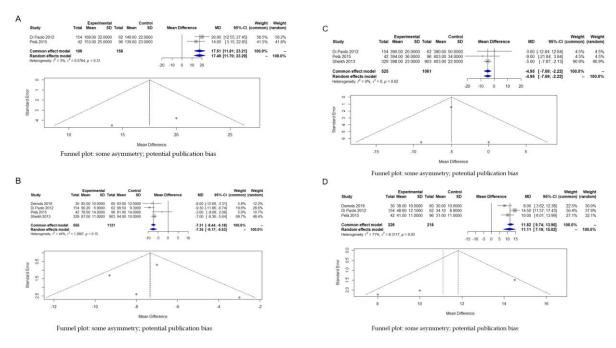
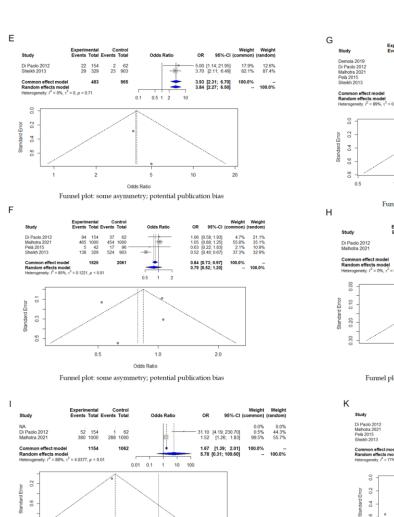
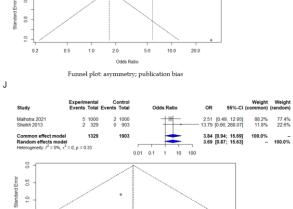
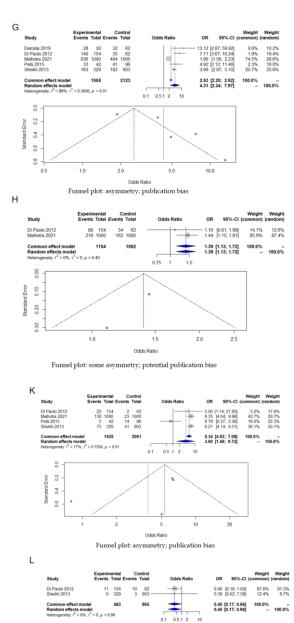

Supplementary material

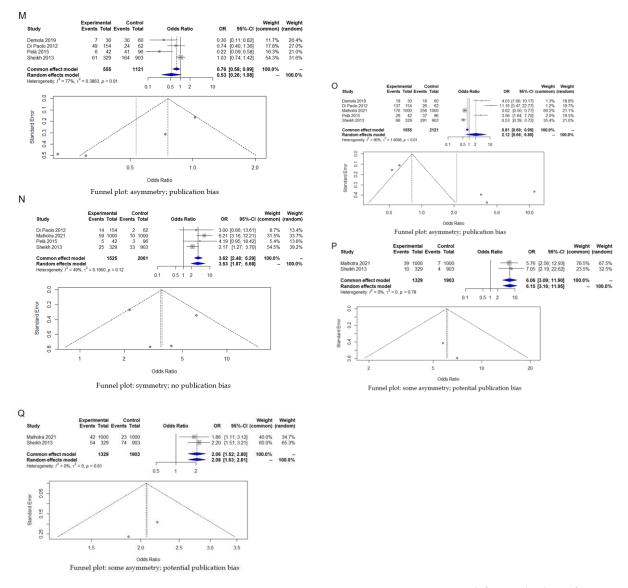



Supplementary Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart.

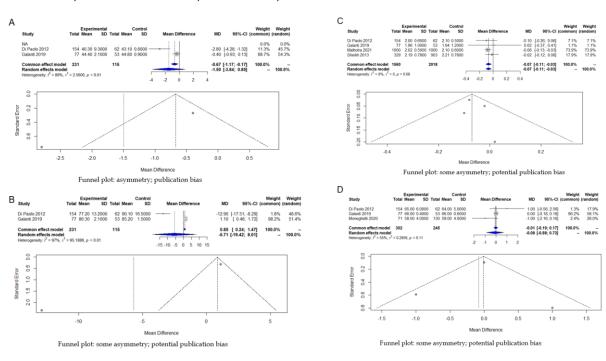


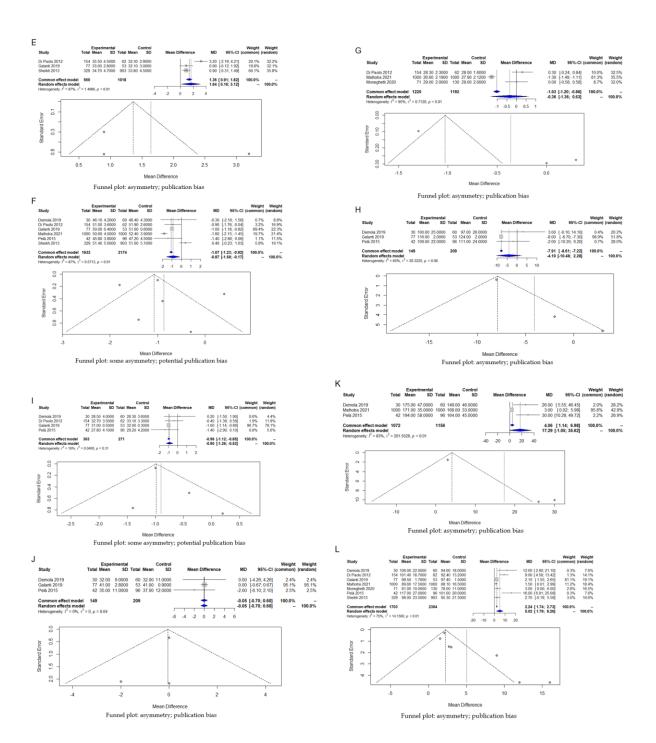
Supplementary Figure 2 Baseline characteristics. A: Forest and funnel plots for age. Mean difference (MD) = -0.24, 95%CI: -0.69 to 0.21, P = 0.3031; $I^2 = 92\%$; B: Forest and funnel plots for body mass index. MD = -0.22, 95%CI: -0.69 to 0.25, P = 0.3542; $I^2 = 42\%$; C: Forest and funnel plots for body surface area. MD = -0.01, 95%CI: -0.08 to 0.07, P = 0.8754; $I^2 = 90\%$; D: Forest and funnel plots for systolic blood pressure. MD = 0.97, 95%CI: -1.20 to 3.04, P = 0.3580; $I^2 = 78\%$; E: Forest and funnel plots for diastolic blood pressure. MD = -1.35, 95%CI: -1.20 to -1.20 to

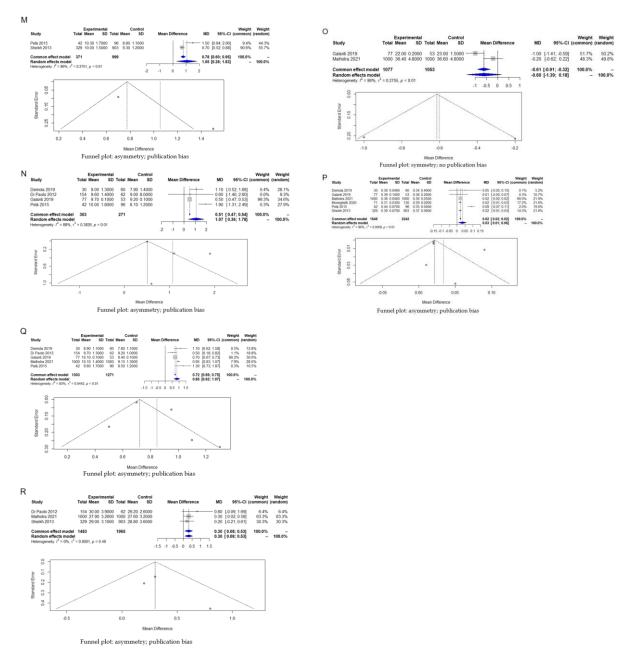



50.0

0.5


Funnel plot: some asymmetry; potential publication bias


Standard Error



Supplementary Figure 3 Electrocardiographic data. A: Forest and funnel plots for PR interval. Mean difference (MD) = 17.49, 95%CI: 11.70-23.29, P < 0.0001; $I^2 = 3\%$; B: Forest and funnel plots for QRS complex. MD = -7.35, 95%CI: -9.17 to -5.53, P < 0.0001; $I^2 = 44\%$; C: Forest and funnel plots for QTc interval. MD = -4.95, 95%CI: -7.69 to -2.22, P = 0.0004; $I^2 = 0\%$; D: Forest and funnel plots for R1/S5 wave. MD = 11.11, 95%CI: 7.19-15.02, P < 0.0001; $I^2 = 71\%$; E: Forest and funnel plots for atrioventricular block. Odds ratio (OR) = 3.84, 95%CI: 2.27-6.50, P < 0.0001; $I^2 = 0\%$; F: Forest and funnel plots for sinus bradycardia. OR = 0.79, 95%CI: 0.52-1.20, P = 0.2692; $I^2 = 85\%$; G: Forest and funnel plots for ST-segment elevation. OR = 4.31, 95%CI: 2.34-7.97, P < 0.0001; $I^2 = 89\%$; H: Forest and funnel plots for ascending concave ST-segment elevation (domed). OR = 1.39, 95%CI: 1.13-1.72, P = 0.0020; $I^2 = 0\%$; I: Forest and funnel plots for ascending convex ST-segment elevation. OR = 5.78, 95%CI: 0.31-109.60, P = 0.2424; $I^2 = 88\%$; J:

Forest and funnel plots for ST-segment elevation. OR = 3.69, 95%CI: 0.87-15.63, P = 0.0767; $I^2 = 0\%$; K: Forest and funnel plots for inverted T-wave. OR = 3.80, 95%CI: 1.48-9.72, P = 0.0054; $I^2 = 77\%$; L: Forest and funnel plots for pathologic Q wave. OR = 0.40, 95%CI: 0.17-0.96, P = 0.0392; $I^2 = 0\%$; M: Forest and funnel plots for right bundle branch block. OR = 0.53, 95%CI: 0.26-1.08, P = 0.0809; $I^2 = 77\%$; N: Forest and funnel plots for left atrial enlargement. OR = 3.53, 95%CI: 1.87-6.68, P = 0.0001; $I^2 = 49\%$; O: Forest and funnel plots for left ventricular hypertrophy. OR = 2.12, 95%CI: 0.66-6.80, P = 0.2088; $I^2 = 96\%$; P: Forest and funnel plots for right atrial enlargement. OR = 6.15, 95%CI: 3.16-11.95, P < 0.0001; $I^2 = 0\%$; Q: Forest and funnel plots for right ventricular hypertrophy. OR = 2.08, 95%CI: 1.53-2.81, P < 0.0001; $I^2 = 0\%$.

