vasiliauskas D, Venckanas T, Marcinkeviciene ], Bartkeviciene A.
Development of structural cardiac adaptation in basketball players. Eur |
Cardiovasc Prev Rehabil. 2006;13(6):985-989

Koch S, Cassel M, Linné K, Mayer F, Scharhag ]. ECG and
echocardiographic findings in 10-15-year-old elite athletes. Eur | Prev
Cardiol. 2014;21(6):774-781

Petridis L, Kneffel Z, Kispéter Z, Horvath P, Sidé Z, Pavlik G.
Echocardiographic characteristics in adolescent junior male athletes of
different sport events. Acta Physiol Hung. 2004;91(2):99-109

Zdravkovic M, Perunicic J, Krotin M, et al. Echocardiographic study of
early left ventricular remodeling in highly trained preadolescent
footballers. | Sci Med Sport. 2010;13(6):602-606

Madeira RB, Trabulo M, Alves F, Pereira JG. Effects of chronic exercise
training on left ventricular dimensions and function in young athletes. Rev
Port Cardiol. 2008;27(7-8):909-922

Binnetoglu FK, Babaoglu K, Altun G, Kayabey O. Effects that different

disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup
Not on
disparities/No
subgroup

Not on
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relevant

racial



types of sports have on the hearts of children and adolescents and the value
of two-dimensional strain-strain-rate echocardiography. Pediatr Cardiol.
2014;35(1):126-139

Thompson AJ, Cannon BC, Wackel PL, et al. Electrocardiographic
abnormalities in elite high school athletes: comparison to adolescent
hypertrophic cardiomyopathy. Br | Sports Med. 2016,50(2):105-110
Dawkins TG, Shave RE, Baggish AL, et al. Electrocardiographic changes
following six months of long-distance triathlon training in previously
recreationally active individuals. Eur | Sport Sci. 2020;20(4):553-562
Kosemen DS, Cetin S, Demirci D, Babaoglu K. Evaluation of the Left
Ventricular Myocardium Using Layer-Specific Strain Analysis in
Adolescent Athletes Performing High-Intensity Interval Training. Pediatr
Cardiol. 2024;45(4):770-779

Weiner RB, DeLuca JR, Wang F, et al. Exercise-Induced Left Ventricular
Remodeling Among Competitive Athletes: A Phasic Phenomenon. Circ
Cardiovasc Imaging. 2015;8(12):e003651

Pelliccia A, Avelar E, De Castro S, Pandian N. Global left ventricular shape
is not altered as a consequence of physiologic remodeling in highly trained
athletes. Am | Cardiol. 2000;86(6):700-A9

Suzic Lazic J, Dekleva M, Soldatovic I, et al. Heart rate recovery in elite
athletes: the impact of age and exercise capacity. Clin Physiol Funct Imaging.
2017;37(2):117-123

Agrebi B, Tkatchuk V, Hlila N, Mouelhi E, Belhani A. Impact of specific
training and competition on myocardial structure and function in different
age ranges of male handball players. PLoS One. 2015;10(12):e0143609
Smith D, Deblois ], Wharton M, Rowland T. Influence of sex on ventricular
remodeling in collegiate athletes. | Sports Med Phys Fitness. 2012;52(4):424-
431

Szabo D, Nagy D, Melczer C, et al. Influencing Factors of Cardiac
Adaptation in Adolescent Athletes. Int | Sports Med. 2021;42(13):1209-1221

disparities/No
subgroup

Not on
disparities/No
subgroup

Not on
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subgroup

Not on
disparities/No
subgroup
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Not on
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disparities/No
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Hoogsteen ], Hoogeveen A, Schaffers H, Wijn PF, van der Wall EE. Left
atrial and ventricular dimensions in highly trained cyclists. Int | Cardiovasc
Imaging. 2003;19(3):211-217

D'Ascenzi F, Cameli M, Lisi M, et al. Left atrial remodelling in competitive

adolescent soccer players. Int | Sports Med. 2012;33(10):795-801

Miragoli M, Goldoni M, Demola P, et al. Left ventricular geometry
correlates with early repolarization pattern in adolescent athletes. Scand |
Med Sci Sports. 2019;29(11):1727-1735

Smith SA, Humphrey RH, Wohlford ]JC, Flint DL. Myocardial adaptation
and weight fluctuation in college wrestlers. Int | Sports Med. 1994;15(2):70-
73

Dores H, Mendes L, Dinis P, Cardim N, Monge ]JC, Santos JF. Myocardial
deformation and volume of exercise: a new overlap between pathology
and athlete's heart?. Int | Cardiovasc Imaging. 2018;34(12):1869-1875
Rowland T, Unnithan V, Roche D, Garrard M, Holloway K, Marwood S.
Myocardial function and aerobic fitness in adolescent females. Eur | Appl
Physiol. 2011;111(9):1991-1997

D'Ascenzi F, Solari M, Biagi M, et al. P-wave morphology is unaffected by
training-induced biatrial dilatation: a prospective, longitudinal study in
healthy athletes. Int | Cardiovasc Imaging. 2016,32(3):407-415

