

## **SUPPLEMENTARY METHODS**

### ***Non-contrast computed tomography (NCCT) imaging acquisition***

A 64-slice dual-source CT scanner (Siemens, Somatom Definition, Germany) was used for the NCCT scan. The scanning range was from the skull base to the top with scan thickness of 5 mm, a tube current of 550~600 mAs, a tube voltage of 120 KV, a field of view (FOV) of 25 cm, and a matrix size of  $512 \times 512$ .

### ***Handcrafted radiomics feature***

Handcrafted radiomics features were computed from the radiologist-drawn regions of interest (ROIs) using an open-source python package PyRadiomics (version 2.1.2) on hepatoma and perihematoma edema (PHE) volumes, respectively. The online documentation of PyRadiomics package depicts the detailed formation of radiomics features (<https://pyradiomics.readthedocs.io/en/latest/features.html>). We set resampled voxel sizes as  $1 \times 1 \times 1 \text{ mm}^3$  voxels for the slice thickness standardization, the bin width of image intensities as 25 HU, and voxel array shift as 1000. To allow the involvement of the whole tumor and avoid interference from the air and bone tissues, segmented voxels were resampled with the range of 50 to 400 HU. Defined radiomic image features without/with wavelet filtration were extracted to interpret tumor characteristics comprehensively. Wavelet filtration filtered original image with two pass filters, high pass filter (H) and low pass filter (L) for three directions, x, y and z respectively, which represented a total of eight different combinations of decompositions. The extracted radiomics features could be classified into three groups: (a) first-order statistics, (b) shape features, (c) second-order statistics. Most radiomics features mentioned above showed consistency with feature definitions in accordance with the IBSI guidelines (available document online).

There are differences in gray value discretization for the fixed bin size type and resampling, both of which cannot be corrected by customization settings alone and require replacement by custom functions (shown in the Pyradiomics documents). There are two features available in PyRadiomics without definitions in the IBSI, Total Energy and Standard Deviation. Entropy in Pyradiomics is defined by IBSI named Intensity Histogram Entropy. Uniformity in Pyradiomics is defined by IBSI named Intensity Histogram Uniformity. Mesh Volume in Pyradiomics is defined named Volume. Voxel Volume in Pyradiomics is defined in IBSI named Approximate Volume. Joint Energy in Pyradiomics is defined by IBSI named Angular Second Moment. Maximum Probability in Pyradiomics is defined by IBSI named Joint maximum. Sum of Squares in Pyradiomics is defined by IBSI named Joint Variance. The PyRadiomics kurtosis is not corrected, whereas IBSI kurtosis is corrected by -3, yielding 0 for normal distributions. Despite these features above, the remaining features are consistent with the IBSI definitions.

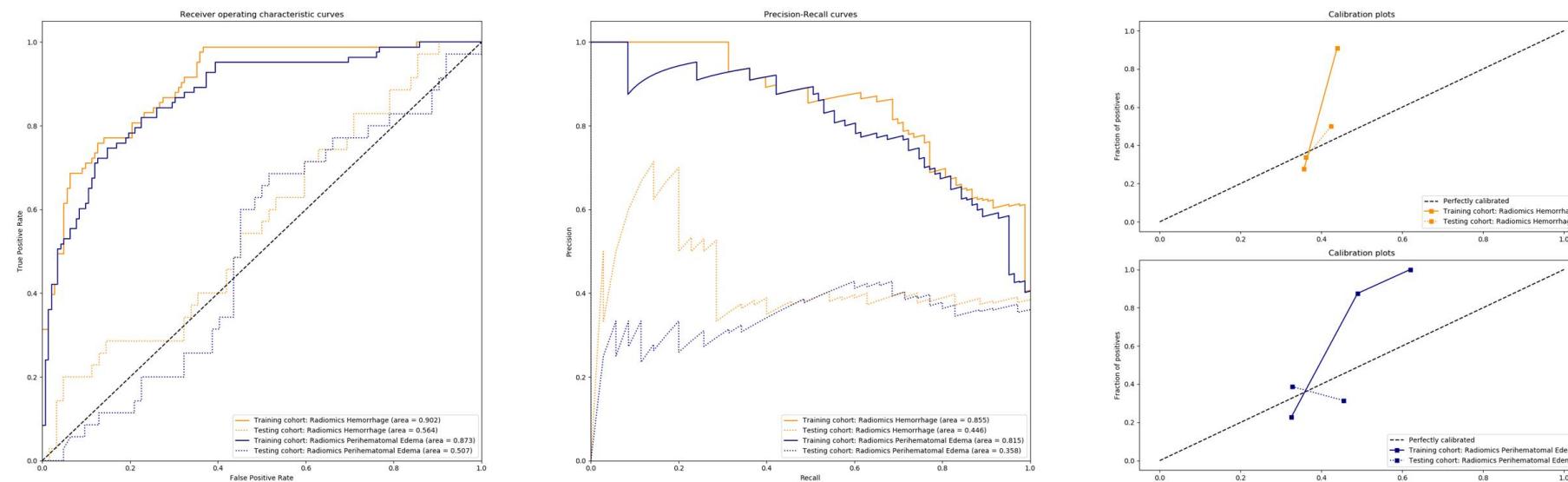
### ***Deep learning features***

**Imaging preprocessing:** With the masked delineation of ROIs for hematoma and PHE, we adjust the size of three consecutive axial slices with maximum tumor into 224 mm \* 224 mm for the input layer of the convolutional neural networks (CNNs) models using a bounding box covering the whole tumor area. The resized images with 3 consecutive axial slices as image channels would be candidate of the CNNs for feature extraction.

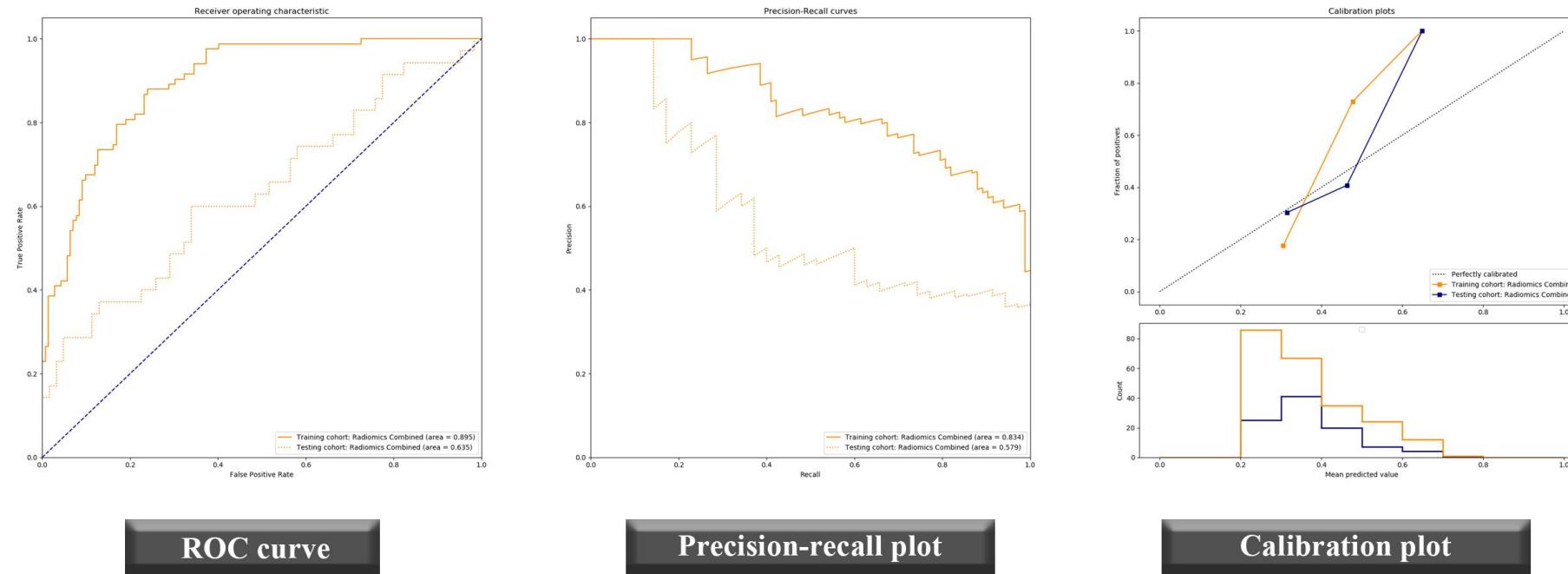
**CNNs architecture:** A total of six base models were applied on hematoma and PHE respectively for the extraction of deep learning features with representativeness, including Xception, VGG16, VGG19, ResNet50, InceptionV3, and InceptionResNetV2. These six CNNs were commonly used and pre-trained by the large-scale and well-annotated ImageNet database. This published research

released dataset containing enormous object categories and manually annotated training images, the optimization hyperparameters of which was not tuned permitting a broader generalization on other datasets. After preprocessing, prepared slices of NCCT images with the maximum axial area of the tumor lesion would be ready as the input of the pre-trained CNNs to generate deep learning features. The models are publicly accessed by Keras and TensorFlow open-source code (<https://github.com/fchollet/deep-learning-models/>).

#### **Elimination of the last fully-connected layer:**


The convolutional base is connected by a fully-connected layer for the pre-trained models. We removed the last fully-connected layer, and then different CNNs reached various numbers of feature maps (2048 for ResNet50, InceptionV3 and Xception, 512 for VGG16 and VGG19, and 1536 for InceptionResNetV2) from the new output of these models.