Supplementary Figure 4 Echocardiographic parameters. A: Forest and funnel plots for A wave. Mean difference (MD) = -1.50, 95%CI: -3.84 to 0.85, P = 0.2106; $I^2 = 89\%$; B: Forest and funnel plots for E wave. MD = -5.71, 95%CI: -19.42 to 8.01, P = 0.4148; $I^2 = 97\%$; C: Forest and funnel plots for E/A ratio. MD = -0.07, 95%CI: -0.11 to -0.03, P = 0.0011; $I^2 = 0\%$; D: Forest and funnel plots for left ventricular ejection fraction. MD = -0.08, 95%CI: -0.88 to 0.72, P = 0.8412; $I^2 = 55\%$; E: Forest and funnel plots for left atrial diameter. MD = 1.64, 95%CI: 0.16-3.12, P = 0.0296; $I^2 = 87\%$; F: Forest and funnel plots for left ventricular end-diastolic diameter/dimension. MD = -0.87, 95%CI: -1.58 to -0.17, P = 0.0153; $I^2 = 87\%$; G: Forest and funnel plots for left ventricular end-diastolic

diameter/dimension indexed. MD = -0.36, 95%CI: -1.36 to 0.63, P = 0.4721; $I^2 = 95\%$; H: Forest and funnel plots for left ventricular end-diastolic volume. MD = -4.10, 95%CI: 10.48; 2.28, P = 0.2080; $I^2 = 65\%$; I: Forest and funnel plots for left ventricular endsystolic diameter/dimension. MD = -0.90, 95%CI: -1.26 to -0.53, P < 0.0001; $I^2 = 16\%$; J: Forest and funnel plots for left ventricular end-systolic volume. MD = -0.05, 95%CI: -0.70 to 0.60, P = 0.8789; $I^2 = 0\%$; K: Forest and funnel plots for left ventricular mass. MD = 17.29, 95%CI: -1.05 to 35.62, P = 0.0646; $I^2 = 82.7\%$; L: Forest and funnel plots for left ventricular mass index. MD = 5.02, 95% CI: 1.79-8.26, P = 0.0023; $I^2 = 75\%$; M: Forest and funnel plots for maximal wall thickness. MD = 1.05, 95%CI: 0.28-1.83, P = 0.0080 $I^2 = 86\%$; N: Forest and funnel plots for posterior wall thickness. MD = 1.07, 95%CI: 0.36-1.78, P = 0.0033; $I^2 = 88\%$; O: Forest and funnel plots for right ventricular diameter. MD = -0.60, 95%CI: -1.39 to 0.18, P = 0.1324; $I^2 = 86\%$; P: Forest and funnel plots for relative wall thickness. MD = 0.03, 95%CI: 0.001-0.06, P = 0.0126; $I^2 = 86\%$; Q: Forest and funnel plots for ventricular septum/septal wall thickness. MD = 0.85, 95%CI: 0.62-1.07, P < 0.0001; $I^2 = 83\%$; R: Forest and funnel plots for a ortic root. MD = 0.30, 95%CI: 0.08-0.53, P = 0.0087; $I^2 = 0\%$.

Supplementary Table 1 Research strategy

Number	PubMed search-November 29, 2024	Records
1	(("Athletes"[Mesh]) AND "Cardiomegaly, Exercise-Induced"[Mesh])	31
	AND "Adolescent" [Mesh]	
2	(("Athletes"[Mesh]) AND "Adolescent"[Mesh]) AND "Adaptation,	141
	Physiological"[Mesh]	
3	'Sport' AND 'Athlete' AND 'adolescent' AND 'myocardial adaptation'	79
4	'Sport' AND 'Athlete' AND 'adolescent' AND 'cardiac adaptation' with	80
	limits (clinical trials; adolescent: 13 – 18)	
5	'Sport' AND 'Athlete' AND 'adolescent' AND 'cardiac remodeling'	146
6	'Sport' AND 'Athlete' AND 'adolescent' AND 'Electrocardiography' with	24
	limits (clinical trials)	
7	'Sport' AND 'Athlete' AND 'adolescent' AND 'Echocardiography' with	39
	limits (clinical trials)	

8	'Sport' AND 'Athlete' AND 'adolescent' AND 'Magnetic Resonance	187				
	Imaging' with limits (clinical trials)					
	Overall record	727				
	No duplicates	620				
	Manual search	0				
	Excluded per title/Abstract	555				
	Full text	65				
	Included	7				

Supplementary Table 2 Excluded studies

Studies	
Part A	Number of studies
Respiratory/metabolic/immune adaptation to exercise	7
Psychological adaptation	4
Physiological adaptation/response	54
Bone adaptation	13
Muscle adaptation	23
Temperature response	5
Testing performance	19
Training/physical fitness	20
Cardiac damage/markers	4
Injuries	43
Surgery	43
Genetics	2
Blood test	6
Hydration/nutrition	7
Cardiac remodeling	5
Cardiomyopathy/pathological hypertrophy	6
Impact of puberty/growth	3
Adults	87
Children < 11 years	3

Review article	32		
Case report	5		
Non-athletes	162		
Study design	1		
Animal	1		
	555		
Part B	Reason for exclusion		
Kozupitsa GS, Babkin SM, Kel'tsev DI. Cardiac diastolic function in	Not on racial disparities		
children and adolescents during prompt and long-term adaptation to			
physical exercise. Kardiologiia 1992; 32: 74-77			
Aymen Mohamed BA, Anis G, Ahmed FR, et al. Correlation between	Not on racial disparities		
changes in electrocardiographic and echocardiographic measurements and			
the nature of the sport practiced. Ann Cardiol Angeiol (Paris).			
2023;72(2):101580			
Birat A, Ratel S, Dodu A, et al. A long-duration race induces a decrease of	Not on racial disparities		
left ventricular strains, twisting mechanics and myocardial work in trained			
adolescents. Eur J Sport Sci. 2023;23(7):1394-1404			
Wernstedt P, Sjöstedt C, Ekman I, et al. Adaptation of cardiac morphology	Not on racial disparities		
and function to endurance and strength training. A comparative study			
using MR imaging and echocardiography in males and females. Scand J			
Med Sci Sports. 2002;12(1):17-25			
Perkins DR, Talbot JS, Lord RN, et al. Adaptation of Left Ventricular Twist	Not on racial disparities		
Mechanics in Exercise-Trained Children Is Only Evident after the			
Adolescent Growth Spurt. J Am Soc Echocardiogr. 2024;37(5):538-549			
Stavrou V, Tsarouhas K, Karetsi E, Michos P, Daniil Z, I Gourgoulianis K.	Not on racial		
Adolescent Finswimmers: Early Myocardial Adaptations in Different	disparities/No relevant		
Swimming Styles. Sports (Basel). 2018;6(3):78	subgroup		
Rodriguez-López AM, Javier G, Carmen P, et al. Athlete Heart in Children	Not on racial		
and Young Athletes. Echocardiographic Findings in 331 Cases. Pediatr	disparities/No relevant		
Cardiol. 2022;43(2):407-412	subgroup		
Galetta F, Franzoni F, D'alessandro C, et al. Body composition and cardiac	Not on racial		

dimensions in elite rhythmic gymnasts. <i>J Sports Med Phys Fitness</i> . 2015;55(9):946-952	disparities/No subgroup	relevant
Zacher J, Blome I, Schenk A, Gorr E. Cardiac adaptations in elite female	0 1	racial
football- and volleyball-athletes do not impact left ventricular global strain		relevant
values: a speckle tracking echocardiography study. <i>Int J Cardiovasc Imaging</i> .	•	
2020;36(6):1085-1096	0 1	
Rowland TW, Unnithan VB, MacFarlane NG, Gibson NG, Paton JY.	Not on	racial
Clinical manifestations of the 'athlete's heart' in prepubertal male runners.		relevant
Int J Sports Med. 1994;15(8):515-519	subgroup	
Gerling S, Pollinger T, Dechant MJ, Melter M, Krutsch W, Michel H.	Not on	racial
Coronary artery z score values in adolescent elite male soccer players.	disparities/No	relevant
Cardiol Young. 2021;31(3):381-385	subgroup	
Zdravkovic M, Milovanovic B, Hinic S, et al. Correlation between ECG	Not on	racial
changes and early left ventricular remodeling in preadolescent footballers.	disparities/No	relevant
Physiol Int. 2017;104(1):42-51	subgroup	
Vasiliauskas D, Venckūnas T, Marcinkeviciene J, Bartkeviciene A.	Not on	racial
Development of structural cardiac adaptation in basketball players. Eur J	disparities/No	relevant
Cardiovasc Prev Rehabil. 2006;13(6):985-989	subgroup	
Koch S, Cassel M, Linné K, Mayer F, Scharhag J. ECG and	Not on	racial
echocardiographic findings in 10-15-year-old elite athletes. Eur J Prev	disparities/No	relevant
Cardiol. 2014;21(6):774-781	subgroup	
Petridis L, Kneffel Z, Kispéter Z, Horváth P, Sidó Z, Pavlik G.	Not on	racial
Echocardiographic characteristics in adolescent junior male athletes of	disparities/No	relevant
different sport events. Acta Physiol Hung. 2004;91(2):99-109	subgroup	
Zdravkovic M, Perunicic J, Krotin M, et al. Echocardiographic study of	Not on	racial
early left ventricular remodeling in highly trained preadolescent	disparities/No	relevant
footballers. J Sci Med Sport. 2010;13(6):602-606	subgroup	
Madeira RB, Trabulo M, Alves F, Pereira JG. Effects of chronic exercise	Not on	racial
training on left ventricular dimensions and function in young athletes. Rev	disparities/No	relevant
Port Cardiol. 2008;27(7-8):909-922	subgroup	
Binnetoğlu FK, Babaoğlu K, Altun G, Kayabey Ö. Effects that different	Not on	racial