Kinoshita N, Onishi S, Yamazaki H, Katsukawa F, Yamada K. Recognition
of left ventricular hypertrophy in new recruits of professional sumo
wrestling. | Sci Med Sport. 2003;6(4):379-386

Yildirim $, Binnetoglu FK, Battal F, et al. Relation between QT Variables
and Left Ventricular Geometry in Athletes and Obese Children. Acta Med
Port. 2016;29(2):95-100

Krenc Z. Relationship Between Adaptive Morphological and
Electrophysiological Remodeling of the Left Ventricle in Young Athletes
After an 8-Month Period of Sports Training. Pediatr Exerc Sci. 2016;28(1):71-

76
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ventricular structure in early adolescent non-professional athletes. Eur |
Prev Cardiol. 2016;23(7):777-784

Kim JH, Noseworthy PA, McCarty D, et al. Significance of
electrocardiographic right bundle branch block in trained athletes. Am |
Cardiol. 2011;107(7):1083-1089

Simsek Z, Hakan Tas M, Degirmenci H, et al. Speckle tracking
echocardiographic analysis of left ventricular systolic and diastolic
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cardiac remodeling. Echocardiography. 2013;30(10):1202-1208
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Supplementary Table 3 Study objective and eligibility criteria

Ref.

Objective(s)

Eligibility criteria

Demola et

al[38], 2019

Di Paolo et
al[39], 2012

Galanti et

al[40], 2019

Malhotra et
al[41], 2021

To define physiological LV adaptation to exercise in African athletes and
the mechanisms through which LV hypertrophy develops, to
differentiate it from its pathological analogue. To assess a possible
relationship between peculiar LV remodeling (more concentric
hypertrophy) and hemodynamic response to physical exercise (e.g.
greater BP response) in adolescent athletes of African ethnicity compared

to Caucasians

To study cardiovascular and, specifically, LV remodeling in young

African Americans compared to young Caucasian soccer players

To examine electric and structural adaptations in heart of healthy mixed-
race male soccer players and compare them with those of White and
Black male soccer players. A mixed-race athlete was classified as an

individual with 1 White parent of European origin and 1 Black parent of

Each subject was judged to be free of patent cardiovascular
disease on the basis of the history, physical examination (with
BP <140/90 mm Hg), and ECHO results

Athletes with a previous personal or family history of cardiac
or pulmonary disease, family history of premature (<40 yr)
sudden cardiac death or cardiomyopathy were excluded from
the study

Athletes with overt cardiomyopathy were excluded based on
a normal exercise stress test/ ECHO, 24-hour ECG monitor,
and absence of scar on cardiovascular MRI before inclusion in

the study
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Moneghetti
et al[42],
2020

Pela et
al[43], 2015

Sheikh et
al[44], 2013

African/ Afro-Caribbean origin

To explore hypothesis that race, player position, and body composition
would contribute to LV remodeling. To provide insights into race-specific
and position differences in LV and function during pre-participation
screening of collegiate ASF players

To determine whether LV responses to sport training are ethnicity-
associated in the early adolescent age, when pubertal development may
not be yet complete. To determine whether higher LVWT and LVM with
preferential concentric remodeling in black adolescent athletes vs white
counterparts are detectable at an amateur-level training as are in the elite-
level sport context

To identify the spectrum of physiological adaptation in highly trained
adolescent BA

Participants with evidence of cardiomyopathy, significant
valvular abnormalities, congenital heart disease, or inadequate
endocardial definition during echocardiographic examination
were excluded

Participants free from heart disease and, based on the
questionnaires, engaged in organized football training for

approximately 2.5 h twice/week

Selection criteria for controls were black ethnicity, age 14-18

years, sedentary lifestyle (<2h of organized physical

activity/week), absence of symptoms, drug history, family
history of cardiomyopathy or premature (<40 years) SCD,

normal blood pressure and a structurally normal heart

Supplementary Table 4 General characteristics of included cohort studies

Ref.

Country Sample size Black athletes, n (%)

site(s)

White athletes

Sport/training intensity and other comments
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Demola et

al[38], 2019

Di Paolo et

al[39], 2012

Galanti et
al[40], 2019

Malhotra et
al[41], 2021

Moneghetti
et al[42], 2020

Pela et al[43],

Italy

(Parma)

Italy
(Rome)

Italy

(Florence)

United
Kingdom
2015 to 2018
United
States

2008 to 2016
Italy

90

216

130

3000 3

subgroups)

230

138

30/90 (33.3%). Origin:
Central/West Africa, namely
Burkina Faso, Cameroon,
Ghana, Ivory Coast, Nigeria,

and Senegal

154/216 (71.3%). Origin: 8
countries (Algeria, Burkina
Faso, Cameroon, Gambia,

Guinea, Malawi, Nigeria, and

Zimbabwe)

77/130 (59.2%). Afro-
Caribbean/ African-
Americans

1000/3000 (33.3%). African
(61%) or Caribbean (39%)
origin

71/230  (30.9%).  African
American

42/138 (30.4%). Origin: West-

60/90 (66.7%)

62/216

(28.7%).

Caucasian

athletes of Italian

descent

53/130 (40.8%) -

matched

1000/3000

(33.3%)

130/230

(56.5%).