**Addition of max pooling layer and feature extraction:** With the utility of a global pooling window, local data would be concentrated into a decreased dimensionality. After Step 3.3, for models with more than one-dimensional features, we got feature maps with height and width dimensions corresponding to location invariance in the input layer. After global max pooling, each feature map vector was transformed to a maximal raw value among them. During this step, the feature maps were transformed to numeric values, as representational deep learning features.

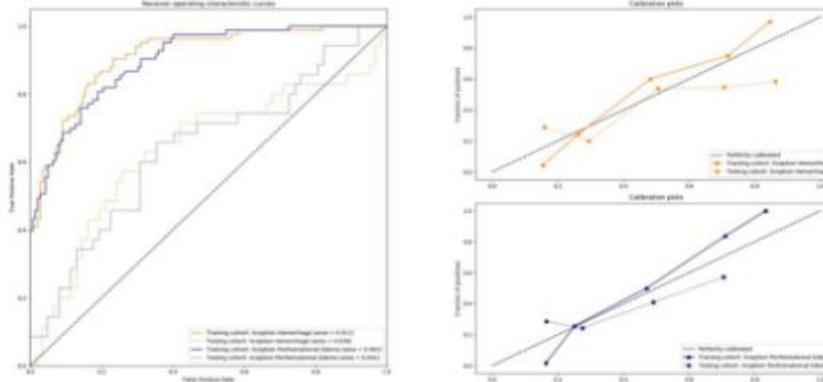
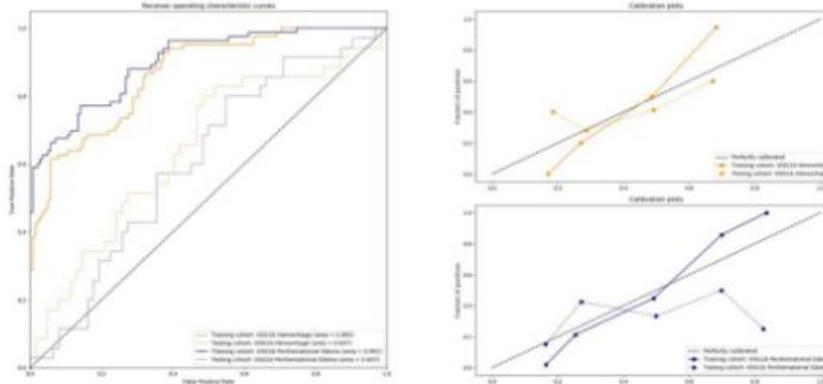
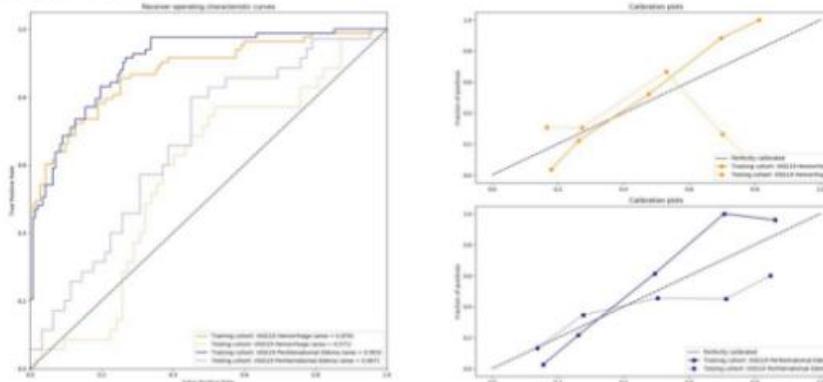

#### *Statistical analysis*

Feature robustness for inter-observer reproducibility was assessed by intra-class correlation coefficients (ICCs) using “*irr*” R package. Discrimination abilities were tested by Harrell's concordance indices (C-index) and calibration curves using “*rms*” and “*Hmisc*” R packages. The depiction of nomogram was depicted by “*Hmisc*” package. The decision curve analysis was performed by “*rmada*” R package.

## Handcrafted radiomic model (Hemorrhage- or edema-derived features)

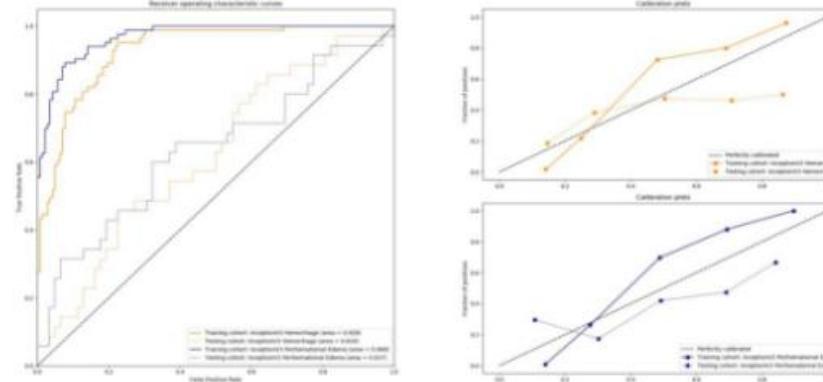
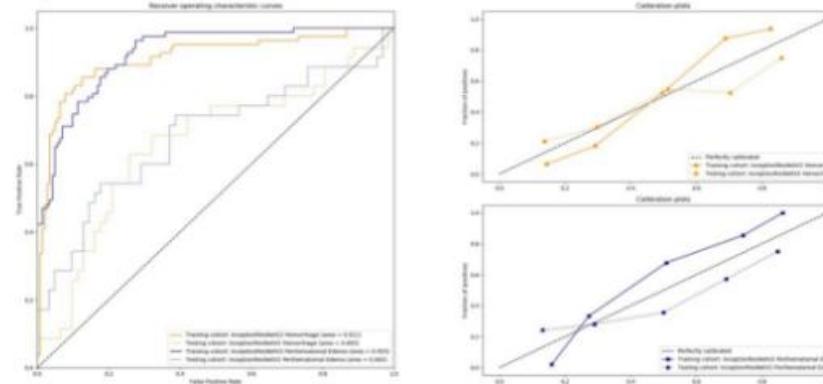
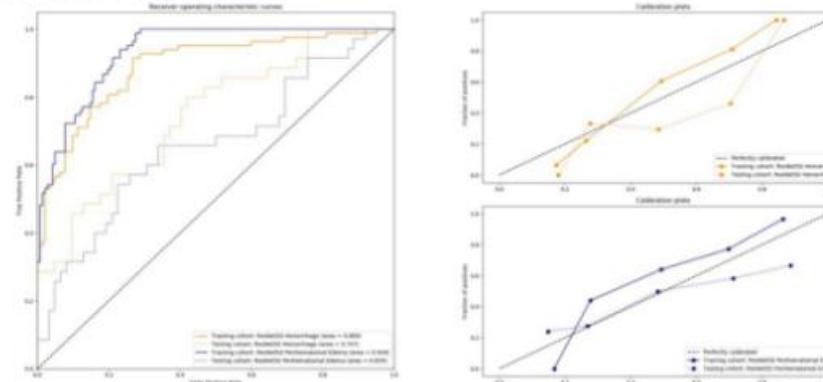


## Handcrafted radiomic model (Combining hemorrhage- and edema-derived features)


ROC curve

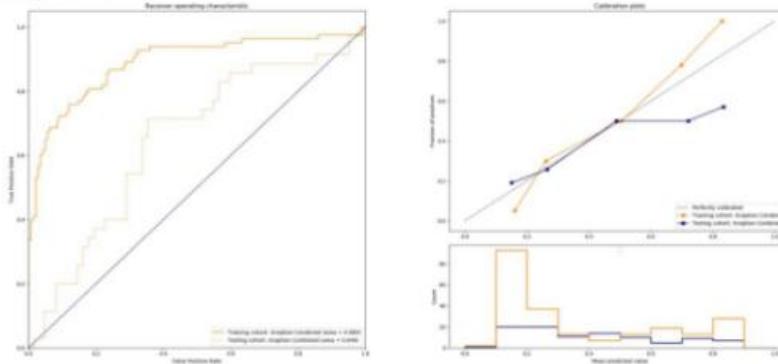
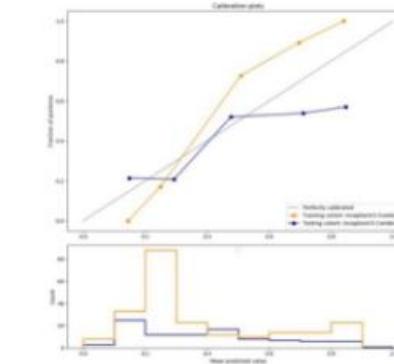
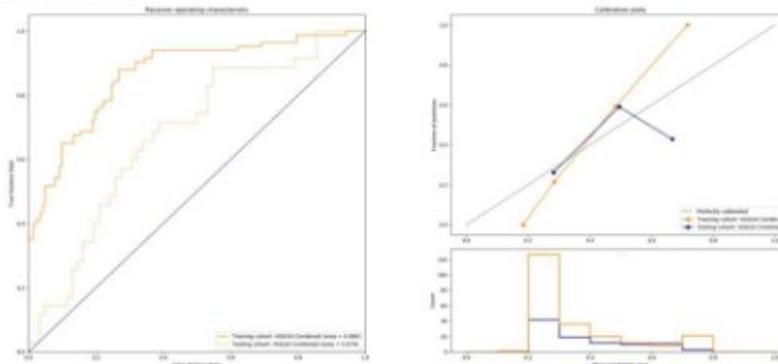
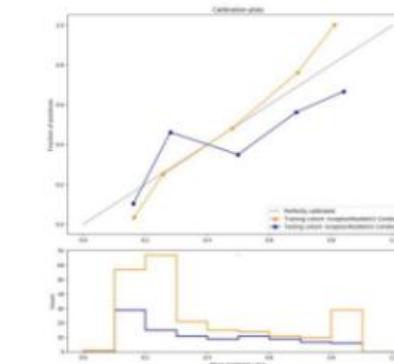
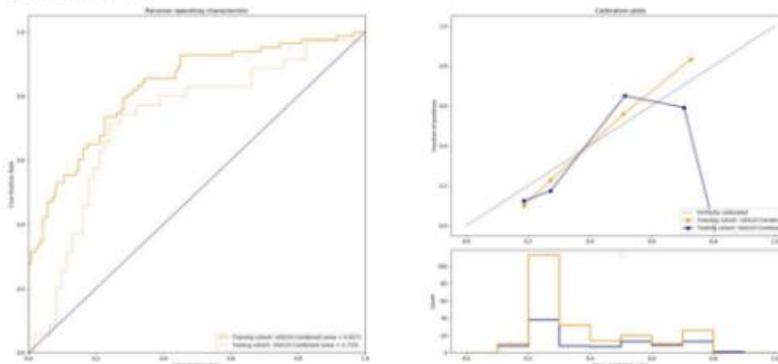
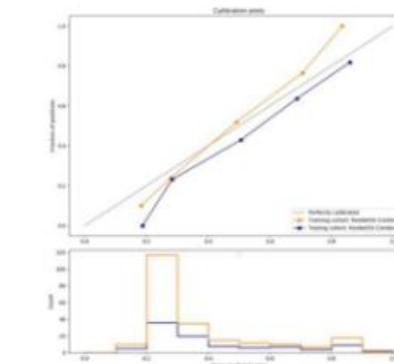
Precision-recall plot