of two-dimensional strain-strain-rate echocardiography. <i>Pediatr Cardiol</i> . subgroup 2014;35(1):126-139
2014;35(1):126-139
Thompson AJ, Cannon BC, Wackel PL, et al. Electrocardiographic Not on racial
abnormalities in elite high school athletes: comparison to adolescent disparities/No relevant
hypertrophic cardiomyopathy. Br J Sports Med. 2016;50(2):105-110 subgroup
Dawkins TG, Shave RE, Baggish AL, et al. Electrocardiographic changes Not on racial
following six months of long-distance triathlon training in previously disparities/No relevant
recreationally active individuals. <i>Eur J Sport Sci.</i> 2020;20(4):553-562 subgroup
Kösemen DS, Çetin S, Demirci D, Babaoğlu K. Evaluation of the Left Not on racial
Ventricular Myocardium Using Layer-Specific Strain Analysis in disparities/No relevant
Adolescent Athletes Performing High-Intensity Interval Training. Pediatr subgroup
Cardiol. 2024;45(4):770-779
Weiner RB, DeLuca JR, Wang F, et al. Exercise-Induced Left Ventricular Not on racial
Remodeling Among Competitive Athletes: A Phasic Phenomenon. Circ disparities/No relevant
Cardiovasc Imaging. 2015;8(12):e003651 subgroup
Pelliccia A, Avelar E, De Castro S, Pandian N. Global left ventricular shape Not on racial
is not altered as a consequence of physiologic remodeling in highly trained disparities/No relevant
athletes. Am J Cardiol. 2000;86(6):700-A9 subgroup
Suzic Lazic J, Dekleva M, Soldatovic I, et al. Heart rate recovery in elite Not on racial
athletes: the impact of age and exercise capacity. Clin Physiol Funct Imaging. disparities/No relevant
2017;37(2):117-123 subgroup
Agrebi B, Tkatchuk V, Hlila N, Mouelhi E, Belhani A. Impact of specific Not on racial
training and competition on myocardial structure and function in different disparities/No relevant
age ranges of male handball players. <i>PLoS One</i> . 2015;10(12):e0143609 subgroup
Smith D, Deblois J, Wharton M, Rowland T. Influence of sex on ventricular Not on racial
remodeling in collegiate athletes. J Sports Med Phys Fitness. 2012;52(4):424- disparities/No relevant
431 subgroup
Szabo D, Nagy D, Melczer C, et al. Influencing Factors of Cardiac Not on racial
Adaptation in Adolescent Athletes. Int J Sports Med. 2021;42(13):1209-1221 disparities/No relevant
subgroup

Hoogsteen J, Hoogeveen A, Schaffers H, Wijn PF, van der Wall EE. Left	Not	on	racial
atrial and ventricular dimensions in highly trained cyclists. <i>Int J Cardiovasc</i>	disparities	/No	relevant
Imaging. 2003;19(3):211-217	subgroup		
D'Ascenzi F, Cameli M, Lisi M, et al. Left atrial remodelling in competitive	Not	on	racial
adolescent soccer players. Int J Sports Med. 2012;33(10):795-801	disparities	/No	relevant
	subgroup		
Miragoli M, Goldoni M, Demola P, et al. Left ventricular geometry	Not	on	racial
correlates with early repolarization pattern in adolescent athletes. <i>Scand J</i>	disparities	/No	relevant
Med Sci Sports. 2019;29(11):1727-1735	subgroup		
Smith SA, Humphrey RH, Wohlford JC, Flint DL. Myocardial adaptation	Not	on	racial
and weight fluctuation in college wrestlers. Int J Sports Med. 1994;15(2):70-	disparities	/No	relevant
73	subgroup		
Dores H, Mendes L, Dinis P, Cardim N, Monge JC, Santos JF. Myocardial	Not	on	racial
deformation and volume of exercise: a new overlap between pathology	disparities	/No	relevant
and athlete's heart?. Int J Cardiovasc Imaging. 2018;34(12):1869-1875	subgroup		
Rowland T, Unnithan V, Roche D, Garrard M, Holloway K, Marwood S.	Not	on	racial
Myocardial function and aerobic fitness in adolescent females. Eur J Appl	disparities	/No	relevant
Physiol. 2011;111(9):1991-1997	subgroup		
D'Ascenzi F, Solari M, Biagi M, et al. P-wave morphology is unaffected by	Not	on	racial
training-induced biatrial dilatation: a prospective, longitudinal study in	disparities	/No	relevant
healthy athletes. Int J Cardiovasc Imaging. 2016;32(3):407-415	subgroup		
Kinoshita N, Onishi S, Yamazaki H, Katsukawa F, Yamada K. Recognition	Not	on	racial
of left ventricular hypertrophy in new recruits of professional sumo	disparities	/No	relevant
wrestling. J Sci Med Sport. 2003;6(4):379-386	subgroup		
Yıldırım Ş, Binnetoğlu FK, Battal F, et al. Relation between QT Variables	Not	on	racial
and Left Ventricular Geometry in Athletes and Obese Children. Acta Med	disparities	/No	relevant
Port. 2016;29(2):95-100	subgroup		
Krenc Z. Relationship Between Adaptive Morphological and	Not	on	racial
Electrophysiological Remodeling of the Left Ventricle in Young Athletes	disparities	/No	relevant
After an 8-Month Period of Sports Training. Pediatr Exerc Sci. 2016;28(1):71-	subgroup		

76

Pelà G, Crocamo A, Li Calzi M, et al. Sex-related differences in left ventricular structure in early adolescent non-professional athletes. <i>Eur J Prev Cardiol</i> . 2016;23(7):777-784		racial relevant
Kim JH, Noseworthy PA, McCarty D, et al. Significance of	Not on	racial
electrocardiographic right bundle branch block in trained athletes. Am J	disparities/No	relevant
Cardiol. 2011;107(7):1083-1089	subgroup	
Simsek Z, Hakan Tas M, Degirmenci H, et al. Speckle tracking	Not on	racial
echocardiographic analysis of left ventricular systolic and diastolic	disparities/No	relevant
functions of young elite athletes with eccentric and concentric type of	subgroup	
cardiac remodeling. Echocardiography. 2013;30(10):1202-1208		
Hanne-Paparo N, Wendkos MH, Brunner D. T wave abnormalities in the	Not on	racial
electrocardiograms of top-ranking athletes without demonstrable organic	disparities/No	relevant
heart disease. Am Heart J. 1971;81(6):743-747	subgroup	
	7 cases	
Bjerring AW, Landgraff HE, Stokke TM, et al. The developing athlete's	Not on	racial
heart: a cohort study in young athletes transitioning through adolescence.	disparities/No	relevant
Eur J Prev Cardiol. 2019;26(18):2001-2008	subgroup	
Csecs I, Czimbalmos C, Toth A, et al. The impact of sex, age and training	Not on	racial
on biventricular cardiac adaptation in healthy adult and adolescent	disparities/No	relevant
athletes: Cardiac magnetic resonance imaging study. Eur J Prev Cardiol.	subgroup	
2020;27(5):540-549		
Perkins DR, Talbot JS, Lord RN, et al. The influence of maturation on	Not on	racial
exercise-induced cardiac remodelling and haematological adaptation. J	disparities/No	relevant
Physiol. 2022;600(3):583-601	subgroup	
Hauser M, Petzuch K, Kühn A, et al. The Munich Triathlon Heart Study:	Not on	racial
ventricular function, myocardial velocities, and two-dimensional strain in	disparities/No	relevant
healthy children before and after endurance stress. Pediatr Cardiol.	subgroup	
2013;34(3):576-582		
Lazic JS, Tadic M, Antic M, et al. The relationship between right heart and	Not on	racial
aerobic capacity in large cohort of young elite athletes. Int J Cardiovasc	disparities/No	relevant
Imaging. 2019;35(6):1027-1036	subgroup	
	-	