Caucasian

96/138

(69.6%).

Athletics (amateur-level) in different endurance

disciplines, ~7 hours/week

Soccer players. 6-day training session/week, each>2h,
including either general conditioning or specific
technical programs. Black athletes trained and
competed for > 3 consecutive years and represented
best competitors in the < 17-year-old category

Soccer players. Athletes were members of the same
soccer team with similar lifestyle. 6 times/week, each
training session lasting > 2 h

Elite soccer players. 1000/3000 (33.3%) were mixed-

race

American style football. Remaining 12 % of players
were of Asian (n = 5), Hispanic (n = 2), Hawaiian (n =
2), or other/unknown (n = 19) race

Football local, amateur-level

(in leagues).
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Africa (i.e., Bantu, because
their families immigrated to
Italy from Burkina Faso,
Cameroon, Ghana, Ivory
Coast, Nigeria, or Senegal and
were permanently established
in Parma city or its area). 24
were born in Italy, whereas the
remaining 18, born in Africa,
have been living in Italy for at

least 6 years

[talian descent;
born in the
Parma area or
had been living
there for at least

6 years

Approximately 2.5 hours twice/week. Subjects
participated (usually during weekends) in one
amateur-level local competition; the total sport load
was ~8 hours/week in both groups. Athletes were

junior or senior high school

329/1232 (26.7%). 903/1232(73.3%) Athletes competed in a wide range (n=29) of sporting

African/ Afro-Caribbean

disciplines. Competing at the regional, national, or

international level

Supplementary Table 5 Electrocardiographic and echocardiographic study details

Electrocardiography (ECG)

Echocardiography (ECHO)

2015 (Parma)
20062013
Sheikh et United 1232
al[44], 2013  Kingdon
and France
1996 to 2011
Ref.
Demola
al[38], 2019

et All participants underwent physical examinations All participants underwent physical examinations with ECHO and

with 12 lead resting ECG. S1/R5 in precordial leads ergometer stress test. M-mode, two-dimensional, and Doppler
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were calculated using the Sokolow-Lyon voltage
criteria to assess the presence of ECG-based LV
hypertrophy. Analysis of ECG also includes the
innovative parameter introduced for the stratification
of arrhythmic risk, e.g. QT dispersion (maximum QT
interval minus minimum QT interval, QTd). The latter
is an index of the spatial dispersion of ventricular
recovery times and, therefore, is an index of in
homogeneity potentially involved in the genesis of

arrhythmias.

Di Paolo et Standard 12-lead ECGs were per formed with the

al[39], 2012 gybject in the supine position after a few minutes of

ECHO were performed by an ultrasonography-experienced
cardiologist, using a commercially available, multi-hertz sector, 2-
4 MHz probe-equipped machine (Vivid S5, GE Healthcare, USA).
The interventricular septal (SWT) and posterior wall (PWT)
thicknesses, systolic (ESD) and diastolic (EDD) LV diameters,
absolute left ventricular mass (LVM) and indexed to body surface
area (LVM/BSA) were calculated. LVM was also normalized to
height 2.7, an estimate of lean body mass. RWT was calculated as:
(SWT + PWT)/EDD. According to the ASE guidelines, we calculate
LV remodeling categories (normal, concentric remodeling,
concentric and eccentric hypertrophy) in the two groups, based on
LVM and RWT. Simpson's biplane rule-based end-diastolic (EDV)
and systolic (ESV) volumes and ejection fraction (EF) were
calculated, while Fractional Shortening (FS) was: [(EDV -
ESV)/EDV] x 100. Mitral inflow pattern was analyzed from apical
4-chamber view and E and A waves and their ratio were
considered as peak flow velocity and time velocity integral, in
order to evaluate the conventional diastolic function

Two-dimensional and Doppler ECHO studies were performed

with commercially available instruments (Esaote Italia, Genoa,
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Galanti
al[40], 2019

et

rest during quiet respiration and recorded at 25
mm/s. We measured heart rate (beats/min), PR
interval (ms), QRS duration (ms), QT interval
corrected for the heart rate (s), presence of Q waves (=
2 mm in depth in 2 leads), R/S-wave amplitude in
precordial leads (S1 R5) (mm), and Sokolow-Lyon
criterion for LV hypertrophy (positive if = 35 mm),
presence and shape (concave or domed) of ST-
segment elevation (= 1 mm, in > 2 contiguous leads),
presence of J-wave (= 1 mm), or ST-segment slurring
(18), T-wave inversion (= 2 mm in depth in > 2
contiguous leads, with exclusion of III and aVR), and

flat/biphasic T-wave pattern (in > 2 contiguous leads)

Standard 12-lead ECG was performed with the subject
supine, after a few minutes of rest with normal
breathing, and recorded at 25mm/s. We measured
heart rate (beats/min), PR interval (ms), QRS duration

(ms), QT interval corrected for the heart rate (s) [13],

Italy, and Philips Medical Systems, Bothell, Washington). Images
of heart were obtained in multiple cross-sectional planes by using
standard transducer positions. M-mode echo cardiograms were
derived from 2-dimensional images under direct anatomic
visualization and recorded at 100 mm/s. Measurements of end-
diastolic and end-systolic LV cavity dimensions, anterior
ventricular septal, and posterior free wall thicknesses were
obtained as previously recommended. LV mass was calculated by
using the formula of Devereux and was indexed to body surface
area (BSA). Relative wall thickness (h/r) was the ratio of septal and
posterior free wall thicknesses to LV ventricular cavity diameter.
Ejection fraction was assessed from end-diastolic and end-systolic
LV volumes, in the apical 4-chamber view, and quantified
according to the modified Simpson rule. Parameters of LV filling
was obtained with pulsed Doppler ECHO.