Calibration plot

**Supplementary Figure 1 Evaluation of predictive performance of handcrafted radiomics models in prediction of early enlargement of spontaneous intracerebral hemorrhage on patients in the training and testing cohorts.** Evaluation of predictive performances for handcrafted radiomics models using hemorrhage-derived, perihematomal edema-derived, and combined features by ROC analysis, precision-recall plots, and calibration analysis. ROC, Receiver operating characteristic.

**A. Xception-SVM****B. VGG16-SVM****C. VGG19-SVM**

ROC curve







Calibration plot

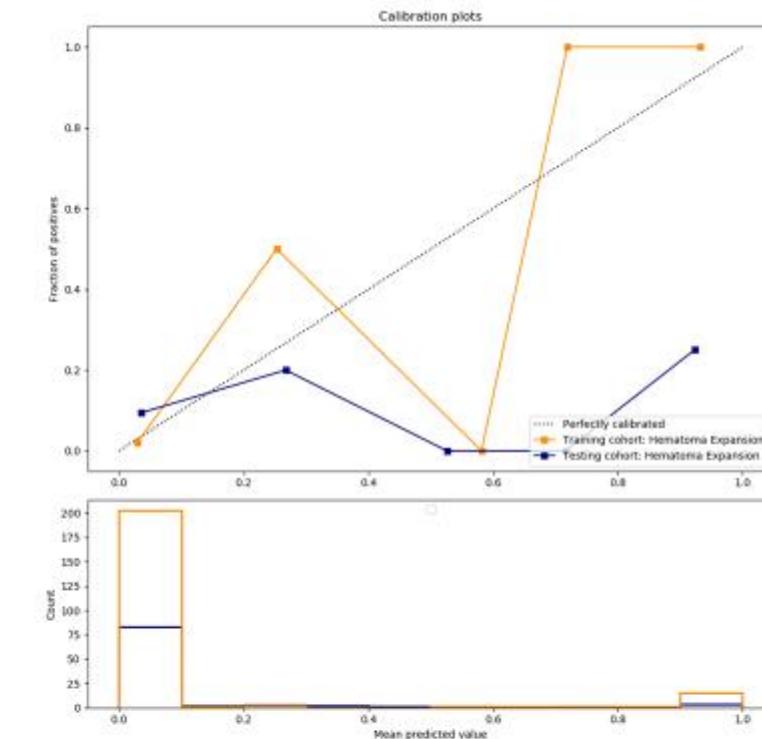
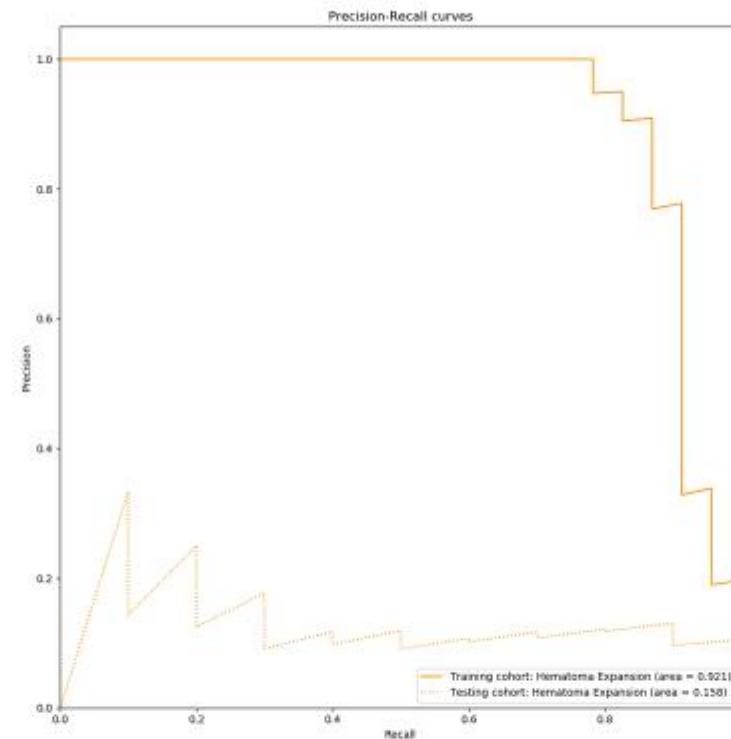
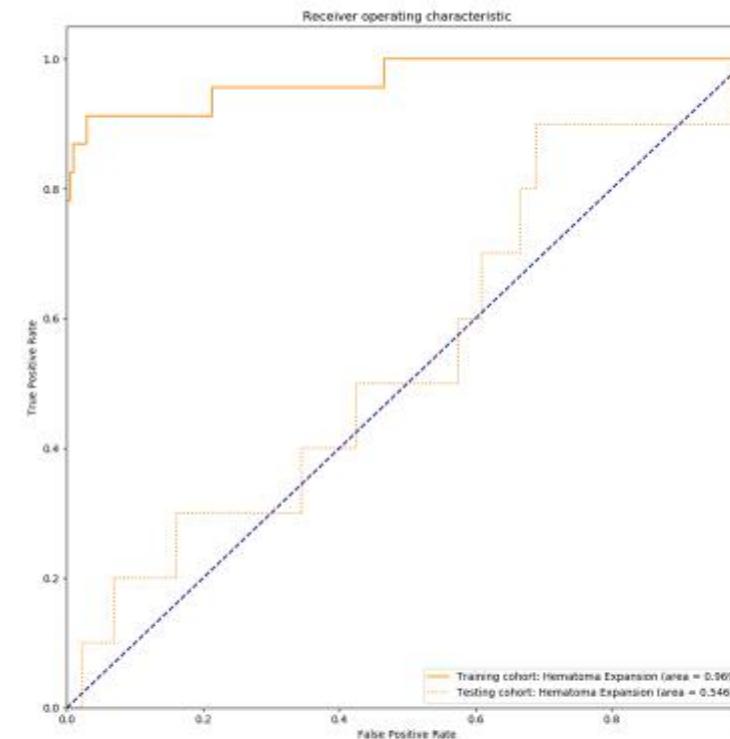
**D. InceptionV3-SVM****E. InceptionResnetV2-SVM****F. ResNet50-SVM**

ROC curve

Calibration plot

**Supplementary Figure 2 Evaluation of predictive performance of DL-SVM models on hemorrhage- or perihematomal edema-derived features in prediction of early enlargement of spontaneous intracerebral hemorrhage on patients in the training and testing cohorts.** Evaluation of predictive performances for DL-SVM models using hemorrhage-derived or perihematomal edema-derived DL-associated features by ROC analysis and calibration analysis. DL, Deep learning; SVM, Support vector machine; ROC, Receiver operating characteristic.

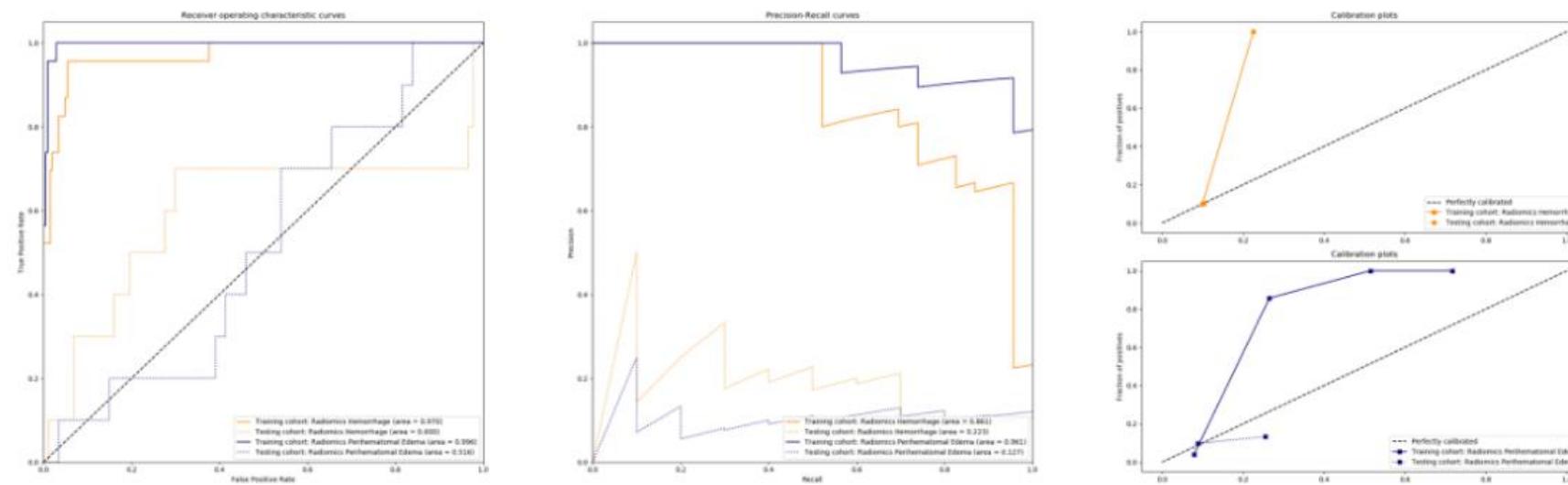
**A. Xception-SVM****D. InceptionV3-SVM****B. VGG16-SVM****E. InceptionResnetV2-SVM****C. VGG19-SVM****F. ResNet50-SVM**