Whyte GP, George K, Sharma S, et al. The upper limit of physiological Not racial on cardiac hypertrophy in elite male and female athletes: the British disparities/No relevant experience. Eur J Appl Physiol. 2004;92(4-5):592-597 subgroup D'Ascenzi F, Solari M, Mazzolai M, et al. Two-dimensional and three-Not on racial dimensional left ventricular deformation analysis: a study in competitive disparities/No relevant athletes. Int J Cardiovasc Imaging. 2016;32(12):1697-1705 subgroup Valente-Dos-Santos J, Coelho-e-Silva MJ, Vaz V, et al. Ventricular mass in Not on racial relation to body size, composition, and skeletal age in adolescent athletes. disparities/No relevant *Clin J Sport Med.* 2013;23(4):293-299 subgroup Sagiv M, Sagiv M, Ben-Sira D. Weight lifting training and left ventricular racial Not on function in adolescent subjects. J Sports Med Phys Fitness. 2007;47(3):329-334 relevant disparities/No subgroup Forså MI, Bjerring AW, Haugaa KH, et al. Young athlete's growing heart: racial Not on sex differences in cardiac adaptation to exercise training during disparities/No relevant adolescence. *Open Heart*. 2023;10(1):e002155 subgroup Riding NR, Salah O, Sharma S, et al. ECG and morphologic adaptations in Adults/9 cases Arabic athletes: the European Society are Cardiology's recommendations for the interpretation of the 12-lead ECG appropriate for this ethnicity?. Br J Sports Med. 2014;48(15):1138-1143. doi:10.1136/bjsports-2012-091871 Churchill TW, Petek BJ, Wasfy MM, et al. Cardiac Structure and Function Adults in Elite Female and Male Soccer Players. *JAMA Cardiol*. 2021;6(3):316-325 Tomoto T, Sugawara J, Hirasawa A, Imai T, Maeda S, Ogoh S. Impact of Adults short-term training camp on arterial stiffness in endurance runners. J Physiol Sci. 2015;65(5):445-449 Krustrup P, Hansen PR, Nielsen CM, et al. Structural and functional Children < 11 years cardiac adaptations to a 10-week school-based football intervention for 9-10-year-old children. Scand J Med Sci Sports. 2014;24 Suppl 1:4-9 Beaumont A, Oxborough D, George K, et al. Superior cardiac mechanics Children < 11 years

without structural adaptations in pre-adolescent soccer players. Eur J Prev

Cardiol. 2020;27(14):1494-1501

Griffet V, Guérard S, Galoisy-Guibal L, Caignault JR, Bernard F, Brion R. Comparison between Normal values of the peak early diastolic Ea using myocardial tissue LVH and HCM Doppler in 100 elite athletes]. *Arch Mal Coeur Vaiss*. 2007;100(10):809-815

Sharma C, Dorobantu DM, Ryding D, et al. Investigating the Accuracy of Non-health athletes Quantitative Echocardiographic-Modified Task Force Criteria for Arrhythmogenic Ventricular Cardiomyopathy in Adolescent Male Elite Athletes. *Pediatr Cardiol*. 2022;43(2):457-464.

Supplementary Table 3 Study objective and eligibility criteria

Ref.	Objective(s)	Eligibility criteria
Demola et	To define physiological LV adaptation to exercise in African athletes and	-
al[38], 2019	the mechanisms through which LV hypertrophy develops, to	
	differentiate it from its pathological analogue. To assess a possible	
	relationship between peculiar LV remodeling (more concentric	
	hypertrophy) and hemodynamic response to physical exercise (e.g.	
	greater BP response) in adolescent athletes of African ethnicity compared	
	to Caucasians	
Di Paolo et	-	Each subject was judged to be free of patent cardiovascular
al[39], 2012		disease on the basis of the history, physical examination (with
		BP < 140/90 mm Hg), and ECHO results
Galanti et	To study cardiovascular and, specifically, LV remodeling in young	Athletes with a previous personal or family history of cardiac
al[40], 2019	African Americans compared to young Caucasian soccer players	or pulmonary disease, family history of premature (≤40 yr)
		sudden cardiac death or cardiomyopathy were excluded from
		the study
Malhotra et	To examine electric and structural adaptations in heart of healthy mixed-	Athletes with overt cardiomyopathy were excluded based on
al[41], 2021	race male soccer players and compare them with those of White and	a normal exercise stress test/ECHO, 24-hour ECG monitor,
	Black male soccer players. A mixed-race athlete was classified as an	and absence of scar on cardiovascular MRI before inclusion in
	individual with 1 White parent of European origin and 1 Black parent of	the study

A C .	/ A C	O 11 1		
African/	/ Atro-	(aribl	nean.	origin
1 111100111	11110	Carr	COLL	0110111

level sport context

Moneghetti To explore hypothesis that race, player position, and body composition Participants with evidence of cardiomyopathy, significant would contribute to LV remodeling. To provide insights into race-specific valvular abnormalities, congenital heart disease, or inadequate and position differences in LV and function during pre-participation endocardial definition during echocardiographic examination 2020 screening of collegiate ASF players

were excluded

et To determine whether LV responses to sport training are ethnicity- Participants free from heart disease and, based on the Pelà associated in the early adolescent age, when pubertal development may questionnaires, engaged in organized football training for al[43], 2015 not be yet complete. To determine whether higher LVWT and LVM with approximately 2.5 h twice/week preferential concentric remodeling in black adolescent athletes vs white counterparts are detectable at an amateur-level training as are in the elite-

et To identify the spectrum of physiological adaptation in highly trained Selection criteria for controls were black ethnicity, age 14-18 Sheikh al[44], 2013 adolescent BA

years, sedentary lifestyle (≤2h of organized physical activity/week), absence of symptoms, drug history, family history of cardiomyopathy or premature (≤40 years) SCD, normal blood pressure and a structurally normal heart

Supplementary Table 4 General characteristics of included cohort studies

Ref.	Country	Sample size Black athletes, n (%)	White athletes	Sport/training intensity and other comments
	site(s)			

Demola et	Italy	90	30/90 (33.3%). Origin:	60/90 (66.7%)	Athletics (amateur-level) in different endurance
al[38], 2019	(Parma)		Central/West Africa, namely		disciplines, ~7 hours/week
			Burkina Faso, Cameroon,		
			Ghana, Ivory Coast, Nigeria,		
			and Senegal		
Di Paolo et	Italy	216	154/216 (71.3%). Origin: 8	62/216 (28.7%).	Soccer players. 6-day training session/week, each ≥ 2 h,
al[39], 2012	(Rome)		countries (Algeria, Burkina	Caucasian	including either general conditioning or specific
			Faso, Cameroon, Gambia,	athletes of Italian	technical programs. Black athletes trained and
			Guinea, Malawi, Nigeria, and	descent	competed for ≥ 3 consecutive years and represented
			Zimbabwe)		best competitors in the < 17-year-old category
Galanti et	Italy	130	77/130 (59.2%). Afro-	53/130 (40.8%) -	Soccer players. Athletes were members of the same
al[40], 2019	(Florence)		Caribbean/African-	matched	soccer team with similar lifestyle. 6 times/week, each
			Americans		training session lasting ≥ 2 h
Malhotra et	United	3000 (3	1000/3000 (33.3%). African	1000/3000	Elite soccer players. 1000/3000 (33.3%) were mixed-
al[41], 2021	Kingdom	subgroups)	(61%) or Caribbean (39%)	(33.3%)	race
	2015 to 2018		origin		
Moneghetti	United	230	71/230 (30.9%). African	130/230 (56.5%).	American style football. Remaining 12 % of players
et al[42], 2020	States		American	Caucasian	were of Asian (n = 5), Hispanic (n = 2), Hawaiian (n =
	2008 to 2016				2), or other/unknown (n = 19) race
Pelà et al[43],	Italy	138	42/138 (30.4%). Origin: West-	96/138 (69.6%).	

2015	(Parma)	Africa (i.e., Bantu, because Italian descent; Approximately 2.5 hours twice/week. Subjects
	20062013	their families immigrated to born in the participated (usually during weekends) in one
		Italy from Burkina Faso, Parma area or amateur-level local competition; the total sport load
		Cameroon, Ghana, Ivory had been living was ~8 hours/week in both groups. Athletes were
		Coast, Nigeria, or Senegal and there for at least junior or senior high school
		were permanently established 6 years
		in Parma city or its area). 24
		were born in Italy, whereas the
		remaining 18, born in Africa,
		have been living in Italy for at
		least 6 years
Sheikh e	United 1232	329/1232 (26.7%). 903/1232 (73.3%) Athletes competed in a wide range (n=29) of sporting
al[44], 2013	Kingdon	African/Afro-Caribbean disciplines. Competing at the regional, national, or
	and France	international level
	1996 to 2011	

Supplementary Table 5 Electrocardiographic and echocardiographic study details

Ref.	Electrocardiography (ECG)	Echocardiography (ECHO)
Demola et	All participants underwent physical examinations	All participants underwent physical examinations with ECHO and
al[38], 2019	with 12 lead resting ECG. S1/R5 in precordial leads	ergometer stress test. M-mode, two-dimensional, and Doppler

arrhythmias.

were calculated using the Sokolow-Lyon voltage ECHO were performed by an ultrasonography-experienced criteria to assess the presence of ECG-based LV cardiologist, using a commercially available, multi-hertz sector, 2hypertrophy. Analysis of ECG also includes the 4 MHz probe-equipped machine (Vivid S5, GE Healthcare, USA). innovative parameter introduced for the stratification The interventricular septal (SWT) and posterior wall (PWT) of arrhythmic risk, e.g. QT dispersion (maximum QT thicknesses, systolic (ESD) and diastolic (EDD) LV diameters, interval minus minimum QT interval, QTd). The latter absolute left ventricular mass (LVM) and indexed to body surface is an index of the spatial dispersion of ventricular area (LVM/BSA) were calculated. LVM was also normalized to recovery times and, therefore, is an index of in height 2.7, an estimate of lean body mass. RWT was calculated as: homogeneity potentially involved in the genesis of (SWT + PWT)/EDD. According to the ASE guidelines, we calculate LV remodeling categories (normal, concentric remodeling, concentric and eccentric hypertrophy) in the two groups, based on LVM and RWT. Simpson's biplane rule-based end-diastolic (EDV) and systolic (ESV) volumes and ejection fraction (EF) were calculated, while Fractional Shortening (FS) was: [(EDV -ESV)/EDV] × 100. Mitral inflow pattern was analyzed from apical 4-chamber view and E and A waves and their ratio were considered as peak flow velocity and time velocity integral, in order to evaluate the conventional diastolic function