ECHO was conducted by 2 experienced and certified cardiologists
using a commercially available ultrasound system: iE33 Philips
Medical System (Bothell, WA). These specialists work together and
therefore the reproducibility of data is high and the inter-observer

variability low (< 5%). Furthermore, at least 5 double blind echo
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Malhotra et

al[41], 2021

Moneghetti

et

2020

al[42],

presence of Q waves (22 mm in depth in 22 leads),
R/S-wave amplitude in precordial leads (S1 + R5)
(mm), and Sokolow-Lyon criterion for LV
hypertrophy (positive if >235mm) , presence and shape
(concave or domed) of ST-segment elevation (=1 mm,
in 22 contiguous leads), presence of ] wave (=1mm), or
ST-segment slurring, T-wave inversion (22 mm in
depth in >2 contiguous leads, with exclusion of III and
a VR), and flat/biphasic T-wave pattern (in >2
contiguous leads)

12-lead ECG was interpreted in accordance with

international recommendations

tests were carried out after 3 days, in order to confirm the overlap

of the data obtained

ECHO was performed in accordance with standard American and
European protocols

Athletic screening protocol included: (a) 2-D and color Doppler left
parasternal long- and short-axis views at the aortic valve level to
assess coronary ostia and at the papillary muscle level to assess LV
mass and volume; and (b) 2-D and color Doppler apical 4-chamber
view to allow quantitative assessment of LV systolic and diastolic
function (E, lateral E’) as well as left atrial size. Athletes with
findings outside the normal range as defined by the American

Society of Echocardiography or sub-optimal images were referred
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Pela
al[43], 2015

et 12-lead, 25 mm/s, supine position ECGs were

interpreted (Corrado et al, 2010)
investigators (G. P., M. L. C,,A. C.) blinded to the type

of subject. Heart rate (HR), QRS axis, PR interval, QRS

by three

duration, and corrected QT interval were measured.
S1/R5 in precordial leads were calculated using the
Sokolow Lyon voltage criteria (positive if > 35 mm) to
define the presence of LVH. Prevalence of Q waves (>
2 mm in depth in two or more adjacent leads),
presence and shape (concave or domed) of ST-
segment elevation (= 1 mm in two or more adjacent
leads), and prevalence of inverted T waves (=2 mm in
depth in two or more adjacent leads, excluding aVR

and III) were also assessed.

for a complete echocardiographic study

M-mode, 2-D, and Doppler ECHO were performed by one
ultrasonography-experienced cardiologist using a commercially
available, multi-hertz sector, 2-4 MHz probe equipped machine
(Aspen, Siemens Acuson, Mountain View, California, USA). With
the subject on the left lateral position, images based on 3
consecutive heart cycles were obtained from standard projections.
The highest value of diastolic thickness between septum and
posterior LV wall- both measured at the parasternal long-axis
view according to Penn convention was considered as the maximal
wall thickness (MWT), with end-systolic and diastolic LV
diameters measured in the same projection. RWT was calculated
as (thickness of septum + thickness of posterior wall)/LV end
diastolic diameter (LVEDD), using the 0.42 cutoff to define
eccentric (£ 0.42) or concentric (= 0.42) remodeling. Penn
convention-based LVM also was indexed, when necessary, to body
surface area (BSA). Simpson’s biplane rule-based end-diastolic and
systolic LV volumes and ejection fraction were calculated, whereas
[(LVEDD- LV
diameter)/ LVEDD] x 100. Blood flow across the mitral valve was

fractional  shortening was end-systolic
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Sheikh
al[44], 2013

et Standard 12-lead ECGs were performed. Relating to

repolarization abnormalities, ST-segment shift was
considered significant if >0.1 mV in >2 contiguous
leads. Early repolarization pattern was defined as J-
point elevation 0.1 mV in >2 contiguous non-anterior
leads. T-wave inversion was considered significant if
>-0.1 mV in 22 leads (excluding aVR, V1 and III in
isolation). Biphasic T-wave inversion was considered
abnormal if the negative deflection of the T-wave
exceeded >-0.1 mV. The distribution of T-wave
inversions was categorized into anterior (V1-V4),
inferior (II, III, aVF) and lateral (I, aVL, V5, V6). Deep

inversions were defined as a T-wave

>-0.2 mV. All ECGs

T-wave

deflection were read

independently by two authors in the UK and France.