ROC curve

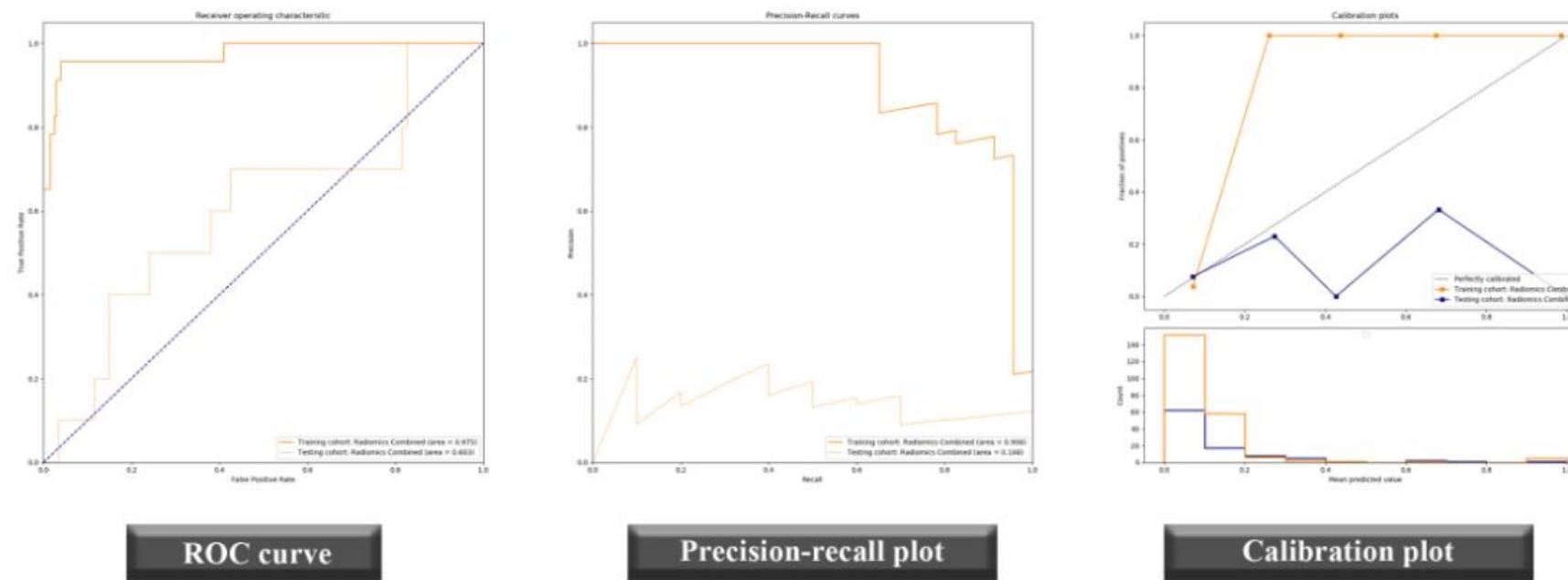
Calibration plot

ROC curve

Calibration plot


**Supplementary Figure 3 Evaluation of predictive performance of DL-SVM models combining hemorrhage- and perihematomal edema-derived features in prediction of early enlargement of spontaneous intracerebral hemorrhage on patients in the training and testing cohorts.** Evaluation of predictive performances for DL-SVM models integrating hemorrhage- and perihematomal edema-derived features DL-associated features by ROC analysis and calibration analysis. DL, Deep learning; SVM, Support vector machine; ROC, Receiver operating characteristic.



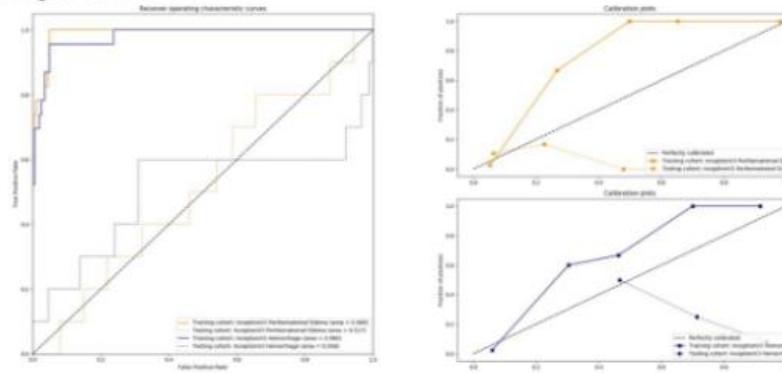
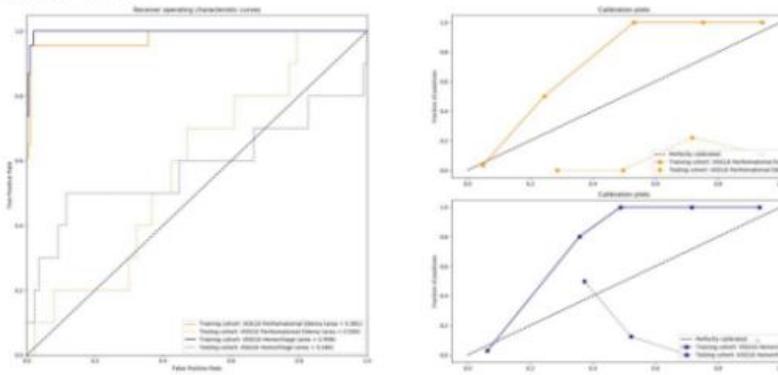
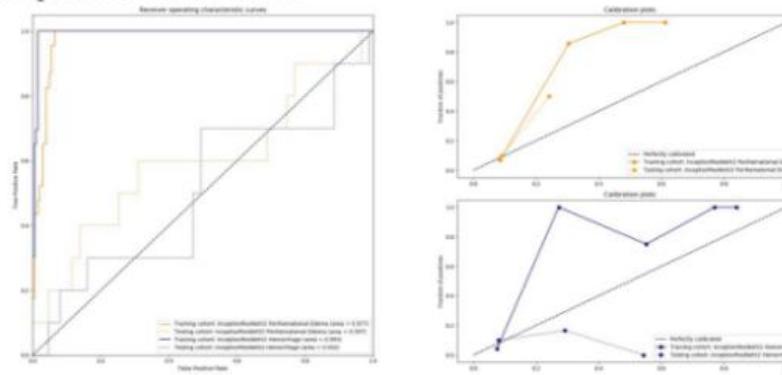
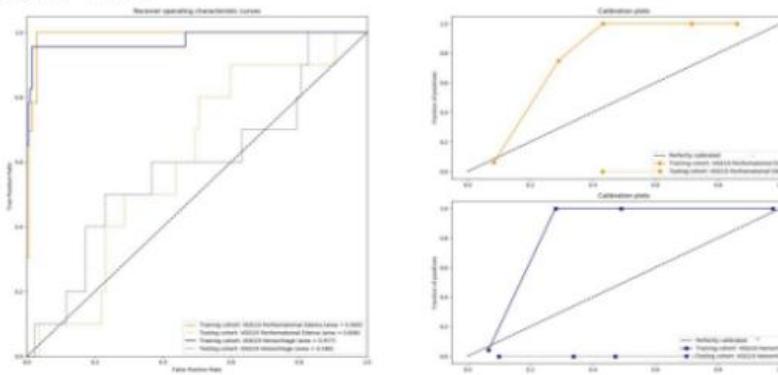
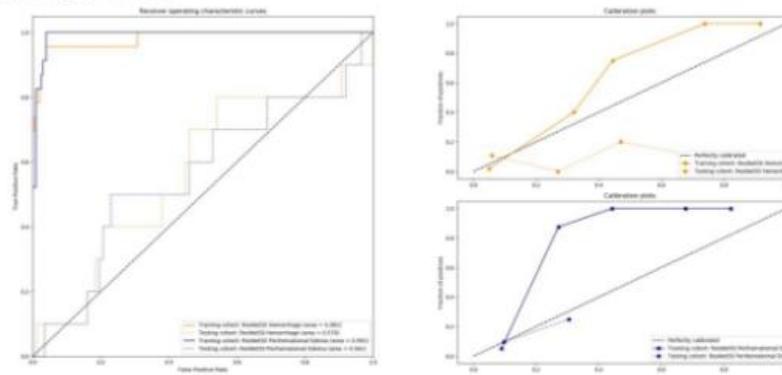

**Supplementary Figure 4 Evaluation of predictive performance of hematoma expansion in prediction of hospital death on patients in the training and testing cohorts.** Evaluation of predictive performances for hematoma expansion by ROC analysis, precision-recall plots, and calibration analysis.