Di Paolo et Standard 12-lead ECGs were per formed with the Two-dimensional and Doppler ECHO studies were performed al[39], 2012

subject in the supine position after a few minutes of with commercially available instruments (Esaote Italia, Genoa,

Galanti al[40], 2019

rest during quiet respiration and recorded at 25 Italy, and Philips Medical Systems, Bothell, Washington). Images mm/s. We measured heart rate (beats/min), PR of heart were obtained in multiple cross-sectional planes by using interval (ms), QRS duration (ms), QT interval standard transducer positions. M-mode echo cardiograms were corrected for the heart rate (s), presence of Q waves (≥ derived from 2-dimensional images under direct anatomic 2 mm in depth in ≥2 leads), R/S-wave amplitude in visualization and recorded at 100 mm/s. Measurements of endprecordial leads (S1 R5) (mm), and Sokolow-Lyon diastolic and end-systolic LV cavity dimensions, anterior criterion for LV hypertrophy (positive if ≥ 35 mm), ventricular septal, and posterior free wall thicknesses were presence and shape (concave or domed) of ST- obtained as previously recommended. LV mass was calculated by segment elevation (≥ 1 mm, in ≥ 2 contiguous leads), using the formula of Devereux and was indexed to body surface presence of J-wave (≥ 1 mm), or ST-segment slurring area (BSA). Relative wall thickness (h/r) was the ratio of septal and (18), T-wave inversion (≥ 2 mm in depth in ≥ 2 posterior free wall thicknesses to LV ventricular cavity diameter. contiguous leads, with exclusion of III and aVR), and Ejection fraction was assessed from end-diastolic and end-systolic flat/biphasic T-wave pattern (in ≥ 2 contiguous leads) LV volumes, in the apical 4-chamber view, and quantified according to the modified Simpson rule. Parameters of LV filling was obtained with pulsed Doppler ECHO.

Standard 12-lead ECG was performed with the subject ECHO was conducted by 2 experienced and certified cardiologists supine, after a few minutes of rest with normal using a commercially available ultrasound system: iE33 Philips breathing, and recorded at 25mm/s. We measured Medical System (Bothell, WA). These specialists work together and heart rate (beats/min), PR interval (ms), QRS duration therefore the reproducibility of data is high and the inter-observer (ms), QT interval corrected for the heart rate (s) [13], variability low (< 5%). Furthermore, at least 5 double blind echo

R/S-wave amplitude in precordial leads (S1 + R5) of the data obtained and Sokolow-Lyon criterion for LV (mm), hypertrophy (positive if ≥35mm), presence and shape (concave or domed) of ST-segment elevation (≥1 mm, in ≥2 contiguous leads), presence of J wave (≥1mm), or ST-segment slurring, T-wave inversion (≥2 mm in depth in ≥2 contiguous leads, with exclusion of III and a VR), and flat/biphasic T-wave pattern (in ≥2 contiguous leads)

presence of Q waves (≥2 mm in depth in ≥2 leads), tests were carried out after 3 days, in order to confirm the overlap

Malhotra et 12-lead ECG was interpreted in accordance with ECHO was performed in accordance with standard American and al[41], 2021 international recommendations

Moneghetti

al[42], 2020

European protocols

Athletic screening protocol included: (a) 2-D and color Doppler left parasternal long- and short-axis views at the aortic valve level to assess coronary ostia and at the papillary muscle level to assess LV mass and volume; and (b) 2-D and color Doppler apical 4-chamber view to allow quantitative assessment of LV systolic and diastolic function (E, lateral E') as well as left atrial size. Athletes with findings outside the normal range as defined by the American Society of Echocardiography or sub-optimal images were referred

Pelà al[43], 2015 and III) were also assessed.

for a complete echocardiographic study

et 12-lead, 25 mm/s, supine position ECGs were M-mode, 2-D, and Doppler ECHO were performed by one interpreted (Corrado et al., 2010) by three ultrasonography-experienced cardiologist using a commercially investigators (G. P., M. L. C., A. C.) blinded to the type available, multi-hertz sector, 2-4 MHz probe equipped machine of subject. Heart rate (HR), QRS axis, PR interval, QRS (Aspen, Siemens Acuson, Mountain View, California, USA). With duration, and corrected QT interval were measured. the subject on the left lateral position, images based on 3 S1/R5 in precordial leads were calculated using the consecutive heart cycles were obtained from standard projections. Sokolow Lyon voltage criteria (positive if ≥ 35 mm) to The highest value of diastolic thickness between septum and define the presence of LVH. Prevalence of Q waves (≥ posterior LV wall- both measured at the parasternal long-axis 2 mm in depth in two or more adjacent leads), view according to Penn convention was considered as the maximal presence and shape (concave or domed) of ST- wall thickness (MWT), with end-systolic and diastolic LV segment elevation (≥ 1 mm in two or more adjacent diameters measured in the same projection. RWT was calculated leads), and prevalence of inverted T waves (≥ 2 mm in as (thickness of septum + thickness of posterior wall)/LV end depth in two or more adjacent leads, excluding aVR diastolic diameter (LVEDD), using the 0.42 cutoff to define eccentric (≤ 0.42) or concentric (≥ 0.42) remodeling. Penn convention-based LVM also was indexed, when necessary, to body surface area (BSA). Simpson's biplane rule-based end-diastolic and systolic LV volumes and ejection fraction were calculated, whereas [(LVEDD- LV end-systolic fractional shortening was diameter)/LVEDD] × 100. Blood flow across the mitral valve was

Sheikh al[44], 2013 independently by two authors in the UK and France.

monitored using the pulsed-Doppler technique in the apical four chamber view, with the sample volume placed at the tip of the valve. The blood flow profile contains diastolic E and A waves, and peak flow velocity and its time integral were measured for each wave. The intra-observer percentage variability for MWT was < 3.5 Standard 12-lead ECGs were performed. Relating to 2-D ECHO was performed using either a GE Vivid I (Tirat), Philips repolarization abnormalities, ST-segment shift was Sonos 7500, iE33 or CPX50 (Bothel). Standard views were obtained considered significant if ≥0.1 mV in ≥2 contiguous and cavity and wall thickness measurements performed using leads. Early repolarization pattern was defined as J- established guidelines. Left atrial (LA) diameter and left point elevation ≥0.1 mV in ≥2 contiguous non-anterior ventricular (LV) internal diameter were measured from the leads. T-wave inversion was considered significant if parasternal long axis view. Left ventricular wall thickness was ≥-0.1 mV in ≥2 leads (excluding aVR, V1 and III in measured in the parasternal short-axis view, at the levels of the isolation). Biphasic T-wave inversion was considered mitral valve and papillary muscles; the greatest measurement was abnormal if the negative deflection of the T-wave defined as the maximum left ventricular wall thickness (mLVWT). exceeded ≥-0.1 mV. The distribution of T-wave LVH was defined as an mLVWT >12mm. Left ventricular mass inversions was categorized into anterior (V1-V4), was calculated with the formula of Devereux. Relative LV wall inferior (II, III, aVF) and lateral (I, aVL, V5, V6). Deep thickness (RLVWT) was calculated by dividing the sum of the LV T-wave inversions were defined as a T-wave septal and posterior wall thicknesses in diastole by the end deflection ≥-0.2 mV. All ECGs were read diastolic LV internal diameter. 2-D continuous-Doppler and pulsed-Doppler imaging were performed using standard

parasternal and apical views. A cardiologist blinded to the athlete's identity reviewed all scans

Supplementary Table 6 Patient baseline characteristics (Black vs White), n (%)

Ref.	Age	(year),	Male		Height (cm)	Weight	BMI	BSA (m²)	Train	ing	SBP		DBP (n	nmHg)	HR (b)	pm)
	mean	± SD					(kg)	(kg/m^2)		(hour	s/week)	(mmHg	<u>;</u>)				
Demola et	13.8±1	6	30/30		168.0±8.0		56.8±10.9	19.9±2.3	1.64±0.19	7.0±1	.8 (n=30)	113±13		71±8	(n=30)	70±8	(n=30)
al[38], 2019	(n=30)) Vs	(100%)	Vs	(n=30)	Vs	(n=30)	(n=30)	(n=30) Vs	Vs	6.3±2.0	(n=30)	Vs	Vs	64±9	Vs	76±11
	13.3±1	5	60/60		164.0±12.0		Vs	Vs	1.56±0.25	(n=60)	105±12		(n=60),		(n=60)	,
	(n=60))	(100%)		(n=60)		53.1±13.5	19.4±3.0	(n=60)			(n=60),		p=0.006	5	p=0.00	5
							(n=60)	(n=60)		! -		p=0.018	}				
Di Paolo et	15.9±0).7 Vs	154/154		-		-	-	1.80±0.12	2 -		-		-		58.0±9.	.0
al[39], 2012	16.5±1	1	(100%)	Vs					(n=154)							(n=154) Vs
	years,	p<0.01	62/62						Vs							58.0±9.	.0
			(100%)						1.85±0.11							(n=62)	
									(n=62),								
									p=0.009								
Galanti et	17.0±0).5	-		173.0±1.1		65.0±1.3	21.4±0.2	-	-		115±0.6		73.0±0.	5	66.8±0.	.8
al[40], 2019	(n=77)) Vs			(n=77)	Vs	(n=77)	(n=77)				(n=77)	Vs	(n=77)	Vs	(n=77)	Vs
	18.0±0).8			174.0±0.9		Vs	Vs				116±1.3		70.0±1.	5	64.1±2.	.0