monitored using the pulsed-Doppler technique in the apical four
chamber view, with the sample volume placed at the tip of the
valve. The blood flow profile contains diastolic E and A waves, and
peak flow velocity and its time integral were measured for each
wave. The intra-observer percentage variability for MWT was <3.5
2-D ECHO was performed using either a GE Vivid I (Tirat), Philips
Sonos 7500, iE33 or CPX50 (Bothel). Standard views were obtained
and cavity and wall thickness measurements performed using
established guidelines. Left atrial (LA) diameter and left
ventricular (LV) internal diameter were measured from the
parasternal long axis view. Left ventricular wall thickness was
measured in the parasternal short-axis view, at the levels of the
mitral valve and papillary muscles; the greatest measurement was
defined as the maximum left ventricular wall thickness (mLVWT).
LVH was defined as an mLVWT >12mm. Left ventricular mass
was calculated with the formula of Devereux. Relative LV wall
thickness (RLVWT) was calculated by dividing the sum of the LV
septal and posterior wall thicknesses in diastole by the end
diastolic LV internal diameter. 2-D continuous-Doppler and
standard

pulsed-Doppler imaging were performed using
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parasternal and apical views. A cardiologist blinded to the athlete’s

identity reviewed all scans

Supplementary Table 6 Patient baseline characteristics (Black vs White), n (%)

Ref. Age (year), Male Height (cm) Weight BMI BSA (m?) Training SBP DBP (mmHg) HR (bpm)
mean * SD (kg) (kg/m?) (hours/week) (mmHg)
Demola et 13.8+1.6 30/30 168.0+8.0 56.8410.9 19.9+2.3 1.64+0.19 7.0£1.8 (n=30) 113£13 7148 (n=30) 7018 (n=30)
al[38], 2019 (n=30) Vs (100%) Vs (n=30) Vs (n=30) (n=30) (n=30) Vs Vs 6.312.0 (n=30) Vs Vs 6419 Vs 76x11
13.3£1.5 60/60 164.0£12.0 Vs Vs 1.56£0.25 (n=60) 105+12 (n=60), (n=60),
(n=60) (100%) (n=60) 53.1+13.5 19.4+3.0 (n=60) (n=60), p=0.006 p=0.005
(n=60) (n=60) p=0.018
Di Paolo et 15.9+0.7 Vs 154/154 - - - 1.80+0.12 - - - 58.0+9.0
al[39], 2012 16.5%1.1 (100%) Vs (n=154) (n=154) Vs
years, p<0.01 62/62 Vs 58.0+9.0
(100%) 1.85+0.11 (n=62)
(n=62),
p=0.009
Galanti et 17.0£0.5 - 173.0+1.1 65.0£1.3 21.4+0.2 - - 1150.6 73.0£0.5 66.8+0.8
al[40], 2019 (n=77) Vs (n=77) Vs (n=77) (n=77) (n=77) Vs (n=77) Vs (n=77) Vs
18.0+0.8 174.0+£0.9 Vs Vs 116+1.3 70.0£1.5 64.11£2.0
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Malhotra et
al[41], 2021

Moneghetti
et al[42],
2020

Pela et
al[43], 2015

Sheikh et
al[44], 2013

(n=53)

All: 164£1.3 All:

(n=3000) 3000/3000
(100%)

18.2+1.0 71/71

(n=71) Vs (100%) Vs

18.6+1.3 130/130

(n=130), (100%)

p=0.011

14.3£1.8 42/42

(n=42) Vs (100%) Vs

13.9+1.6 96/96

(n=96) (100%)

16.4+1.3 245/329

(n=329) Vs (745%) Vs

16.4+1.3 735/903

(n=903) (81.4%),

(n=53)

185.0+6.0
(n=71)
190.0£6.0
(n=130),
p<0.001

168.0+£8.0
(n=42)
167.0£12.0
(n=96)

Vs

Vs

66.0+1.0
(n=53)

98.0£19.0
(n=71)
Vs
106£18.0
(n=130),
p=0.002
57.0£10.0
(n=42)
Vs
56.0£13.0
(n=96)

21.840.2
(n=53)

28.514.2
(n=71)
Vs
29.4+4.0
(n=130),
p
20.2£2.5
(n=42)
Vs
19.9+2.9
(n=96)

2.23+0.24
(n=71) Vs
2.36:0.22
(n=130),
p<0.001

1.64+0.17 No difference

(n=42) Vs
1.6120.24
(n=96)

1.9040.21
(n=329)
Vs
1.85+0.21

13.245.4
(n=329)
11.6+4.1
(n=903),

Vs

(n=53)

129+13.0
(n=71)
129+11.0
(n=130)

Vs

119.09.0
(n=42) Vs
118.0+10.0
(n=96)

113.6+13.4
(n=329) Vs
112.3+11.4
(n=903),

(n=53),
p=0.04

74.0£8.0
(n=71)

70.0£9.0
(n=130),
p=0.014

Vs

72.0£8.0
(n=42)
70.0£7.0
(n=96)

Vs

67.5+11.2
(n=329)
68.449.2
(n=903)

Vs

(n=53)

62.0£10.0
(n=71)
62.04£9.0
(n=130)

Vs

67.0£9.0
(n=42)
72.0£10.0
(n=96)

Vs
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p<0.001 (n=903),  p<0.001 p<0.001
p<0.001
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Supplementary Table 7 Electrocardiographic measurements (Black vs White), n (%)