Abbreviations: ROC, Receiver operating characteristic.

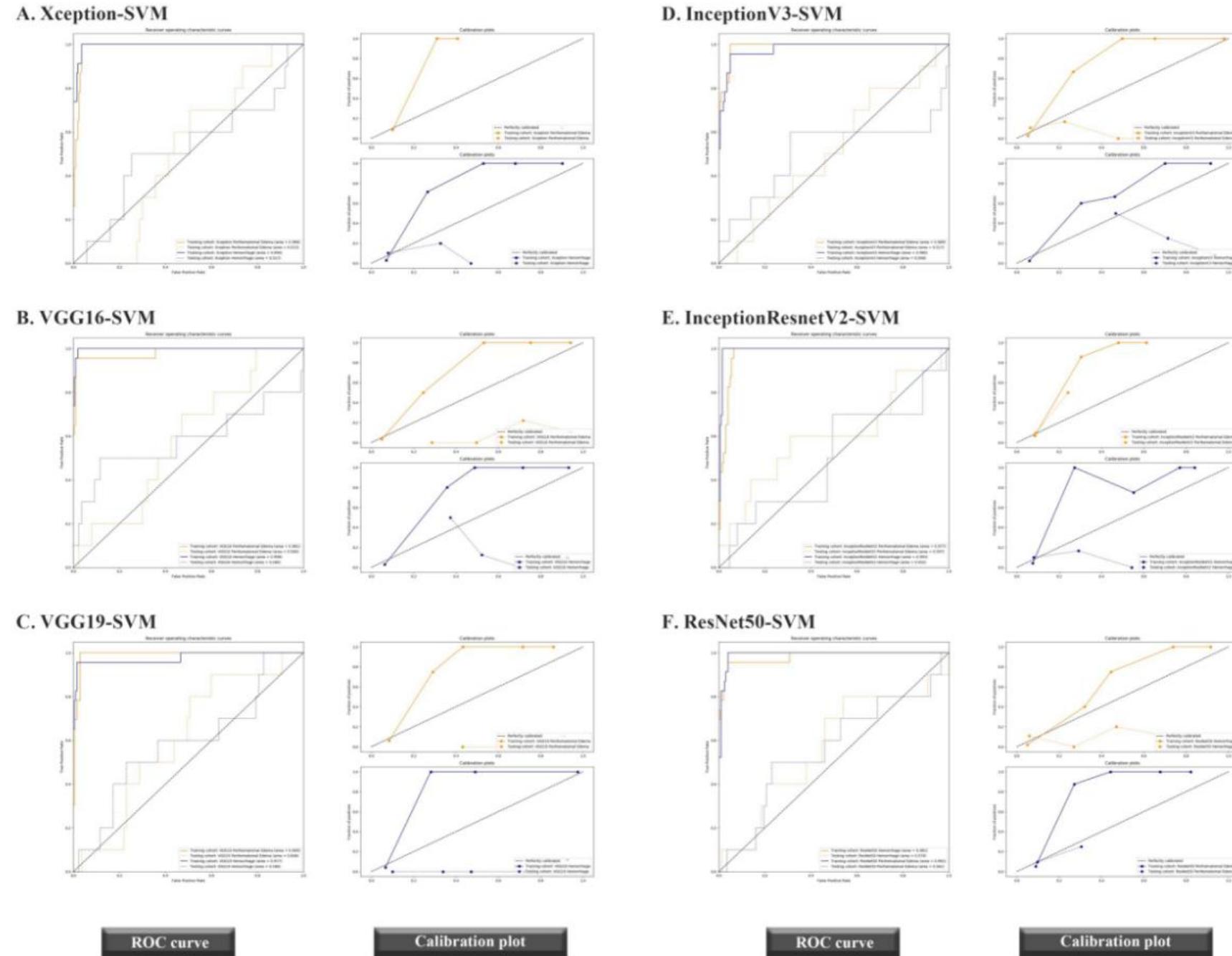
## Handcrafted radiomic model (Hemorrhage- or edema-derived features)



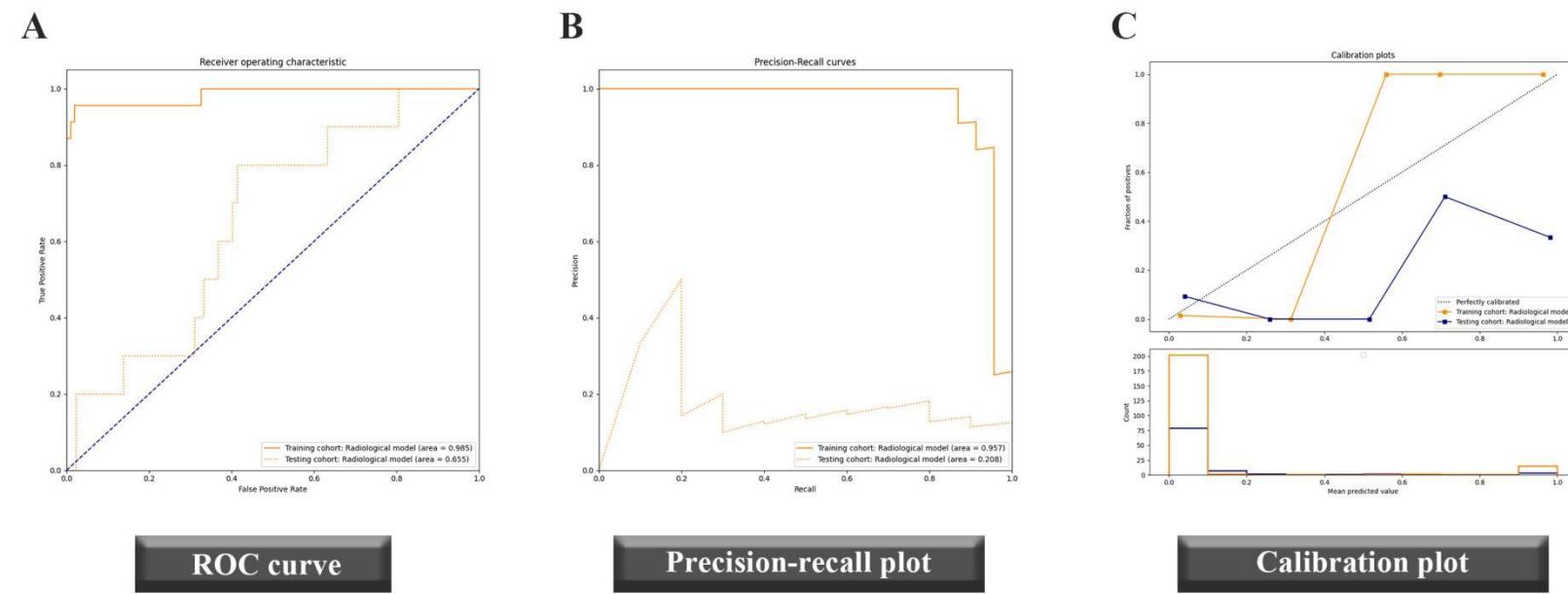
## Handcrafted radiomic model (Combining hemorrhage- and edema-derived features)


ROC curve


Precision-recall plot

Calibration plot


**Supplementary Figure 5 Evaluation of predictive performance of handcrafted radiomics models in prediction of hospital death on patients in the training and testing cohorts.** Evaluation of predictive performances for handcrafted radiomics models using hemorrhage-derived, perihematomal edema-derived, and combined features by ROC analysis, precision-recall plots, and calibration analysis. ROC, Receiver operating characteristic.

**A. Xception-SVM****D. InceptionV3-SVM****B. VGG16-SVM****E. InceptionResnetV2-SVM****C. VGG19-SVM****F. ResNet50-SVM****ROC curve****Calibration plot****ROC curve****Calibration plot**

**Supplementary Figure.S6. Evaluation of predictive performance of DL-SVM models on hemorrhage- or perihematomal edema-derived features in prediction of hospital death on patients in the training and testing cohorts.** Evaluation of predictive performances for DL-SVM models using hemorrhage-derived or perihematomal edema-derived DL-associated features by ROC analysis and calibration analysis. DL, Deep learning; SVM, Support vector machine; ROC, Receiver operating characteristic.



**Supplementary Figure S7. Evaluation of predictive performance of DL-SVM models combining hemorrhage- and perihematomal edema-derived features in prediction of hospital death on patients in the training and testing cohorts.** Evaluation of predictive performances for DL-SVM models integrating hemorrhage- and perihematomal edema-derived features DL-associated features by ROC analysis and calibration analysis. DL, Deep learning; SVM, Support vector machine; ROC, Receiver operating characteristic.



**Supplementary Figure 8 Evaluation of predictive performance of the radiological model combining handcrafted radiomics and deep learning signatures on non-contrast enhanced CT images in prediction of hospital death on patients in the training and testing cohorts.** Evaluation of predictive performances for the radiological model combining handcrafted radiomics and deep learning signatures by ROC analysis, precision-recall plot, and calibration analysis. DL, Deep learning; SVM, Support vector machine; ROC, Receiver operating characteristic.