	(n=53)		(n=53)		66.0±1.0	21.8±0.2				(n=53)	(n=53),		(n=53)	
					(n=53)	(n=53)					p=0.04			
Malhotra et	All: 16.4±1.3	All:	-		-	-	-	-		-	-		-	
al[41], 2021	(n=3000)	3000/3000												
		(100%)												
Moneghetti	18.2±1.0	71/71	185.0±6.0		98.0±19.0	28.5±4.2	2.23±0.24	-		129±13.0	74.0±8.0		62.0±10.0	
et $al[42],$	(n=71) Vs	(100%) Vs	(n=71)	Vs	(n=71)	(n=71)	(n=71) Vs			(n=71) Vs	(n=71)	Vs	(n=71)	Vs
2020	18.6±1.3	130/130	190.0±6.0		Vs	Vs	2.36±0.22			129±11.0	70.0±9.0		62.0±9.0	
	(n=130),	(100%)	(n=130),		106±18.0	29.4±4.0	(n=130),			(n=130)	(n=130),		(n=130)	
	p=0.011		p<0.001		(n=130),	(n=130),	p<0.001				p=0.014			
					p=0.002	p								
Pelà et	14.3±1.8	42/42	168.0±8.0		57.0±10.0	20.2±2.5	1.64±0.17	No differen	nce	119.0±9.0	72.0±8.0		67.0±9.0	
al[43], 2015	(n=42) Vs	(100%) Vs	(n=42)	Vs	(n=42)	(n=42)	(n=42) Vs			(n=42) Vs	(n=42)	Vs	(n=42)	Vs
	13.9±1.6	96/96	167.0±12.0		Vs	Vs	1.61±0.24			118.0±10.0	70.0±7.0		72.0±10.0	
	(n=96)	(100%)	(n=96)		56.0±13.0	19.9±2.9	(n=96)			(n=96)	(n=96)		(n=96)	
					(n=96)	(n=96)								
Sheikh et	16.4±1.3	245/329	-		-	-	1.90±0.21	13.2±5.4		113.6±13.4	67.5±11.2		-	
al[44], 2013	(n=329) Vs	(74.5%) Vs					(n=329)	(n=329)	Vs	(n=329) Vs	(n=329)	Vs		
	16.4±1.3	735/903					Vs	11.6±4.1		112.3±11.4	68.4±9.2			
	(n=903)	(81.4%),					1.85±0.21	(n=903),		(n=903),	(n=903)			

p<0.001 (n=903), p<0.001 p<0.001 p<0.001

Supplementary Table 7 Electrocardiographic measurements (Black vs White), n (%)

Ref.	PR	QRS	QTc	QT	QRS	R/S-wave	LV	LA	RV	RA	STE (≥	ST-	J waves	Patholo	ITW	Flat/bip	Sinus	Sinus	First-	Incomple
	interval	complex	interval	dispersi	axis (°)	voltages	hypertroph	enlarg	hypert	enlarge	1mm in ≥	segme	and/or	gical Q	(≥	hasic T	bradyc	arrhy	degree	te/ partial
	(ms)	duration	(ms)	on		(S1 R5)	y (Sokolow	- ement	rophy	ment	2 leads)	nt	slurring	waves	2mm	waves	ardia	thmi	\mathbf{AV}	RBBB
		(ms)				(mm)	Lyon					depres	on STE	(≥ 2 mm	in ≥ 2	$(in \ge 2)$	(HR <	a	block	(QRS >
							criteria)					sion		in ≥ 2	leads	leads)	60		(PR	0.10 <
														leads))		bpm)		interval	0.12 s)
																			> 0.20 s)	
Demola	-	85.0±10.0	-	37.0±13.0	-	38.0±10.0	19/30	-	-	-	28/30	-	-	-	No	-	-	-	-	7/30
et al[38],		(n=30)		(n=30)		(n=30) Vs	(63.0%) V	's			(93.0%)				differ					(23.0%)Vs
2019		Vs		Vs		30.0±10.0	18/60				Vs 32/60				ence					30/60
		93.0±12.0		27.0±8.0		(n=60),	(30.0%),				(53%),									(50.0),
		(n=60),		(n=60),		p=0.001	p<0.001				p<0.001									p<0.001
		p=0.004		p<0.001																
Di Paolo	169±32.0	90.2±6.9	390±20.0	-	-	48.6±12.1	137/154	14/154	-	-	140/154	-	29/154	11/154	Deep:	39/154	94/154	-	22/154	49/154
et al[39],	(n=154)	(n=154)	(n=154)			(n=154)	(89.0%) V	s (9.0%)			(91.0%)		(19.0%)	(7.0%)	22/15	(25.3%)	(61.0%		(14.0%)	(32.0%)vs
2012	Vs	Vs	Vs			Vs	26/62	Vs			vs 35/62		vs 8/62	vs 10/62	4	vs 5/62)vs		vs 2/62	24/62
	149±22.0	99.5±9.3	390±50.0			34.1±8.9	(42.0%),	2/62			(56.0%),		(13.0%)	(16.0%)	(14.3	(8.1%),	37/62		(3.0%),	(39.0%)
	(n=62),	(n=62),	(n=62)			(n=62),	p<0.001	(3.0%)			p<0.001				%) vs	p<0.008	(60.0%		p=0.003	
	p=0.001	p<0.001				p=0.01.									2/62)			
						Maximu									(3.2%					
						m: 94.0),					
						(n=154)									p<0.0					
						Vs 63.0									5					
						(n=62)														
Galanti	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BA >	-	-	_	-	-
et al[40],															WA,					
2019															signif					
															icant					
Malhotr	-	-	-	-	-	-	176/1000	59/100	42/100	39/1000	636/1000	5/1000	-	-	130/1	-	465/10	368/1	-	-
a et							(17.6%) V	's 0	0	(3.9%)	(63.6%)	(0.5%)			000		00	000		

al[41], 2021						256/1000 (25.6%), p<0.0001		(5.9%) Vs 10/100	(4.2%) Vs 23/100	Vs 7/1000 (0.7%),	Vs 484/1000 (48.4%),	Vs 2/1000 (0.2%))		(13.0 %) Vs 23/10	(46.5%) Vs 454/10	(36.8 %) Vs 373/1		
								0	0	p<0.000	p<0.0001				00	00	000		
								(1.0%),	(2.3%),	1					(2.3%	(45.4%	(37.3		
								p<0.00	p=0.02),)	%)		
								01							p<0.0				
															001				
Monegh	-	-		-	-	-		-	-	-	-	-	-	-		-	-	-	-
etti <i>et</i>																			
al[42],																			
2020																			
Pelà <i>et</i>	153±25.0	78.0±14.0	394±36.0 -	65.0±2	41.0±11.0	29/42		5/42	-	-	33/42	-	-	-	5/42 -	5/42	-	-	6/42
al[43],	(n=42)	(n=42)	ms	9.0	(n=42) Vs	(69.0%)	Vs	(12.0%			(79.0%)				(12.0	(12.0%			(14.0%)Vs
2015	Vs	Vs	(n=42)	(n=42)	31.0±11.0	37/96) Vs			Vs 41/96				%) Vs) Vs			41/96
	139±23.0	81.0±14.0	Vs	Vs	(n=96),	(39.0%),		3/96			(43.0%),				14/96	17/96			(43.0%),
	(n=96),	(n=96)	403±34.0	60.0±3	p<0.001	p<0.001		(3.0%)			p<0.001				(15.0	(18.0%			p<0.001
	p<0.001		ms	5.0											%))			
			(n=96)	(n=96)															
Sheikh <i>et</i>	-	87.0±11.0	398±23.0 -	-	-	66/329		25/329	54/329	10/329	163/329	2/329	-	0 (0%)	75/32 -	138/32	-	29/329	61/329
al[44],		(n=329)	ms			(20.1%)	Vs	(7.6%)	(16.4%	(3.0%)	(49.5%)	(0.6%)		Vs	9	9		(8.9%)V	(18.5%)Vs
2013		Vs	(n=329)			291/903		Vs) Vs	Vs	Vs	Vs ()	3/903	(22.8	(41.9%		s 23/903	164/903
		94.0±10.0	Vs			(32.2%),		33/903	74/903	4/903	182/903	(0%)		(0.3%)	%) Vs) Vs		(2.5%),	(18.2%)
		(n=903),	403±22.0			p<0.001		(3.7%),	(8.2%),	(0.4%),	(20.2%),				41/90	524/90		p<0.001	
		p<0.001	ms					p=0.00	p<0.00	p=0.001	p<0.001				3	3			
			(n=903),					6	1						(4.5%	(58.0%			
			p<0.001),),			
															p<0.0	p<0.00			
															01.	1			
															Deep:				
															22/32				

9 (6.7%
) Vs 2/903 (0.2%
), p<0.0

Supplementary Table 8 Detailed ST-segment elevation and T-wave inversion (Black vs White), n (%)

