Contents

MINIREVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4734</td>
<td>Inflammatory myofibroblastic tumor of the distal common bile duct: Literature review with focus on pathological examination</td>
<td>Cordier F, Hoorens A, Ferdinande L, Van Dorpe J, Creytens D</td>
</tr>
<tr>
<td>4740</td>
<td>Probiotics and autoprobiotics for treatment of Helicobacter pylori infection</td>
<td>Baryshnikova NV, Ilina AS, Ermolenko EI, Uspenskiy YP, Suvorov AN</td>
</tr>
</tbody>
</table>

ORIGINAL ARTICLE

Clinical and Translational Research

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4814</td>
<td>Mechanical analysis of the femoral neck dynamic intersection system with different nail angles and clinical applications</td>
<td>Wang Y, Ma JX, Bai HH, Lu B, Sun L, Jin HZ, Ma XL</td>
</tr>
</tbody>
</table>

Retrospective Cohort Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4824</td>
<td>Development and validation of a predictive model for spinal fracture risk in osteoporosis patients</td>
<td>Lin XM, Shi ZC</td>
</tr>
</tbody>
</table>

Retrospective Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4833</td>
<td>Risk prediction model for distinguishing Gram-positive from Gram-negative bacteremia based on age and cytokine levels: A retrospective study</td>
<td>Zhang W, Chen T, Chen HJ, Chen N, Xing ZX, Fu XY</td>
</tr>
<tr>
<td>4843</td>
<td>Sudden death in the southern region of Saudi Arabia: A retrospective study</td>
<td>Al-Emam AMA, Dajam A, Alrajhi M, Aljaifi W, Al-Shraim M, Helaly AM</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4852</td>
<td>Diagnostic value of preoperative examination for evaluating margin status in breast cancer</td>
<td>Liu P, Zhao Y, Rong DD, Li KF, Wang YJ, Zhao J, Kang H</td>
</tr>
<tr>
<td>4865</td>
<td>Defining the awareness and attitude of the clinicians through pharmacovigilance in Turkey</td>
<td>Aydin OC, Aydin S, Guney HZ</td>
</tr>
<tr>
<td>4874</td>
<td>Predictive value of the trans-perineal three-dimensional ultrasound measurement of the pubic arch angle for vaginal delivery</td>
<td>Liang ZW, Gao WL</td>
</tr>
<tr>
<td>4883</td>
<td>Microwave ablation of solitary T1N0M0 papillary thyroid carcinoma: A case report</td>
<td>Dionisio T, Lajut L, Sousa F, Violante L, Sousa P</td>
</tr>
<tr>
<td>4890</td>
<td>Acute spinal subdural haematoma complicating a posterior spinal instrumented fusion for congenital scoliosis: A case report</td>
<td>Michon du Marais G, Tabard-Fougère A, Dayer R</td>
</tr>
<tr>
<td>4903</td>
<td>ABCB4 gene mutation-associated cirrhosis with systemic amyloidosis: A case report</td>
<td>Cheng N, Qin YJ, Zhang Q, Li H</td>
</tr>
<tr>
<td>4912</td>
<td>Metagenomic next-generation sequencing in the diagnosis of neurocysticercosis: A case report</td>
<td>Xu WB, Fu JJ, Yuan XJ, Xian QJ, Zhang LJ, Song PP, You ZQ, Wang CT, Zhao QG, Pang F</td>
</tr>
<tr>
<td>4920</td>
<td>Drug-coated balloons for treating de novo lesions in large coronary vessels: A case report</td>
<td>Zhang QZ, Qin YR, Yin M, Chen XH, Chen L, Liang WY, Wei XQ</td>
</tr>
<tr>
<td>4926</td>
<td>Pretreatment with a modified St. Thomas’ solution in patients with severe upper limb injuries: Four case reports</td>
<td>Sun ZY, Li LY, Xing JX, Tong LC, Li Y</td>
</tr>
<tr>
<td>4932</td>
<td>Unexpected diffuse lung lesions in a patient with pulmonary alveolar proteinosis: A case report</td>
<td>Jian L, Zhao QQ</td>
</tr>
<tr>
<td>4937</td>
<td>Contrast-induced ischemic colitis following coronary angiography: A case report</td>
<td>Qiu H, Li WP</td>
</tr>
<tr>
<td>4944</td>
<td>Posterior pedicle screw fixation combined with local steroid injections for treating axial eosinophilic granulomas and atlantoaxial dislocation: A case report</td>
<td>Tu CQ, Chen ZD, Yao XT, Jiang YJ, Zhang BF, Lin B</td>
</tr>
</tbody>
</table>
Laryngospasm as an uncommon presentation in a patient with anti-N-methyl-D-aspartate receptor encephalitis: A case report