**Supplementary Table 1 Predictive performance of radiological models, clinical model and clinical-radiological model in prediction of early enlargement of spontaneous intracerebral hemorrhage on patients in the training cohort**

| Model                 | ROI                 | AUC   | Accuracy | Sensitivity | Specificity | PPV   | NPV   | F1 score | AP score |
|-----------------------|---------------------|-------|----------|-------------|-------------|-------|-------|----------|----------|
| Xception              | Hemorrhage          | 0.911 | 82.67    | 84.34       | 81.69       | 72.92 | 89.92 | 0.782    | 0.873    |
|                       | Perihematomal Edema | 0.901 | 81.78    | 74.70       | 85.92       | 75.61 | 85.31 | 0.752    | 0.862    |
|                       | Combined            | 0.889 | 83.11    | 74.70       | 88.03       | 78.48 | 85.62 | 0.765    | 0.865    |
| VGG16                 | Hemorrhage          | 0.865 | 81.78    | 60.24       | 94.37       | 86.21 | 80.24 | 0.709    | 0.820    |
|                       | Perihematomal Edema | 0.901 | 82.22    | 75.90       | 85.92       | 75.90 | 85.92 | 0.759    | 0.875    |
|                       | Combined            | 0.866 | 78.22    | 86.75       | 73.24       | 65.45 | 90.43 | 0.746    | 0.822    |
| VGG19                 | Hemorrhage          | 0.876 | 78.22    | 84.34       | 74.65       | 66.04 | 89.08 | 0.741    | 0.852    |
|                       | Perihematomal Edema | 0.903 | 79.56    | 90.36       | 73.24       | 66.37 | 92.86 | 0.765    | 0.857    |
|                       | Combined            | 0.827 | 74.22    | 78.31       | 71.83       | 61.90 | 85.00 | 0.691    | 0.775    |
| ResNet50              | Hemorrhage          | 0.889 | 79.56    | 90.36       | 73.24       | 66.37 | 92.86 | 0.765    | 0.851    |
|                       | Perihematomal Edema | 0.934 | 81.78    | 97.59       | 72.54       | 67.50 | 98.10 | 0.798    | 0.893    |
|                       | Combined            | 0.841 | 74.67    | 89.16       | 66.20       | 60.66 | 91.26 | 0.722    | 0.792    |
| InceptionV3           | Hemorrhage          | 0.928 | 83.56    | 93.98       | 77.46       | 70.91 | 95.65 | 0.808    | 0.884    |
|                       | Perihematomal Edema | 0.968 | 90.67    | 87.95       | 92.25       | 86.90 | 92.91 | 0.874    | 0.950    |
|                       | Combined            | 0.946 | 87.11    | 84.34       | 88.73       | 81.40 | 90.65 | 0.828    | 0.914    |
| InceptionResNetV2     | Hemorrhage          | 0.911 | 87.56    | 79.52       | 92.25       | 85.71 | 88.51 | 0.825    | 0.866    |
|                       | Perihematomal Edema | 0.925 | 80.89    | 95.18       | 72.54       | 66.95 | 96.26 | 0.786    | 0.887    |
|                       | Combined            | 0.894 | 77.78    | 87.95       | 71.83       | 64.60 | 91.07 | 0.745    | 0.863    |
| Handcrafted radiomics | Hemorrhage          | 0.902 | 82.67    | 74.70       | 87.32       | 77.50 | 85.52 | 0.761    | 0.855    |

|                    |                     |       |       |       |       |       |       |       |       |
|--------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                    | Perihematomal Edema | 0.873 | 80.89 | 73.49 | 85.21 | 74.39 | 84.62 | 0.739 | 0.815 |
|                    | Combined            | 0.895 | 80.00 | 86.75 | 76.06 | 67.92 | 90.76 | 0.762 | 0.834 |
| Radiological model | /                   | 0.933 | 87.56 | 83.13 | 90.14 | 83.13 | 90.14 | 0.831 | 0.877 |
| Clinical model     | /                   | 0.829 | 79.11 | 74.70 | 81.69 | 70.45 | 84.67 | 0.725 | 0.792 |
| Integrated model   | /                   | 0.973 | 92.00 | 93.98 | 90.85 | 85.71 | 96.27 | 0.897 | 0.943 |

ROI: Region of interest; AUC: Area under the receiver operating characteristic curve; PPV: Positive predictive value; NPV: Negative predictive value; AP: Average precision.

**Supplementary Table 2 Handcrafted radiomics features of the whole volume selected for early enlargement of spontaneous intracerebral hemorrhage**

| ROI                 | Index | Filter <sup>a</sup>        | Feature class            | Feature                              |
|---------------------|-------|----------------------------|--------------------------|--------------------------------------|
| Hemorrhage          | 1     | Wavelet (LHL)              | GLSZM                    | Gray Level Non Uniformity Normalized |
|                     | 2     | Original <sup>b</sup>      | First order <sup>d</sup> | Interquartile Range                  |
|                     | 3     | Wavelet (LLL) <sup>c</sup> | GLCM                     | Correlation                          |
|                     | 4     | Wavelet (LHH)              | GLCM                     | Imc2                                 |
|                     | 5     | Wavelet (LHL)              | First order              | Median                               |
|                     | 6     | Wavelet (LHL)              | GLSZM                    | Zone Entropy                         |
|                     | 7     | Original                   | GLDM                     | Dependence Variance                  |
|                     | 8     | Wavelet (HHL)              | GLDM                     | Dependence Non Uniformity Normalized |
| Perihematomal edema | 1     | Wavelet (HLL)              | GLDM                     | Dependence Non Uniformity Normalized |
|                     | 2     | Wavelet (HLL)              | GLCM                     | Idn                                  |
|                     | 3     | Wavelet (HLL)              | GLDM                     | Dependence Variance                  |
|                     | 4     | Wavelet (LLH)              | GLRLM                    | Low Gray Level Run Emphasis          |
|                     | 5     | Wavelet (LHH)              | GLCM                     | Correlation                          |
|                     | 6     | Wavelet (LLH)              | First order              | Skewness                             |
|                     | 7     | Wavelet (HLL)              | First order              | Mean Absolute Deviation              |
|                     | 8     | Wavelet (HHH)              | GLSZM                    | Small Area Low Gray Level Emphasis   |

ROI, Region of interest; GLSZM, Gray Level Size Zone Matrix Features; GLCM, Gray Level Co-occurrence Matrix Features; GLDM, Gray Level Dependence Matrix Features.

a: HLH, HLL, HHL, HHH and LLL, representative of high pass or low pass filter on the X, Y, Z three dimensions (H, high pass filter; L, low pass filter);

b: Original, original images without any filter used;

c: Wavelet, wavelet filtrated image;

d: First order, first order statistics.

**Supplementary Table 3 Number of features selected and used in construction of deep learning-SVM models for prediction of early enlargement of spontaneous intracerebral hemorrhage**

| Feature extractor | ROI                 | Number of selected features |
|-------------------|---------------------|-----------------------------|
| Xception          | Hemorrhage          | 8                           |
|                   | Perihematomal edema | 7                           |
|                   | Combined            | 6                           |
| VGG16             | Hemorrhage          | 9                           |
|                   | Perihematomal edema | 7                           |
|                   | Combined            | 9                           |
| VGG19             | Hemorrhage          | 6                           |
|                   | Perihematomal edema | 7                           |
|                   | Combined            | 8                           |
| ResNet50          | Hemorrhage          | 3                           |
|                   | Perihematomal edema | 8                           |
|                   | Combined            | 7                           |
| InceptionV3       | Hemorrhage          | 7                           |
|                   | Perihematomal edema | 10                          |
|                   | Combined            | 10                          |
| InceptionResNetV2 | Hemorrhage          | 7                           |
|                   | Perihematomal edema | 7                           |
|                   | Combined            | 7                           |

SVM, Support vector machine; ROI, Region of interest.

**Supplementary Table 4 Predictive performances of the radiological models constructed by features extracted from different layers of ResNet50 algorithm for prediction of early enlargement of spontaneous intracerebral hemorrhage**

