Contents

MINIREVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2419</td>
<td>Current status of radical laparoscopy for treating hepatocellular carcinoma with portal hypertension</td>
<td>Shen ZF, Liang X</td>
</tr>
</tbody>
</table>

ORIGINAL ARTICLE

Retrospective Cohort Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2433</td>
<td>Impact of type 2 diabetes on adenoma detection in screening colonoscopies performed in disparate populations</td>
<td>Joseph DF, Li E, Stanley III SL, Zhu YC, Li XN, Yang J, Ottaviano LF, Bucobo JC, Buscaglia JM, Miller JD, Veluvolu R, Follen M, Grossman EB</td>
</tr>
<tr>
<td>2446</td>
<td>Early colonoscopy and urgent contrast enhanced computed tomography for colonic diverticular bleeding reduces risk of rebleeding</td>
<td>Ochi M, Kamoshida T, Hamano Y, Okawara A, Okawara H, Kakinoki N, Yamaguchi Y, Hirai S, Yanaka A</td>
</tr>
</tbody>
</table>

Retrospective Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2458</td>
<td>Relationship between mismatch repair protein, RAS, BRAF, PIK3CA gene expression and clinicopathological characteristics in elderly colorectal cancer patients</td>
<td>Fan JZ, Wang GF, Cheng XB, Dong ZH, Chen X, Deng YJ, Song X</td>
</tr>
</tbody>
</table>

Clinical Trials Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2469</td>
<td>Possible effect of blonanserin on gambling disorder: A clinical study protocol and a case report</td>
<td>Shiina A, Hasegawa T, Iyo M</td>
</tr>
</tbody>
</table>

Observational Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2478</td>
<td>Parents’ experience of caring for children with type 1 diabetes in mainland China: A qualitative study</td>
<td>Tong HJ, Qiu F, Fan L</td>
</tr>
<tr>
<td>2487</td>
<td>Differences in dietary habits of people with rs without irritable bowel syndrome and their association with symptom and psychological status: A pilot study</td>
<td>Meng Q, Qin G, Yao SK, Fan GH, Dong F, Tan C</td>
</tr>
</tbody>
</table>

SCIENTOMETRICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2503</td>
<td>Prognostic nomograms for predicting overall survival and cause-specific survival of signet ring cell carcinoma in colorectal cancer patients</td>
<td>Kou FR, Zhang YZ, Xu WR</td>
</tr>
</tbody>
</table>
CASE REPORT

2519 Cerebellar artery infarction with sudden hearing loss and vertigo as initial symptoms: A case report
Wang XL, Sun M, Wang XP

2524 Three-dimensional-printed custom-made patellar endoprosthesis for recurrent giant cell tumor of the patella: A case report and review of the literature

2533 Gastrointestinal-type chemotherapy prolongs survival in an atypical primary ovarian mucinous carcinoma: A case report

2542 Neoadjuvant chemoradiotherapy followed by laparoscopic distal gastrectomy in advanced gastric cancer: A case report and review of literature
Liu ZN, Wang YK, Li ZY

2555 Extraosseous spinal epidural plasmocytoma associated with multiple myeloma: Two case reports
Cui JF, Sun LL, Liu H, Gao CP

2562 Endoscopic diagnosis of early-stage primary esophageal small cell carcinoma: Report of two cases
Er LM, Ding Y, Sun XF, Ma WQ, Yuan L, Zheng XL, An NN, Wu ML

2569 Nemaline myopathy with dilated cardiomyopathy and severe heart failure: A case report
Wang Q, Hu F

2576 Immunoglobulin D-λ/λ biclonal multiple myeloma: A case report
He QL, Meng SS, Yang JN, Wang HC, Li YM, Li YX, Lin XH

2584 Point-of-care ultrasound for the early diagnosis of emphysematous pyelonephritis: A case report and literature review

2595 Minimally invasive treatment of forearm double fracture in adult using Acumed forearm intramedullary nail: A case report
Liu JC, Huang BZ, Ding J, Ma XJ, Li YL, Piao CD

2602 Klebsiella pneumoniae infection secondary to spontaneous renal rupture that presents only as fever: A case report
Zhang CG, Duan M, Zhang XY, Wang Y, Wu S, Feng LL, Song LL, Chen XY

2611 Eltrombopag-related renal vein thromboembolism in a patient with immune thrombocytopenia: A case report
Wu C, Zhou XM, Liu XD