Ref. PR QRS QTc QT QRS R/S-wave LV LA RV RA STE (= ST- J waves Patholo ITW Flat/bip Sinus Sinus First- Incomple
interval complex interval dispersi axis (°) voltages hypertroph enlarg hypert enlarge 1Imm in 2 segme and/for gical Q (2 hasic T bradyc arrhy degree te/ partial
(ms) duration (ms) on (S1 R5) y (Sokolow- ement rophy ment 2 leads) nt slurring waves 2mm waves ardia thmi AV RBBB
(ms) (mm) Lyon depres onSTE (2mm in22 (in 2 2 (HR < a block (QRS >
criteria) sion in 2 2 leads leads) 60 (PR 0.10 <
leads) ) bpm) interval 0.12s)
>0.20 s)
Demola - 85.0+10.0 - 37.0£13.0 - 38.0£10.0 19/30 - - - 28/30 - - - No - - - - 7/30
et al[38], (n=30) (n=30) (n=30) Vs (63.0%) Vs (93.0%) differ (23.0%)Vs
2019 Vs Vs 30.0£10.0 18/60 Vs 32/60 ence 30/60
93.0£12.0 27.04£8.0 (n=60), (30.0%), (53%), (50.0),
(n=60), (n=60), p=0.001  p<0.001 p<0.001 p<0.001
p=0.004 p<0.001
Di Paolo 169+£32.0 90.246.9 390+20.0 - - 48.6+12.1 137/154 14/154 - - 140/154 - 29/154 11/154 Deep: 39/154 94/154 - 22/154  49/154
et al[39], (n=154) (n=154) (n=154) (n=154) (89.0%) Vs (9.0%) (91.0%) (19.0%)  (7.0%) 22/15 (25.3%) (61.0% (14.0%)  (32.0%)vs
2012 Vs Vs Vs Vs 26/62 Vs vs 35/62 vs 8/62 vs10/62 4 vs 5/62 )vs vs 2/62 24/62
149+22.0 99.5+9.3  390+50.0 341489  (42.0%), 2/62 (56.0%), (13.0%) (16.0%) (143 (8.1%), 37/62 (3.0%),  (39.0%)
(n=62), (n=62), (n=62) (n=62), p<0.001 (3.0%) p<0.001 %) vs p<0.008 (60.0% p=0.003
p=0.001 p<0.001 p=0.01. 2/62 )
Maximu (3.2%
m: 94.0 ),
(n=154) p<0.0
Vs  63.0 5
(n=62)
Galanti - - - - - - - - - - - - - - BA > - - - - -
et al[40], WA,
2019 signif
icant
Malhotr - - - - - - 176,/1000 59/100 42/100 39/1000 636/1000 5/1000 - - 130/1 - 465/10 368/1 - -
a et (17.6%) Vs 0 0 (3.9%) (63.6%) (0.5%) 000 00 000
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al[41],
2021

Monegh
etti et
al[42],
2020
Pela et
al[43],
2015

Sheikh et
al[44],
2013

153+25.0
(n=42)
Vs
139+23.0
(n=96),
p<0.001

78.0+£14.0
(n=42)
Vs
81.0+£14.0
(n=96)

87.0+11.0
(n=329)
Vs
94.0+10.0
(n=903),
p<0.001

394£36.0
ms
(n=42)
Vs
403+34.0
ms
(n=96)
398+23.0
ms
(n=329)
Vs
403+22.0
ms
(n=903),
p<0.001

65.0+2
9.0
(n=42)
Vs
60.0+£3
5.0
(n=96)

41.0£11.0
(n=42) Vs
31.0£11.0
(n=96),
p<0.001

256/1000
(25.6%),
p<0.0001

29/42
(69.0%)
37/96
(39.0%),
p<0.001

66/329
(20.1%)
291/903
(32.2%),
p<0.001

Vs

Vs

(5.9%)
Vs
10/100
0
(1.0%),
p<0.00
01

5/42
(12.0%
) Vs
3/96
(3.0%)

25/329
(7.6%)
Vs
33/903
(3.7%),
p=0.00
6

(4.2%)
Vs
23/100
0
(2.3%),
p=0.02

54/329
(16.4%

) Vs
74/903
(8.2%),
p<0.00
1

Vs
7/1000
(0.7%),
p<0.000
1

10/329
(3.0%)
Vs
4/903
(0.4%),
p=0.001

Vs

484 /1000
(48.4%),

p<0.0001

33,/42
(79.0%)
Vs 41/96
(43.0%),
p<0.001

163/329
(49.5%)
Vs
182/903
(20.2%),
p<0.001

Vs

2,/1000

(0.2%)

2/329
(0.6%)
Vs
(0%)

0

0 (0%)
Vs
3/903
(0.3%)

(13.0
%) Vs
23/10
00
(2.3%
),
p<0.0
001

5/42
(12.0
%) Vs
14/96
(15.0
%)

75/32
9
(22.8
%) Vs
41/90
3
(4.5%
),
p<0.0
01.
Deep:
22/32

(46.5%
) Vs
454/10
00
(45.4%

)