Wang L, Su HJ, Song GJ
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Kengo Moriyama, MD, PhD, Associate Professor, Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hachioji Hospital, Hachioji 1838, Tokyo, Japan. osaru3moving@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJCC as 1.1; IF without journal self cites: 1.1; 5-year IF: 1.3; Journal Citation Indicator: 0.26; Ranking: 133 among 167 journals in medicine, general and internal; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
July 16, 2023

COPYRIGHT
© 2023 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Subacute osteomyelitis due to *Staphylococcus caprae* in a teenager: A case report and review of the literature

Oscar Vazquez, Giacomo De Marco, Nathaly Gavira, Celine Habre, Marcia Bartucz, Christina N Steiger, Romain Dayer, Dimitri Ceroni

Abstract

BACKGROUND

Staphylococcus caprae (*S. caprae*) is a human commensal bacterium which can be detected in the nose, nails, and skin. It can be responsible for heterogeneous infections such as bacteremia, endocarditis, pneumonia, acute otitis externa, peritonitis, and urinary tract infections. Bone and joint infections due to *S. caprae* have also been reported, but most of them resulted from the infection of orthopedic devices, especially joint prostheses and internal osteosynthesis devices. Rare cases of primary osteoarticular infections caused by *S. caprae* have been described, including osteitis, arthritis, or spondylodiscitis.

CASE SUMMARY

We report an unusual case of subacute osteomyelitis in a toe phalanx caused by *S. caprae* in a 14.5-year-old girl.

CONCLUSION

Subacute *S. caprae* osteomyelitis is a little-known and probably underestimated community-acquired infectious disease. This microorganism's pathogenicity should be seen as more than a classic nosocomial orthopedic device infection.

Key Words: Subacute; Osteomyelitis; *Staphylococcus caprae*; Teenagers; Case report

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
An initial plain radiograph revealed a constitutional fusion of the toe’s distal interphalangeal joint but without any significant abnormalities. The girl could freely bear weight on her foot with no limitations.

Physical examination

There was a history of trivial trauma but no suggestion of broken skin or fever.

Personal and family history

There was no past illness for this patient.

History of past illness

Persistent pain in the fourth right toe for over 3 mo.

Chief complaints

A 14.5-year-old girl was referred to our department by her pediatrician due to persistent pain in her fourth right toe for over 3 mo.

History of present illness

Persisting pain in the fourth right toe for over 3 mo.

INTRODUCTION

Coagulase-negative staphylococci (CoNS) are ubiquitous human and animal commensals and form an integral part of healthy human skin microbiota. CoNS are frequently discovered in clinical samples and often considered contaminants because they can become opportunistic pathogens in certain situations. CoNS associated with nosocomial infection are typically characterized by their pronounced antimicrobial resistance, including methicillin-resistant and multidrug-resistant isolates. However, they do not have as much pathogenic potential as coagulase-positive staphylococci such as Staphylococcus caprae (S. caprae).

S. caprae is a commensal coagulase-negative Staphylococcus known to colonize the skin and mammary glands of goats [1], occasionally causing mastitis[2]. In humans, commensal S. caprae can be detected in the nose, nails, and skin[3,4], and it can be the initial cause of heterogeneous infections such as bacteremia[4-13], endocarditis[6], pneumonia[7], acute otitis externa[5], peritonitis[14], and urinary tract infections[6,15]. Bone and joint infections due to S. caprae have been reported, but, fortunately, they remain rare[3,8,16-27]. Most osteoarticular S. caprae infections are the result of infected orthopedic devices, especially infected joint prostheses[3,8,17,18,21-27] and internal osteosynthesis devices[17,19,27]. Only very rare cases of primary osteoarticular S. caprae infections have been described, including osteitis[3,8], arthritis[16], or spondylodiscitis[27,28]. It is commonly accepted that the prevalence of human S. caprae infections is underestimated since conventional phenotypic identification systems incorrectly identify many S. caprae strains[3,27,28]. Molecular techniques have improved their identification[9,14,17,20,29,30], becoming essential when standard cultures give negative results[25].

We report a rare and unusual case of subacute osteomyelitis caused by S. caprae in a toe phalanx of a 14.5-year-old girl.

CASE PRESENTATION

Chief complaints

A 14.5-year-old girl was referred to our department by her pediatrician due to persistent pain in her fourth right toe for over 3 mo.

History of present illness

Persistent pain in the fourth right toe for over 3 mo.

History of past illness

There was no past illness for this patient.

Personal and family history

There was a history of trivial trauma but no suggestion of broken skin or fever.

Physical examination

At admission, the patient was apyrexic; on examination, the toe showed mild swelling and erythema, and palpation caused discomfort. The girl could freely bear weight on her foot with no limitations.