ST	Ascending convex (domed)	Ascending	Isoelectric	TWI	TWI	(anterior	TWI	(anterior	TWI (inf	erior)	TWI	(lateral/	TWI	
E		concave			V1, V2))	beyond V2	2)			Apical)		(inferol	ateral/A
													pical)	
	-	-	-		-		-		-		-		-	
	52/154 (34.0%) vs 1/62 (1.0%),	88/154 (57.0%) vs	-		V1 t	to V4:	V5 to V6	& inferior	-		-		-	
	p<0.001	34/62 (55.0%)			10/154	(6.5%)	leads: 12/1	54 (8.0%)						
					Vs -									
	-	-	-		-		V2 to V4: I	3A > WA,	-		-		-	
							significant							
	380/1000 (38.0%) Vs 288/1000	218/1000 (21.8%)	330/1000		58/100	0 (5.8%)	37/1000 (3.7%) Vs	15/1000	(1.5%) Vs	10/1000	(1.0%) Vs	9/1000	(0.9%)
	(28.8%), p<0.0001	Vs 162/1000	(33.0%)	Vs	Vs	9/1000	6/1000	(0.6%),	5/1000 (0	0.5%), p=0.04	2/1000	(0.2%),	Vs	1/1000
		(16.2%), p=0.0017	320/1000		(0.9%),		p<0.0001				p=0.02		(0.1%), p	p=0.02
			(3.2%)		p<0.000	01								
	-	-	-		-		-		-		-		-	
	-	-	-		-		-		-		-		-	
	-	-	-		12/329	(3.6%)	V1 to V4	1: 47/329	20/329	(6.1%) Vs	8/329	(2.4%) Vs	-	
					Vs	21/903	(14.3%) V	s 23/903	15/903	(1.7%),	3/903	(0.3%),		
					(2.3%)		(2.5%), p<0	.001	p<0.001		p<0.001			
		- 52/154 (34.0%) vs 1/62 (1.0%), p<0.001 - 380/1000 (38.0%) Vs 288/1000 (28.8%), p<0.0001 -	Concave	concave	Concave	E concave V1, V2	E concave V1, V2) - CONCAVE V1 to V4: 10/154 (6.5%) V8 - CONCAVE - CONCAVE V2 10/154 (6.5%) V8 - CONCAVE - CONCAVE - CONCAVE 10/154 (6.5%) V8 - CONCAVE - CONCAVE 10/154 (6.5%) V8 - CONCAVE 10/154 (E concave	E concave	E concave V1, V2 beyond V2	E concave	No. No.	No. No.	Control Cont

Supplementary Table 9 Echocardiographic measurements (Black vs White)

Ref.	LV	Nor	LV	Nor	LVE	LVED	LVE	LA	SWT	Normal	PWT	Nor	R	Max	LV	LV	LV	RV	LA	R	Ao	M	LV	Abs	Stro	Е	A	E/	h	Mit	E'	E/	LV
	ED	mal	ES	mali	DV	\mathbf{V}	SV	volu	or	ized or	or	maliz	W	ima	ma	mas	mas	dia	(m	A	rti	ass	sp	olut	ke	wa	wa	A	/r	ral	lat	E'	EF
	D	ized	D	zed	(mL	indexe	(mL	me	Ventr	indexed	poste	ed or	T	1	SS	s/	s/h ²	met	m)	(m	c	:	he	e &	vol	ve	ve	rat	r	valv	era		(%
	(m	or	(m	or)	d)	Index	icular	ventricu	rior	index		wall	(g)	BS	(g/	er		m)	ro	Vo	ric	glo	ume	(c	(c	io	at	e E-	1)
	m)	ind	m)	inde		(mL/m		(mL/	septu	lar	free	ed		thic		A	m²)	(m			ot	lu	ity	bal	ind	m/	m/		i	wav			
		exe		xed		2)		m²)	m	septum	wall	poste		kne		(g/		m)			(m	me		LV	ex	s)	s)		0	e			
		d		LVE					(mm)	(mm/m ²	(mm)	rior		SS		m²)					m)			lon	(mL					velo			
		LVE		SD)		free		(m										gitu	/m ²)					city			
		DD		(m								wall		m)										din						(m/s			
		(m		m/m								(mm/												al)			
		m/		2)								m²)												strai									
		m²)																						n									
																								(%)									
Dem		-	28.	-	100±		32.0		8.9±1.	-	9.0±1.	-		≥13	17	106±		-	No	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ola <i>et</i>			5±			differe	±9.0	differ			3			mm:		22.0			dif														
al[38],			4.0		(n=3	nce	(n=3	ence	(n=30		(n=30		0.0	4/1	47.	(n=3	(n=3		fer														
2019	(n		(n		0)		0)) Vs) Vs		4	54	0	0)	0)		en														
	=3		=3		Vs		Vs		7.8±1.		7.9±1.		(n	(x%)	(n	Vs	Vs		ce														
	0)		0)		97.0		32.0		1		4		=6	Vs 0	=3	94.0	38.0																
	Vs		Vs		±26.		±11.		(n=60		(n=60		0)		0)	±18.	±7.0																
	46.		28.		0		0),),		Vs		Vs	0	(n=6																
	4±		3±		(n=6		(n=6		p<0.0		p<0.0		0.3		14	(n=6	0),																
	4.3		3.6		0)		0)		001		001		4±		9±	0),	p=0.																
	(n		(n										0.0		46.	p=0.	021																
	=6		=6										4		0	005																	
	0)		0)										(n		(n																		
													=6		=6																		
													0),		0),																		
													p<		p=																		
													0.0		0.0																		

									00	0	9								
									1										
Di	51.	28.3	32.	18.1	9.7±1.	5.4±0.8	9.6±1.	5.3±0.	-		1	01	35	30	77.	40.	2.0	0	65.
Paolo	0±	±2.3	7±	±2.2	3	(n=154)	4	8			4	±18	5±	0±	2±	3±	±0.	3	0±
et	3.6	(n=1	3.5	(n=1	(n=15	Vs	(n=15	(n=15			.7	7	4.5	3.9	13.	9.3	6	8	6.0
al[39],	(n	54)	(n	54)	4) Vs	5.0±0.5	4) Vs	4) Vs	3		(1	n=1	(n	(n	2	(n	(n	±	(n
2012	=1	Vs	=1	Vs	9.2±1.	(n=62),	9.0±0.	4.8±0.			5	4)	=1	=1	(n	=1	=1	0.	=1
	54)	28.0	54)	17.9	0	p<0.001	8	5			V	⁷ s	54)	54)	=1	54)	54)	0	54)
	Vs	±1.6	Vs	±1.8	(n=62		(n=62	(n=62			9	2.4	Vs	Vs	54)	Vs	Vs	5	Vs
	51.	(n=6	33.	(n=6),),),			<u>±</u>	13.	32.	29.	Vs	43.	2.1	(64.
	9±	2)	1±	2)	p<0.0		p<0.0	p<0.0			2		3±	2±	90.	1±	±0.	n	0±
	2.6		3.3		01		01	01			(1	n=6	2.9	2.6	1±	0.6	5	=	5.0
	(n		(n								2),	(n	(n	16.	(n	(n	1	(n
	=6		=6								p	o<0.	=6	=6	5	=6	=6	5	=6
	2)		2)								0	01	2),	2)	(n	2),	2)	4)	2)
													p<		=6	p<		V	
													0.0		2),	0.0		S	
													01		p<	3		0.	
															0.0			3	
															01			5	
																		±	
																		0.	
																		0	
																		3	
																		(
																		n	
																		=	
																		6	
																		2)	
																		,	
																		р	

```
<
                                                                                                                                                                      0.
                                                                                                                                                                      0
                                                                                                                                                                      0
                                                                                                                                                                     1
                                                                                                                                                        86. 44. 1.9
Galan 50. -
                 31. -
                            116± -
                                          41.0 -
                                                      10.1± -
                                                                      9.7±0. -
                                                                                     0.3 -
                                                                                                    99.5 -
                                                                                                               22.0
                                                                                                                     33. 30. -
                                                                                                                                            GLS -
                                                                                                                                                                                        66.
                                                                                    9±
                                                                                                                    0± 5±
ti et 0±
                 0±
                            2.0
                                          \pm 2.8
                                                      0.1
                                                                      1
                                                                                                    \pm 1.7
                                                                                                               \pm 0.2
                                                                                                                                                        3±
                                                                                                                                                            4\pm
                                                                                                                                                                6±
                                                                                                                                                                                        0\pm
                                                                                                                                            :
al[40], 0.4
                                                                                                               (n=7 2.8 1.2
                                                                                                                                                        2.1 2.1 1.0
                 0.5
                            (n=7)
                                          (n=7)
                                                       (n=77)
                                                                       (n=77)
                                                                                     0.1
                                                                                                                                            -22.
                                                                                                                                                                                        0.4
                                                                                                    (n=7)
2019
                                                                                                                         (n
       (n
                            7)
                                          7)
                                                      ) Vs
                                                                      ) Vs
                                                                                                    7)
                                                                                                                     (n
                                                                                                                                            4±0.
                                                                                                                                                        cm cm (n
                                                                                                                                                                                        (n
                 (n
                                                                                     (n
                                                                                                               7)
                                                                                                                                            5
       =7
                                          Vs
                                                      9.4\pm0.
                                                                       9.2\pm0.
                                                                                     =7
                                                                                                               Vs
                                                                                                                     =7
                                                                                                                                                                                        =7
                 =7
                            Vs
                                                                                                    Vs
                                                                                                                        =7
                                                                                                                                                            (n
                                                                                                                                                                =7
                                                                                                                                                        (n
                 7)
                                                                                                               23.0
                                                                                                                    7)
                                                                                                                         7)
                                                                                                                                                        =7 =7 7)
                                                                                                                                                                                        7)
       7)
                                                      1
                                                                      1
                                                                                     7)
                                                                                                    97.4
                            124\pm
                                          41.0
                                                                                                                                            (n=7)
                                                                                                                    Vs Vs
                                                                                                                                                            7) Vs
                                                                                                                                                                                        Vs
       Vs
                 Vs
                            2.0
                                          ±0.9
                                                       (n=53)
                                                                                     Vs
                                                                                                    ±1.5
                                                                                                               ±1.5
                                                                                                                                            7)
                                                                                                                                                        7)
                                                                       (n=53)
                                                                                                               (n=5 32. 29.
                                                                                                                                                        Vs Vs 1.9
                                                      ),
                                                                      ),
       51.
                 32.
                                                                                     0.3
                                                                                                                                            Vs
                                                                                                                                                                                        66.
                            (n=5)
                                          (n=5)
                                                                                                    (n=5)
                                                      p<0.0
                                                                                                                     1± 8±
                                                                                                                                                                                        0±
       0\pm
                 0±
                                                                       p<0.0
                                                                                                                                            -23.
                                                                                                                                                        85. 44. 4±
                            3),
                                          3)
                                                                                     8±
                                                                                                    3)
                                                                                                               3)
                                                                                                                                                       2± 8± 1.2
                 0.3
                                                      01
                                                                                                                     3.0 2.8
       0.6
                            p<0.
                                                                      01
                                                                                     0.2
                                                                                                                                            4±0.
                                                                                                                                                                                        0.6
                                                                                                                                            7
                                                                                                                                                       1.5 0.9 (n
                            005
                                                                                                                         (n
                                                                                                                     (n
                                                                                                                                                                                        (n
       (n
                 (n
                                                                                     (n
                                                                                                                     =5
                                                                                                                         =5
       =5
                 =5
                                                                                     =5
                                                                                                                                            n=5
                                                                                                                                                        cm cm = 5
                                                                                                                                                                                        =5
       3)
                 3)
                                                                                                                                                            (n 3)
                                                                                     3)
                                                                                                                     3)
                                                                                                                         3)
                                                                                                                                            3)
                                                                                                                                                                                        3)
                                                                                                                                                        (n
                                                                                                                                                        =5
                                                                                                                                                           =5
                                                                                                                                                       3)
                                                                                                                                                            3)
       50. 26.6
                                                      LVW -
                                                                                               17 89.6 -
                                                                                                                              27.
                                                                                                                                                                 2.0
Malh
                                                                                     0.3 -
                                                                                                               36.4 -
      6± ±2.1
                                                      T:
                                                                                                                              9±
                                                                                                                                                                 2\pm
                                                                                     8±
                                                                                               1± ±17.
                                                                                                               \pm 4.8
otra
       4.0 9
                                                      10.1 \pm
                                                                                               35. 5
                                                                                                                                                                 0.5
                                                                                     0.0
                                                                                                                              3.2
                                                                                                               (n=1)
al[41], (n (n=1
                                                      1.4
                                                                                     4
                                                                                               0
                                                                                                   (n=1)
                                                                                                               000)
                                                                                                                              6
                                                                                                                                                                 (n
2021
      =1 000)
                                                      (n=10)
                                                                                                   000)
                                                                                                               Vs
                                                                                                                                                                 =1
                                                                                     (n
                                                                                               (n
                                                                                                                              (n
       00 Vs
                                                      00)
                                                                                               =1 Vs
                                                                                                                                                                 00
                                                                                     =1
                                                                                                               36.6
                                                                                                                              =1
           27.9
                                                      Vs
       0)
                                                                                     00
                                                                                               00
                                                                                                   88.1
                                                                                                                              00
                                                                                                                                                                 0)
                                                                                                               \pm 4.8
       Vs \pm 2.1
                                                      9.15 \pm
                                                                                     0)
                                                                                               0)
                                                                                                   ±16.
                                                                                                               (n=1)
                                                                                                                              0)
                                                                                                                                                                 Vs
       52. 2
                                                      1.3
                                                                                     Vs
                                                                                               Vs 5
                                                                                                               000)
                                                                                                                              Vs
                                                                                                                                                                 2.1
       4\pm (n=1
                                                      (n=10)
                                                                                     0.3
                                                                                               16 (n=1
                                                                                                                              27.
                                                                                                                                                                 ±0.
       3.9 000)
                                                      00),
                                                                                     6±
                                                                                               8± 000)
                                                                                                                              6±
                                                                                                                                                                 6
```