5/42
(12.0%
) Vs
17/96
(18.0%

)

138/32
9
(41.9%
) Vs
524/90
3
(58.0%
)
p<0.00
1

(36.8
%) Vs
373/1
000
(37.3
%)
- - 6/42
(14.0%)Vs
41/96
(43.0%),
p<0.001
- 29/329  61/329
(8.9%)V  (18.5%)Vs
s 23/903 164/903
(2.5%),  (18.2%)
p<0.001
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(6.7%
) Vs
2/903
(0.2%
)
p<0.0
01

Supplementary Table 8 Detailed ST-segment elevation and T-wave inversion (Black vs White), n (%)

Ref. ST Ascending convex (domed)  Ascending Isoelectric TWI TWI (anterior TWI (anterior TWI (inferior) TWI (lateral/ TWI

E concave V1, V2) beyond V2) Apical) (inferolateral/A

pical)
Demola et al[38], - - - - - - - -
2019
Di Paolo et al[39], 52/154 (34.0%) vs1/62(1.0%), 88/154 (57.0%) vs - Vl to V4 V5 to V6 & inferior - - -
2012 p<0.001 34/62 (55.0%) 10/154 (6.5%) leads:12/154 (8.0%)
Vs -
Galanti et al[40], - - - - V2 to V4: BA > WA, - - -
2019 significant
Malhotra et al[41], 380,/1000 (38.0%) Vs 288/1000 218/1000 (21.8%) 330/1000 58/1000 (5.8%) 37/1000 (3.7%) Vs 15/1000 (1.5%) Vs 10/1000 (1.0%) Vs 9/1000  (0.9%)
2021 (28.8%), p<0.0001 Vs 162/1000 (33.0%) Vs Vs 9/1000 6/1000 (0.6%), 5/1000 (0.5%), p=0.04 2/1000 (0.2%), Vs 1/1000
(16.2%), p=0.0017  320/1000 (0.9%), p<0.0001 p=0.02 (0.1%), p=0.02
(3.2%) p<0.0001
Moneghetti et - - - - - - - -
al[42], 2020
Pela et al[43], 2015 - - - - - - - -
Sheikh et al[44], - - - 12/329 (3.6%) V1 to V4: 47/329 20/329 (6.1%) Vs 8/329 (24%) Vs -
2013 Vs 21/903 (14.3%) Vs 23/903 15/903 (1.7%), 3/903 (0.3%),
(2.3%) (2.5%), p<0.001 p<0.001 p<0.001
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Supplementary Table 9 Echocardiographic measurements (Black vs White)

Ref. LV Nor LV Nor LVE LVED LVE LA SWT Normal PWT Nor R Max LV LV LV RV LA R Ao M LV Abs Stro E A E h Mit E E LV
ED mal ES mali DV V SV  volu or ized or or maliz W ima ma mas mas dia (m A rti ass sp olut ke wa wa A /r ral lat E EF
D ized D zed (mL indexe (mL me Ventr indexed poste ed or T 1 ss s/ s/h2 met m) (m c he e & vol ve ve rat r wvalv era (%
(m or (m or ) d ) Index icular ventricu rior index wall (g BS (g/ er m) ro Vo ric glo ume (¢ (¢ io at e E- 1 )
m) ind m) inde (mL/m (mL/ septu lar free ed thic A m?) (m ot lu ity bal ind m/ m/ i wav
exe xed 2) m?2) m septum wall poste kne (g/ m) (m me LV ex s) s) o e
d LVE (mm) (mm/m? (mm) rior ss m?2) m) lon (mL velo
LVE SD ) free (m gitu /m?) city
DD (m wall m) din (m/s
(m m/m (mm/ al )
m/ 2) m?) strai
m?) n
(%)
Dem 46. - 28. - 100+ No 320 No 8.9+1. - 9.041. - 03 =213 17 106+ 43.0 - No - - - - - - - - - - - - - -
ola et 1% 5+ 25.0 differe 9.0 differ 1 3 9+ mm: 5 220 9.0 dif
al[38], 4.2 4.0 (n=3 nce (n=3 ence (n=30 (n=30 00 4/1 47. (n=3 (n=3 fer
2019 (n (n 0) 0) ) Vs ) Vs 4 54 0 0 0) en
=3 =3 Vs Vs 7.8%1. 7.9%1 m (x%) m Vs Vs ce
0) 0) 97.0 32.0 1 4 =6 Vs0 =3 940 38.0
Vs Vs 126. 11. (n=60 (n=60 0) 0) +18. 7.0
46. 28. 0 0 ), ) Vs Vs 0 (n=6
4+ 3+ (n=6 (n=6 p<0.0 p<0.0 0.3 14 (n=6 0),
4.3 3.6 0) 0) 001 001 4+ 9t 0), p=0
(n (n 0.0 46. p=0. 021
=6 =6 4 0 005
0) 0) (n (n
=6 =6
0), 0),
p< p=
0.0 0.0
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00 09