2619 Cryptococcus infection with asymptomatic diffuse pulmonary disease in an immunocompetent patient: A case report
Li Y, Fang L, Chang FQ, Xu FZ, Zhang YB
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2627</td>
<td>Triple administration of osimertinib followed by chemotherapy for</td>
<td>Hu XY, Fei YC, Zhou WC, Zhu JM,</td>
</tr>
<tr>
<td></td>
<td>advanced lung adenocarcinoma: A case report</td>
<td>Lv DL</td>
</tr>
<tr>
<td>2634</td>
<td>Anesthetic management of a child with double outlet right ventricle</td>
<td>Tan LC, Zhang WY, Zuo YD, Chen HY, Jiang CL</td>
</tr>
<tr>
<td></td>
<td>and severe polycythemia: A case report</td>
<td></td>
</tr>
<tr>
<td>2641</td>
<td>Combined immune checkpoint inhibitors of CTLA4 and PD-1 for hepatic</td>
<td>Cheng AC, Lin YJ, Chiu SH, Shih YL</td>
</tr>
<tr>
<td></td>
<td>melanoma of unknown primary origin: A case report</td>
<td></td>
</tr>
<tr>
<td>2649</td>
<td>Cholangiojejunostomy for multiple biliary ducts in living donor</td>
<td>Xiao F, Sun LY, Wei L, Zeng ZG,</td>
</tr>
<tr>
<td>2655</td>
<td>Surgical therapy for hemangioma of the azygos vein arch under</td>
<td>Wang ZX, Yang LL, Xu ZN, Lv PY,</td>
</tr>
<tr>
<td></td>
<td>thoracoscopy: A case report</td>
<td>Wang Y</td>
</tr>
<tr>
<td>2662</td>
<td>Calcium pyrophosphate deposition disease of the temporomandibular</td>
<td>Tang T, Han FG</td>
</tr>
<tr>
<td></td>
<td>joint invading the middle cranial fossa: Two case reports</td>
<td></td>
</tr>
<tr>
<td>2671</td>
<td>Rare histological subtype of invasive micropapillary carcinoma in</td>
<td>Noguchi H, Higashi M, Idichi T,</td>
</tr>
<tr>
<td></td>
<td>the ampulla of Vater: A case report</td>
<td>Karahara H, Matak Y, Tasaki T,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kitazono I, Ohtsuka T, Tanimoto A</td>
</tr>
<tr>
<td>2679</td>
<td>Contrast-enhanced ultrasound using SonoVue mixed with oral</td>
<td>Wang JY, Luo Y, Wang WY, Zheng SC,</td>
</tr>
<tr>
<td></td>
<td>gastrointestinal contrast agent to evaluate esophageal hiatal hernia:</td>
<td>He L, Xie CY, Peng L</td>
</tr>
<tr>
<td></td>
<td>Report of three cases and a literature review</td>
<td></td>
</tr>
<tr>
<td>2688</td>
<td>Melatonin for an obese child with \textit{MC4R} gene variant</td>
<td>Ge WR, Wan L, Yang G</td>
</tr>
<tr>
<td></td>
<td>showing epilepsy and disordered sleep: A case report</td>
<td></td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Hong-Tao Xu, MD, PhD, Chief Physician, Professor, Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, Liaoning Province, China. xuht@cmu.edu.cn

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
April 16, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Three-dimensional-printed custom-made patellar endoprosthesis for recurrent giant cell tumor of the patella: A case report and review of the literature

Jie Wang, Yong Zhou, Yi-Tian Wang, Li Min, Yu-Qi Zhang, Min-Xun Lu, Fan Tang, Yi Luo, Ya-Han Zhang, Xian-Liang Zhang, Chong-Qi Tu

ORCID number: Jie Wang 0000-0001-8152-5818; Yong Zhou 0000-0002-0450-1932; Yi-Tian Wang 0000-0001-6319-4541; Li Min 0000-0002-5035-1672; Yu-Qi Zhang 0000-0003-2477-4775; Min-Xun Lu 0000-0002-3054-2727; Fan Tang 0000-0002-4675-4823; Yi Luo 0000-0002-3669-5102; Ya-Han Zhang 0000-0002-9443-826X; Xian-Liang Zhang 0000-0002-2466-3680; Chong-Qi Tu 0000-0002-1045-9742.

Author contributions: Wang J, Zhou Y, Wang YT, and Tu CQ were involved in the concept and design of this manuscript; Wang J, Min L, Zhang YQ, and Tang F were involved in the acquisition of data; Luo Y, Wang J, Lu MX, Zhou Y, and Tu CQ were involved in the preoperative 3-dimensional design; Wang J, Min L, and Tu CQ were involved in the postsurgical evaluation of the patient; Zhang XL and Zhang YH were involved in pathology evaluation; all authors contributed toward data analysis and drafting and critically revising the paper, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Supported by National Key Research and Development Program of China, No.

Abstract

BACKGROUND

Giant cell tumor (GCT) is a benign lesion and rarely involves the patella. This disease is characterized by a relatively high recurrence rate after primary treatment. En bloc resection has been a predominant option for recurrent GCT. However, total patellectomy can lead to disruption of the knee. Therefore, exploration of functional reconstruction of the extensor mechanism is worthwhile.