| Layer  | ROI                 | Training cohort |              |              |              |              |              |              |              | Testing cohort |              |              |              |              |              |              |              |
|--------|---------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|        |                     | AUC             | Accuracy     | Sensitivity  | Specificity  | PPV          | NPV          | F1 score     | AP           | AUC            | Accuracy     | Sensitivity  | Specificity  | PPV          | NPV          | F1 score     | AP           |
| Res2b  | Hemorrhage          | 0.829           | 72.00        | 89.16        | 61.97        | 57.81        | 90.72        | 0.701        | 0.774        | 0.614          | 51.55        | 71.43        | 40.32        | 40.32        | 71.43        | 0.515        | 0.508        |
|        | Perihematomal edema | 0.813           | 71.11        | 86.75        | 61.97        | 57.14        | 88.89        | 0.689        | 0.728        | 0.615          | 53.61        | 77.14        | 40.32        | 42.19        | 75.76        | 0.545        | 0.531        |
|        | Combined            | 0.795           | 79.11        | 51.81        | 95.07        | 86.00        | 77.14        | 0.647        | 0.761        | 0.667          | 65.98        | 54.29        | 72.58        | 52.78        | 73.77        | 0.535        | 0.608        |
| Res3d  | Hemorrhage          | 0.929           | 84.00        | 93.98        | 78.17        | 71.56        | 95.69        | 0.813        | 0.837        | 0.671          | 58.76        | 68.57        | 53.23        | 45.28        | 75.00        | 0.545        | 0.589        |
|        | Perihematomal edema | 0.867           | 75.56        | 92.77        | 65.49        | 61.11        | 93.94        | 0.737        | 0.810        | 0.695          | 52.58        | 88.57        | 32.26        | 42.47        | 83.33        | 0.574        | 0.610        |
|        | Combined            | 0.848           | 76.44        | 90.36        | 68.31        | 62.50        | 92.38        | 0.739        | 0.776        | 0.753          | 60.82        | 77.14        | 51.61        | 47.37        | 80.00        | 0.587        | 0.749        |
| Res4f  | Hemorrhage          | 0.917           | 83.56        | 89.16        | 80.28        | 72.55        | 92.68        | 0.800        | 0.891        | 0.683          | 61.86        | 74.29        | 54.84        | 48.15        | 79.07        | 0.584        | 0.583        |
|        | Perihematomal edema | 0.883           | 78.22        | 93.98        | 69.01        | 63.93        | 95.15        | 0.761        | 0.829        | 0.676          | 53.61        | 77.14        | 40.32        | 42.19        | 75.76        | 0.545        | 0.604        |
|        | Combined            | 0.925           | 80.44        | 96.39        | 71.13        | 66.12        | 97.12        | 0.784        | 0.888        | 0.748          | 59.79        | 91.43        | 41.94        | 47.06        | 89.66        | 0.621        | 0.641        |
| Res5c  | Hemorrhage          | <b>0.889</b>    | <b>79.56</b> | <b>90.36</b> | <b>73.24</b> | <b>66.37</b> | <b>92.86</b> | <b>0.765</b> | <b>0.851</b> | <b>0.747</b>   | <b>63.92</b> | <b>82.86</b> | <b>53.23</b> | <b>50.00</b> | <b>84.62</b> | <b>0.624</b> | <b>0.686</b> |
|        | Perihematomal edema | <b>0.934</b>    | <b>81.78</b> | <b>97.59</b> | <b>72.54</b> | <b>67.50</b> | <b>98.10</b> | <b>0.798</b> | <b>0.893</b> | <b>0.659</b>   | <b>46.39</b> | <b>71.43</b> | <b>32.26</b> | <b>37.31</b> | <b>66.67</b> | <b>0.490</b> | <b>0.575</b> |
|        | Combined            | <b>0.841</b>    | <b>74.67</b> | <b>89.16</b> | <b>66.20</b> | <b>60.66</b> | <b>91.26</b> | <b>0.722</b> | <b>0.792</b> | <b>0.774</b>   | <b>60.82</b> | <b>88.57</b> | <b>45.16</b> | <b>47.69</b> | <b>87.50</b> | <b>0.620</b> | <b>0.703</b> |
| FC1000 | Hemorrhage          | 0.755           | 74.23        | 71.43        | 75.81        | 62.50        | 82.46        | 0.667        | 0.525        | 0.573          | 63.11        | 50.60        | 70.42        | 50.00        | 70.92        | 0.503        | 0.416        |
|        | Perihematomal edema | 0.706           | 65.78        | 79.52        | 57.75        | 52.38        | 82.83        | 0.632        | 0.609        | 0.482          | 51.55        | 77.14        | 37.10        | 40.91        | 74.19        | 0.535        | 0.328        |
|        | Combined            | 0.755           | 69.78        | 77.11        | 65.49        | 56.64        | 83.04        | 0.653        | 0.624        | 0.576          | 54.64        | 48.57        | 58.06        | 39.53        | 66.67        | 0.436        | 0.447        |

RROI: Region of interest; AUC: Area under the receiver operating characteristic curve; PPV: Positive predictive value; NPV: Negative predictive value; AP: Average precision.

**Supplementary Table 5 Clinical characteristics of patients with and without hospital death in the training and testing cohorts.**

| Characteristic                       | Training cohort (N = 225) |               |         | Testing cohort (N = 97) |              |         |
|--------------------------------------|---------------------------|---------------|---------|-------------------------|--------------|---------|
|                                      | Dead (n=23)               | Alive (n=202) | P value | Dead (n=10)             | Alive (n=87) | P value |
| <b>Demographic characteristics</b>   |                           |               |         |                         |              |         |
| Age, median (IQR), years             | 56 (20)                   | 62 (26)       | 0.205   | 60 (45)                 | 61 (25)      | 0.799   |
| Gender, Male, No. (%)                | 15 (65.2)                 | 115 (56.9)    | 0.446   | 7 (70.0)                | 54 (62.1)    | 0.740   |
| <b>Clinical features</b>             |                           |               |         |                         |              |         |
| Time to arrival, median (IQR), h     | 1.6 (0.8)                 | 1.5 (0.4)     | 0.600   | 1.6 (0.7)               | 1.6 (0.4)    | 0.361   |
| Time to baseline CT, median (IQR), h | 2.1 (0.3)                 | 2.3 (0.7)     | 0.118   | 2.0 (0.5)               | 2.2 (0.7)    | 0.246   |
| Systolic BP, median (IQR), mmHg      | 135 (46)                  | 147 (44)      | 0.458   | 128 (49)                | 145 (44)     | 0.502   |
| Diastolic BP, median (IQR), mmHg     | 90 (25)                   | 86 (26)       | 0.239   | 72 (9)                  | 85 (25)      | 0.889   |
| Heart rate, median (IQR), bpm        | 82 (19)                   | 80 (17)       | 0.675   | 85 (25)                 | 80 (23)      | 0.705   |
| GCS score, median (IQR)              | 11 (8)                    | 13 (5)        | 0.440   | 13 (2)                  | 14 (3)       | 0.920   |
| NIHSS score, median (IQR)            | 10 (18)                   | 6 (11)        | 0.750   | 12 (10)                 | 5 (11)       | 0.445   |
| <b>Medical history</b>               |                           |               |         |                         |              |         |
| Hypertension, No. (%)                | 10 (43.5)                 | 100 (49.5)    | 0.584   | 5 (50.0)                | 39 (44.8)    | 1.000   |
| Diabetes mellitus, Male, No. (%)     | 3 (13.0)                  | 19 (9.4)      | 0.478   | 0 (0.0)                 | 9 (10.3)     | 0.591   |
| Dyslipidemia, No. (%)                | 0 (0.0)                   | 6 (3.0)       | 1.000   | 0 (0.0)                 | 2 (2.3)      | 1.000   |
| Atrial fibrillation, No. (%)         | 0 (0.0)                   | 5 (2.5)       | 1.000   | 0 (0.0)                 | 1 (1.1)      | 1.000   |
| Acute coronary syndrome, No. (%)     | 1 (4.3)                   | 6 (3.0)       | 0.535   | 0 (0.0)                 | 4 (4.6)      | 1.000   |
| Ischemic stroke, No. (%)             | 0 (0.0)                   | 2 (1.0)       | 1.000   | 0 (0.0)                 | 2 (2.3)      | 1.000   |
| Current smoking, No. (%)             | 3 (13.0)                  | 10 (5.0)      | 0.135   | 1 (10.0)                | 3 (3.4)      | 0.358   |
| Drinking history, No. (%)            | 1 (4.3)                   | 5 (2.5)       | 0.480   | 0 (0.0)                 | 0 (0.0)      | 1.000   |
| <b>Medication history</b>            |                           |               |         |                         |              |         |
| Anti-platelet therapy, No. (%)       | 1 (4.3)                   | 10 (5.0)      | 1.000   | 0 (0.0)                 | 3 (3.4)      | 1.000   |
| Anti-coagulant therapy, No. (%)      | 0 (0.0)                   | 11 (5.4)      | 0.609   | 1 (10.0)                | 3 (3.4)      | 0.358   |

IQR, Interquartile range; BP, Blood pressure; NCCT, Non-contrast computed tomography; GCS, Glasgow score; NIHSS, National Institute of Health stroke scale.

**Supplementary Table 6 Predictive performance of radiological models, clinical model and clinical-radiological model in prediction of hospital death on patients in the training cohort**

| Model                 | ROI                 | AUC   | Accuracy | Sensitivity | Specificity | PPV   | NPV   | F1 score | AP score |
|-----------------------|---------------------|-------|----------|-------------|-------------|-------|-------|----------|----------|
| Xception              | Hemorrhage          | 0.994 | 96.44    | 95.65       | 96.53       | 75.86 | 99.49 | 0.846    | 0.955    |
|                       | Perihematomal Edema | 0.986 | 96.44    | 95.65       | 96.53       | 75.86 | 99.49 | 0.846    | 0.862    |
|                       | Combined            | 0.957 | 93.33    | 86.96       | 94.06       | 62.50 | 98.45 | 0.727    | 0.805    |
| VGG16                 | Hemorrhage          | 0.998 | 97.78    | 95.65       | 98.02       | 84.62 | 99.50 | 0.898    | 0.980    |
|                       | Perihematomal Edema | 0.981 | 98.22    | 91.30       | 99.01       | 91.30 | 99.01 | 0.913    | 0.935    |
|                       | Combined            | 0.986 | 98.22    | 91.30       | 99.01       | 91.30 | 99.01 | 0.913    | 0.945    |
| VGG19                 | Hemorrhage          | 0.977 | 97.78    | 91.30       | 98.51       | 87.50 | 99.05 | 0.894    | 0.937    |
|                       | Perihematomal Edema | 0.990 | 96.89    | 95.65       | 97.03       | 78.57 | 99.49 | 0.863    | 0.907    |
|                       | Combined            | 0.993 | 96.00    | 95.65       | 96.04       | 73.33 | 99.49 | 0.830    | 0.937    |
| ResNet50              | Hemorrhage          | 0.981 | 95.56    | 91.30       | 96.04       | 72.41 | 98.98 | 0.808    | 0.924    |
|                       | Perihematomal Edema | 0.991 | 96.00    | 95.65       | 96.04       | 73.33 | 99.49 | 0.830    | 0.925    |
|                       | Combined            | 0.982 | 94.67    | 91.30       | 95.05       | 67.74 | 98.97 | 0.778    | 0.921    |
| InceptionV3           | Hemorrhage          | 0.980 | 94.67    | 91.30       | 95.05       | 67.74 | 98.97 | 0.778    | 0.891    |
|                       | Perihematomal Edema | 0.989 | 95.11    | 95.65       | 95.05       | 68.75 | 99.48 | 0.800    | 0.922    |
|                       | Combined            | 0.977 | 95.56    | 91.30       | 96.04       | 72.41 | 98.98 | 0.808    | 0.874    |
| InceptionResNetV2     | Hemorrhage          | 0.993 | 98.22    | 95.65       | 98.51       | 88.00 | 99.50 | 0.917    | 0.926    |
|                       | Perihematomal Edema | 0.977 | 93.78    | 95.65       | 93.56       | 62.86 | 99.47 | 0.759    | 0.794    |
|                       | Combined            | 0.983 | 96.44    | 95.65       | 96.53       | 75.86 | 99.49 | 0.846    | 0.832    |
| Handcrafted radiomics | Hemorrhage          | 0.970 | 94.22    | 91.30       | 94.55       | 65.63 | 98.96 | 0.764    | 0.861    |
|                       | Perihematomal Edema | 0.996 | 96.89    | 95.65       | 97.03       | 78.57 | 99.49 | 0.863    | 0.961    |

|                    |          |       |       |       |       |       |       |       |       |
|--------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
|                    | Combined | 0.975 | 95.56 | 91.30 | 96.04 | 72.41 | 98.98 | 0.808 | 0.906 |
| Hematoma Expansion | /        | 0.969 | 96.00 | 86.96 | 97.03 | 76.92 | 98.49 | 0.816 | 0.921 |
| Radiological model | /        | 0.985 | 97.33 | 91.30 | 98.02 | 84.00 | 99.00 | 0.875 | 0.957 |
| Integrated model   | /        | 0.992 | 96.00 | 95.65 | 96.04 | 73.33 | 99.49 | 0.830 | 0.932 |