Laboratory examinations

The patient’s white blood cell count was 7600 cells/mm³, C-reactive protein was less than 0.3 mg/L, and her erythrocyte sedimentation rate was 7 mm/h.

 Imaging examinations

An initial plain radiograph revealed a constitutional fusion of the toe’s distal interphalangeal joint but without any...
Figure 1 Imaging. A: A plain radiograph performed after 2 mo of follow-up revealed an ill-defined lytic lesion of the fourth toe’s fused distal phalanx (white arrow); B: A computed tomography scan revealed an eccentrically-located lytic focus of the phalangeal metaphysis that was eroding the dorsal cortex (white arrow).

relevant pathology.

FINAL DIAGNOSIS

Toe phalanx lytic lesion.

TREATMENT

The patient was administered oral antibiotics (co-amoxicillin), and this treatment continued for 15 d, although a full resolution of symptoms was achieved after only a few days of treatment, and inflammatory markers remained normal. Three months after surgery, the toe phalanx lytic lesion was completely resolved.

OUTCOME AND FOLLOW-UP

After 2 mo, a new plain radiograph revealed a subtle, ill-defined lytic lesion of the toe phalanx (Figure 1A). A complementary computed tomography (CT) scan of the foot confirmed a lytic lesion with cortical erosion of the metaphysis of the fused toe phalanx (Figure 1B). We performed a direct open biopsy of the toe lytic lesion, involving the debridement and curettage of the pathologic tissue, which resulted in a limited bone defect (3-4 mm). Microbiological cultures of the material removed were made on a solid medium, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify the bacteria, revealing *S. caprae*.

DISCUSSION

S. caprae is a commensal coagulase-negative *Staphylococcus* that may become a human pathogen in community-acquired or nosocomial infections. Most osteoarticular *S. caprae* infections result from infected orthopedic devices, especially joint prostheses[3,8,17,18,21-27] and internal osteosynthesis devices[17,19,27]. Genome analysis has demonstrated that *S. caprae* is closely related to *S. epidermidis* and *S. capitis* at the species level, especially in its ability to form biofilms, which may explain the virulence of *S. caprae* infections[31]. The formation of a biofilm is considered an essential step in the pathogenesis of CoNS. Another important step in the induction of an infection is the adhesion of bacterial cells to host tissues and their ability to grow into a biofilm[32]. The genetic determinants of biofilm formation include the icaADBC operon, which codes for the biosynthetic enzymes involved in producing polysaccharide intercellular adhesin[33,34]. *S. caprae* expresses the ica operon providing the pathogen with the ability to form a biofilm on orthopedic osteosynthesis devices, thus conferring the bacterium with resistance to the immune system and antibiotics[17,35].

Despite this, *S. caprae* has never been reported to cause subacute osteomyelitis. The present case is thus the first to show that *S. caprae* can be responsible for subacute osteomyelitis even when no orthopedic device is present. Subacute osteomyelitis is an osseous infection with a duration of more than 3 wk without acute symptoms. Subacute osteomyelitis may result from the inadequate treatment of acute osteomyelitis or may occur in settings displaying strong host resistance to infection, an illness due to less virulent organisms, prior exposure to antibiotics, or a combination of all these factors[36,
We hypothesize that *S. caprae* was one of the few virulent pathogens that could have become an opportunistic pathogen in this case, but the subject managed to keep it relatively well-controlled. Indeed, *S. caprae* is recognized as being less virulent than *S. aureus* and other CoNS [27]. Nevertheless, *S. caprae* has the bacterial characteristics required for the development of subacute osteomyelitis.

CONCLUSION

Subacute *S. caprae* osteomyelitis is a little-known and probably underestimated community-acquired infectious disease. This microorganism’s pathogenicity should be seen as more than a classic nosocomial orthopedic device infection. *S. caprae* is closely related to *S. epidermidis* and *S. capitis* at the species level, especially in its ability to form biofilms, which may explain the virulence of these pathogens. The difficulty in detecting *S. caprae* is attributable to the fact that conventional phenotypic identification systems still misidentify it. *S. caprae* should therefore be included in the list of organisms that can cause subacute osteomyelitis, such as *S. aureus, Kingella kingae, Salmonella* and *Streptococcus* species, and *Mycobacterium tuberculosis*.

FOOTNOTES

Author contributions: Vazquez O analyzed the data and wrote the manuscript; and all authors have read and approved the final manuscript.

Informed consent statement: We, the authors, consent to the publication of identifiable details, which can include photographs and/or videos and/or case history and/or details within the text (“Material”) to be published in the above Journal and Article.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Switzerland

ORCID number: Dimitri Ceroni <https://orcid.org/0000-0003-4038-4881>.

S-Editor: Wang JJ

L-Editor: Wang TQ

P-Editor: Yu HG

REFERENCES