1
Di 51. 283 32. 181 - - - - 9.7¢#1. 54+08 9.6+1. 53+0. - - - 101. - - 35. - 30. - - - - 77. 40. 20 0. - -
Paolo 0+ £23 7+ +£22 3 (n=154) 4 8 4+18 5+ 0+ 2+ 3+ 0. 3
et 36 (n=1 35 (n=1 (n=15 Vs (n=15 (n=15 7 4.5 3.9 13. 93 6 8
al[39], n 54) (n 54) 4) Vs 5005 4) Vs 4) Vs (n=1 (n (n 2 M (n =
2012 =1 Vs =1 Vs 9.2+1. (n=62), 9.0+£0. 4.8+0. 54) =1 =1 m =1 =1 0.
54) 28.0 54) 179 0 p<0.001 8 5 Vs 54) 54) =1 54) 54) O
Vs £16 Vs =18 (n=62 (n=62 (n=62 924 Vs Vs 54) Vs Vs 5
51. (n=6 33. (n=6 ) ) ) +13. 32. 29. Vs 43. 21 (
9+ 2) 1+ 2) p<0.0 p<0.0 p<0.0 2 3+ 2+ 90. 1+ #0. n
2.6 3.3 01 01 01 (n=6 29 2.6 1+ 06 5 =
(n (n 2), (n (n 16. m (m 1
=6 =6 p<0. =6 =6 5 =6 =6 5
2) 2) 001 2), 2) mn 2, 2) 4
p< =6 p< \%
0.0 2), 00 s
01 p< 3 0.
0.0 3
01 5
+
0.
0
3
(
n
6
2)
p
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Galan
ti et
al[40],
2019

Malh
otra
et
al[41],
2021

26.6
2.1

(n=1
000)

27.9
2.1

(n=1
000)

116+
2.0
(n=7
7)
Vs
124+
2.0
(n=5
3),
p<0.
005

41.0
2.8
(n=7
7)
Vs
41.0
0.9
(n=5
3)

10.1+
0.1
(n=77
) Vs
9.4+0.

(n=53
)
p<0.0
01

LVW

10.1+
1.4
(n=10
00)
Vs
9.15+
1.3
(n=10
00),

p<0.0
01

99.5
1.7
(n=7
7)
Vs
97.4
+1.5
(n=5
3)

000)

22.0
+0.2
(n=7

Vs
23.0
+1.5

3)

36.4
+4.8
(n=1
000)
Vs

36.6
4.8
(n=1
000)

- - - GLS
-22.
4+0.
5
(n=7
7)
Vs
-23.
410.
7
(n=5
3)

27. - - -

9+

3.2

6

(n

=1

00

0)

Vs

27.

6+

_ o o O
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Mone
ghetti
et
al[42],
2020

=1  p<0.
00 0001

- 29.0
2.0

89.0+1 -
2.0

(n=71)

Vs

93.0+1

2.0

(n=130

),

p=0.02

109+ - 35.0
8+ 22.0 £11.

21.0+
6.0
(n=71
) Vs
24.0+
6.0
(n=13

p<0.0
001

10.0+
1.8

01
0.4
4+

33. , 3.2
0 p=0. (n
(n 04 =1
=1 00
00 0),
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p= 0.0
0.0 1
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- - 81.0 - - - - -
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(n=7
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(n=1
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0.1
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al[43],
2015

Sheik
h et
al[44],
2013

3.8
(n
=4
2)
Vs
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4.5
(n
=9
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0.0
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4+
5.0
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001

98.0 - - 34
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5 4.7
(n=3 (n

29) =3
Vs 29)
95.3 Vs
+ 33.
21.3 8+

(n=9 4.5
03) (n
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n p<0.

=9 001
03)

p<
0.0
01

03)
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Supplementary Table 10 Risk of bias assessment-Electrocardiographic parameters

Ref. Pre-intervention @ and  at-intervention Post-intervention domains Overall risk
domains of bias
Confounding Measurement Selection of Post- Missing data Measurement Selection of
of exposure  participants exposure of outcomes the reported
interventions result
Demola et Some concern High-risk Low-risk Low-risk High-risk Low-risk Low-risk High-risk
al[38], 2019
Di Paolo et High-risk Low-risk Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[39], 2012
Galanti et High-risk Low-risk Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[40], 2019
Malhotra et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[41], 2021 concerns
Moneghetti et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[42], 2020 concerns
Pela et al[43], High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
2015 concerns
Sheikh et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[44], 2013 concerns
Supplementary Table 11 Risk of bias assessment-Echocardiographic parameters
Ref. Pre-intervention and at-intervention Post-intervention domains Overall risk
domains of bias
Confounding Measurement Selection of Post-exposure Missing data Measurement Selection of the
of exposure  participants interventions of outcomes  reported result
Demola et Some concern High-risk Low-risk Low-risk High-risk Low-risk Low-risk High-risk
al[38], 2019
Di Paolo et High-risk Low-risk Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[39], 2012
Galanti et High-risk Low-risk Low-risk Low-risk Some concerns ~ Low-risk Low-risk High-risk
al[40], 2019
Malhotra et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[41], 2021 concerns
Moneghetti  High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
et al[42], concerns
2020
Pela et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[43], 2015 concerns
Sheikh et High-risk Some Low-risk Low-risk Some concerns  Low-risk Low-risk High-risk
al[44], 2013 concerns
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