ROI, Region of interest; AUC, Area under the receiver operating characteristic curve; PPV, Positive predictive value; NPV, Negative predictive value; AP, Average precision.

**Supplementary Table 7 Handcrafted radiomics features of the whole volume selected for hospital death**

| ROI                 | Index | Filter <sup>a</sup>        | Feature class            | Feature                              |
|---------------------|-------|----------------------------|--------------------------|--------------------------------------|
| Hemorrhage          | 1     | Wavelet (LLH) <sup>c</sup> | GLCM                     | Idmn                                 |
|                     | 2     | Wavelet (LHH)              | GLCM                     | Imc1                                 |
|                     | 3     | Wavelet (HHL)              | GLDM                     | Dependence Entropy                   |
|                     | 4     | Wavelet (HLL)              | First order <sup>d</sup> | Maximum                              |
|                     | 5     | Original <sup>b</sup>      | GLDM                     | Dependence Non Uniformity Normalized |
|                     | 6     | Wavelet (LHH)              | GLRLM                    | High Gray Level Run Emphasis         |
| Perihematomal edema | 1     | Original                   | GLCM                     | Sum Entropy                          |
|                     | 2     | Original                   | Shape                    | Elongation                           |
|                     | 3     | Wavelet (HHL)              | GLDM                     | Dependence Entropy                   |
|                     | 4     | Wavelet (LHH)              | First order              | Entropy                              |
|                     | 5     | Wavelet (LHH)              | First order              | Variance                             |
|                     | 6     | Original                   | GLCM                     | Correlation                          |

ROI, Region of interest; GLSJM, Gray Level Size Zone Matrix Features; GLCM, Gray Level Co-occurrence Matrix Features; GLDM, .Gray Level Dependence Matrix Features.

a: HLH, HLL, HHL, HHH and LLL, representative of high pass or low pass filter on the X, Y, Z three dimensions (H, high pass filter; L, low pass filter);

b: Original, original images without any filter used;

c: Wavelet, wavelet filtrated image;

d: First order, first order statistics.

**Supplementary Table 8 Number of features selected and used in construction of deep learning-SVM models for prediction of hospital death**

| Feature extractor | ROI                 | Number of selected features |
|-------------------|---------------------|-----------------------------|
| Xception          | Hemorrhage          | 5                           |
|                   | Perihematomal edema | 6                           |
|                   | Combined            | 7                           |
| VGG16             | Hemorrhage          | 8                           |
|                   | Perihematomal edema | 6                           |
|                   | Combined            | 8                           |
| VGG19             | Hemorrhage          | 7                           |
|                   | Perihematomal edema | 6                           |
|                   | Combined            | 7                           |
| ResNet50          | Hemorrhage          | 7                           |
|                   | Perihematomal edema | 6                           |
|                   | Combined            | 7                           |
| InceptionV3       | Hemorrhage          | 6                           |
|                   | Perihematomal edema | 7                           |
|                   | Combined            | 5                           |
| InceptionResNetV2 | Hemorrhage          | 7                           |
|                   | Perihematomal edema | 5                           |
|                   | Combined            | 9                           |

SVM, Support vector machine; ROI, Region of interest.

**Supplementary Table 9 Predictive performances of the radiological models constructed by features extracted from different layers of ResNet50 algorithm for prediction of hospital death**

| Layer  | ROI                 | Training cohort |              |              |              |              |              |              |              | Testing cohort |              |              |              |              |              |              |              |
|--------|---------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|        |                     | AUC             | Accuracy     | Sensitivity  | Specificity  | PPV          | NPV          | F1 score     | AP           | AUC            | Accuracy     | Sensitivity  | Specificity  | PPV          | NPV          | F1 score     | AP           |
| Res2b  | Hemorrhage          | 0.983           | 95.56        | 95.65        | 95.54        | 70.97        | 99.48        | 0.815        | 0.847        | 0.608          | 71.13        | 50.00        | 73.56        | 17.86        | 92.75        | 0.263        | 0.196        |
|        | Perihematomal edema | 0.985           | 96.00        | 95.65        | 96.04        | 73.33        | 99.49        | 0.830        | 0.859        | 0.620          | 76.29        | 40.00        | 80.46        | 19.05        | 92.11        | 0.258        | 0.172        |
|        | Combined            | 0.980           | 96.89        | 91.30        | 97.52        | 80.77        | 98.99        | 0.857        | 0.862        | 0.646          | 73.20        | 50.00        | 75.86        | 19.23        | 92.96        | 0.278        | 0.228        |
| Res3d  | Hemorrhage          | 0.996           | 98.67        | 95.65        | 99.01        | 91.67        | 99.50        | 0.936        | 0.965        | 0.548          | 70.10        | 50.00        | 72.41        | 17.24        | 92.65        | 0.256        | 0.193        |
|        | Perihematomal edema | 0.983           | 96.00        | 91.30        | 96.53        | 75.00        | 98.98        | 0.824        | 0.851        | 0.549          | 67.01        | 50.00        | 68.97        | 15.63        | 92.31        | 0.238        | 0.193        |
|        | Combined            | 0.986           | 97.33        | 95.65        | 97.52        | 81.48        | 99.49        | 0.880        | 0.853        | 0.602          | 79.38        | 30.00        | 85.06        | 18.75        | 91.36        | 0.231        | 0.144        |
| Res4f  | Hemorrhage          | 0.986           | 96.89        | 95.65        | 97.03        | 78.57        | 99.49        | 0.863        | 0.866        | 0.566          | 62.89        | 40.00        | 65.52        | 11.76        | 90.48        | 0.182        | 0.230        |
|        | Perihematomal edema | 0.997           | 97.78        | 95.65        | 98.02        | 84.62        | 99.50        | 0.898        | 0.973        | 0.509          | 78.35        | 40.00        | 82.76        | 21.05        | 92.31        | 0.276        | 0.133        |
|        | Combined            | 0.992           | 95.56        | 95.65        | 95.54        | 70.97        | 99.48        | 0.815        | 0.945        | 0.628          | 68.04        | 60.00        | 68.97        | 18.18        | 93.75        | 0.279        | 0.221        |
| Res5c  | Hemorrhage          | <b>0.981</b>    | <b>95.56</b> | <b>91.30</b> | <b>96.04</b> | <b>72.41</b> | <b>98.98</b> | <b>0.808</b> | <b>0.924</b> | <b>0.570</b>   | <b>67.01</b> | <b>40.00</b> | <b>70.11</b> | <b>13.33</b> | <b>91.04</b> | <b>0.200</b> | <b>0.173</b> |
|        | Perihematomal edema | <b>0.991</b>    | <b>96.00</b> | <b>95.65</b> | <b>96.04</b> | <b>73.33</b> | <b>99.49</b> | <b>0.830</b> | <b>0.925</b> | <b>0.561</b>   | <b>71.13</b> | <b>50.00</b> | <b>73.56</b> | <b>17.86</b> | <b>92.75</b> | <b>0.263</b> | <b>0.149</b> |
|        | Combined            | <b>0.982</b>    | <b>94.67</b> | <b>91.30</b> | <b>95.05</b> | <b>67.74</b> | <b>98.97</b> | <b>0.778</b> | <b>0.921</b> | <b>0.705</b>   | <b>64.95</b> | <b>60.00</b> | <b>65.52</b> | <b>16.67</b> | <b>93.44</b> | <b>0.261</b> | <b>0.254</b> |
| FC1000 | Hemorrhage          | 0.898           | 71.11        | 91.30        | 68.81        | 25.00        | 98.58        | 0.393        | 0.613        | 0.557          | 63.92        | 30.00        | 67.82        | 9.68         | 89.39        | 0.146        | 0.120        |
|        | Perihematomal edema | 0.768           | 66.22        | 73.91        | 65.35        | 19.54        | 95.65        | 0.309        | 0.436        | 0.455          | 52.58        | 20.00        | 56.32        | 5.00         | 85.96        | 0.080        | 0.098        |
|        | Combined            | 0.907           | 78.22        | 82.61        | 77.72        | 29.69        | 97.52        | 0.437        | 0.602        | 0.626          | 67.01        | 40.00        | 70.11        | 13.33        | 91.04        | 0.200        | 0.139        |

ROI, Region of interest; AUC, Area under the receiver operating characteristic curve; PPV, Positive predictive value; NPV, Negative predictive value; AP, Average precision.