(n	,						p<0.0		0.0	33	. ,				3.2							(n					
	, p<0.						001		5		p=0.				(n							=1					
00							001		(n	(n					=1							00					
0),									=1	=1					00							0),					
p<									00	00					0),							p=					
0.0									0),	0),					p=							0.0					
00									p<	p=					0.0							01					
1									0.0	0.0					1							2					
									00	48																	
									1																		
Mone -	29.0		_	89.0±1	-	21.0±			0.3 -	-	81.0 -	_	-	-	_	0.9	1.7	Abs	49.0	_	_	_	- 0.8	.82	17.	5.0	58.
ghetti	±2.0			2.0		6.0			1±		±10.						8±	olut							0±	±1.	
et	(n=7			(n=71)		(n=71			0.0		0						0.1	e:	(n=7				8				4.0
al[42],	1)			Vs) Vs			3		(n=7					9	4	18.6					(r	n=7	(n	(n	(n
2020	Vs			93.0±1		24.0±			(n		1)					(n	(n	±2.0	Vs				1))	=7	=7	
	29.0			2.0		6.0			=7		Vs					=7	=7		53.0				V	s	1)	1)	1)
	±2.0			(n=130		(n=13			1)		78.0					1)	1)	1)	±9.0				0.	.78	Vs	Vs	Vs
	(n=1),		0),			Vs		±11.					Vs	Vs	Vs	(n=1				<u>±</u> (0.1	16.	5.0	59.
	30)			p=0.02		p=0.0			0.2		0					0.8	1.8	19.0	30),				5		3±	±1.	0±
				5		05			9±		(n=1					3±	1±	±2.0	p=0.				(n	ı=1	3.2	2	4.0
									0.0		30)					0.0	0.1	(n=1	003				30))	(n	(n	(n
									2							8	3	30)							=1	=1	=1
									(n							(n	(n								30)	30)	30)
									=1							=1	=1										
									30)							30)	30)										
									,							,											
									p<							p<											
									0.0							0.0											
									01							01											
Pelà 45		27	109±	-	35.0	-	9.8±1	10.0± -	0.4 Ma	ıx Al	o 117± -	-	-	-	-	-	-	-	-	-	-	-			-	-	-
et 8±	:	8±	22.0		±11.		7	1.8	4± ima	al so	1 27.0																

al[43],	3.8	4.1	(n=4	0	(n=42	(n=42	0.0	:	ute	(n=4			
2015	(n	(n	2)	(n=4) Vs) Vs	7	10.3	:	2)			
	=4	=4	Vs	2)	8.5±1.	8.1±1.	(n	±1.7	19	Vs			
	2)	2)	111±	Vs	2	2	=4	(n=4	4±	101±			
	Vs	Vs	24.0	37.0	(n=96	(n=96	2)	2)	58.	20.0			
	47.	29.	(n=9	±12.),),	Vs	Vs	0	(n=9			
	2±	2±	6)	0	p<0.0	p<0.0	0.3	8.8±	(n	6),			
	4.5	4.2		(n=9	01	01	5±	1.1	=4	p<0.			
	(n	(n		6)			0.0	(n=9	2)	001			
	=9	=9					4	6),	Vs				
	6),	6)					(n	p<0.	16				
	p<						=9	001	4±				
	0.0						6),		45.				
	5						p<		0				
							0.0		(n				
							01		=9				
									6),				
									p<				
									0.0				
									01				
Sheik	51						0.3	Max	-	98.0	34	29	2.1
h et	4±						9±	imal		±23.	7±	0±	9±
al[44],	5.0						0.0	:		5	4.7	3.1	0.7
2013	(n						7	10.0		(n=3	(n	(n	8
	=3						(n	±1.5		29)	=3	=3	(n
	29)						=3	(n=3		Vs	29)	29)	=3
	Vs						29)	29)		95.3	Vs	Vs	29)
	51.						Vs	Vs		±	33.	28.	Vs
	0±						0.3	9.3±		21.3	8±	8±	2.2
	5.1						7±	1.2		(n=9	4.5	3.6	1±
	(n						0.0	(n=9		03)	(n	(n	0.7

=9	6 03),	=9	=9	8
03)	(n p<0.	03)	03)	(n
	=9 001		,	=9
	03)		p<	03)
	,		0.0	
	p<		01	
	0.0			
	01			

Supplementary Table 10 Risk of bias assessment-Electrocardiographic parameters

Ref.	Pre-intervention	on and at	-intervention	Post-intervent	ion domains			Overall risk	
	domains								
	Confounding	Measurement	Selection of	Post-	Missing data	Measurement	Selection of	•	
		of exposure	participants	exposure		of outcomes	the reported		
				interventions			result		
Demola et	Some concern	High-risk	Low-risk	Low-risk	High-risk	Low-risk	Low-risk	High-risk	
al[38], 2019									
Di Paolo et	High-risk	Low-risk	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[39], 2012									
Galanti et	High-risk	Low-risk	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[40], 2019									
Malhotra et	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[41], 2021		concerns							
Moneghetti et	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[42], 2020		concerns							
Pelà et al[43],	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
2015	8	concerns						0	
Sheikh et	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[44], 2013	111811-1191		TO 44-112K	LOW-115K	Some concerns	LOW-113K	LOW-113K	111811-119K	
ш[тт], 2013		concerns							

Supplementary Table 11 Risk of bias assessment-Echocardiographic parameters

Ref.	Pre-intervention and at-intervention Post-intervention domains								
	domains								
	Confounding	Measurement	Selection of	Post-exposure	Missing data	Measurement	Selection of the		
		of exposure	participants	interventions		of outcomes	reported result		
Demola et	Some concern	High-risk	Low-risk	Low-risk	High-risk	Low-risk	Low-risk	High-risk	
al[38], 2019									
Di Paolo et	High-risk	Low-risk	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[39], 2012									
Galanti et	High-risk	Low-risk	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[40], 2019									
Malhotra <i>et</i>	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[41], 2021		concerns							
Moneghetti	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
et $al[42],$		concerns							
2020									
Pelà et	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[43], 2015		concerns							
Sheikh et	High-risk	Some	Low-risk	Low-risk	Some concerns	Low-risk	Low-risk	High-risk	
al[44], 2013	-	concerns						-	