CASE SUMMARY

A 54-year-old woman presented with right knee pain and swelling, and was diagnosed as having a GCT in the patella following curettage and autograft. Medical imaging revealed a lytic and expanded lesion involving the whole patella with focal cortical breaches and pathological fracture. Based on the combination of histological, radiological, and clinical features, a diagnosis of recurrent GCT in the patella was made (Campanacci grade III). After a multidisciplinary team discussion, three-dimensional (3D)-printed custom-made patellar endoprosthesis was performed following en bloc resection for reconstructing the extensor mechanism. The patient was followed for 35 mo postoperatively. No evidence of local recurrence, pulmonary metastasis, or osteoarthritis of the right knee was observed. The active flexion arc was 0°-120°, and no extension lag was detected. A favorable patellar tracking and height (Insall-Salvati ratio 0.93) were detected by radiography.
Giant cell tumor of bone; Patellectomy; Three-dimensional-printed; April 16, 2021
Volume 9 Issue 11

CONCLUSION
We depict a case of a GCT at the right patella, which was successfully treated by patellectomy and 3D-printed custom-made endoprosthetic replacement. The patella normal reconstruction, the precise-fit articular design, and gastrocnemius flap augmentation could lead to satisfactory knee function and a low rate of complications in the short-term follow-up.

Key Words: Giant cell tumor of bone; Patellectomy; Three-dimensional-printed; Endoprosthesis; Biological reconstruction; Extensor mechanism; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The history of allogenic patellectomy has been a predominant option for recurrent giant cell tumor of the patella for decades. Although many reconstructive methods were reported following patellectomy, much needs to be researched for better knee function and fewer complications. Our study is a pioneering case using three-dimensional-printed custom-made patella, which could be able to minimize complications and improve knee function. What’s more, a review of the previous relevant research and the potential future avenues of research related to the novel introduction of reconstructive methods following patellectomy cases was performed.

INTRODUCTION
Giant cell tumor of bone (GCTB) is a benign lesion with local aggressive nature and a relatively high recurrence rate after primary treatment[1]. The majority of GCTBs are located in the epiphyseal regions of long bones, with the sacrum or spine being the second most common site, while rarely involving the patella[2-9]. Generally, intralesional curettage and cementation are suitable for patients with Campanacci grade I or II GCTBs[1]. As for Campanacci grade III or recurrent GCTBs, en bloc resection has been a predominant option to reduce the incidence of recurrence[10,11]. However, the patella is a crucial component of the extensor mechanism. Total patellectomy without following proper reconstruction can lead to disruption of the knee joint. Therefore, exploration of functional reconstruction of the extensor mechanism is worthwhile.

Several methods for the reconstruction of extensor mechanisms have been applied, such as end-to-end suture of the quadriceps tendon and patellar tendon[5,6,7,8], allografting[9,10], and autografting[11,12]. Although these procedures have been reported to lead to reasonable functional outcomes, each has its corresponding disadvantages, such as donor site morbidity, extensor lag, disease transmission, and graft rejection. We proposed the introduction of three-dimensional (3D)-printed custom-made patellar endoprosthesis that can reconnect the quadriceps tendon and patellar tendon properly, and therefore restore acceptable postoperative lower-limb function. To our best knowledge, no study has been performed on this subject. The present paper describes detailed endoprosthesis design and surgical techniques in total patellar replacement for a patient with a recurrent Campanacci III GCTB.

CASE PRESENTATION

Chief complaints
In October 2017, a 54-year-old woman presented with a 4-mo history of progressive...
right knee pain and swelling.

History of present illness
No other health conditions were reported.

History of past illness
One year before visiting our outpatient department, the patient had been diagnosed as having Campanacci grade I GCTB of the patella at another institution. The curettage of the lesion and iliac autografting were performed, and the pain was relieved. During her visit to our department, the physical examination revealed mild swelling and slight tenderness in the anterior aspect of the right knee.

Personal and family history
The patient’s father had hypertension.

Physical examination
The Visual Analog Scale (VAS) score was 6. The affected knee flexion arc was 20°-80°, and 20° of extension lag was found. Meanwhile, the strength of an active knee extension was 3 of 5 in the muscle manual test. The Musculoskeletal Tumor Society (MSTS-93) scale score was 13. No osteoarthritis occurred.

Laboratory examinations
The patient has an AB blood type. Routine blood count and coagulation profile for the patient were within normal limits.

Imaging examinations
Plain radiograph revealed a lytic and expanded lesion involving the whole patella with focal cortical breaches and pathological fracture (Figure 1A). Computed tomography (CT) delineated the lesion (Figure 1B). The lesion on magnetic resonance imaging (MRI) was T2-hyperintense with small multiple fluid pockets (Figure 1C). There were areas with hemorrhagic component and cortical breach. Technetium-99m hydroxy methylene diphosphonate bone scintigraphy revealed a thin-rimmed doughnut pattern (Figure 1D). Chest CT detected no pulmonary metastasis.

FINAL DIAGNOSIS
A biopsy confirmed the diagnose of Campanacci grade III GCTB with aneurysmal bone cyst (Figure 2).

TREATMENT
After a multidisciplinary team discussion, patellectomy was made. To reconstruct the extensor mechanism, reconstruction with 3D-printed custom-made patellar endoprosthesis was performed following en bloc resection.

OUTCOME AND FOLLOW-UP
Postoperatively, the affected knee was immobilized in a plaster splint for 4 wk, and then passive extension and flexion were undertaken for 2 wk. After that, active extension and flexion were encouraged. The patient was allowed toe-touch weight-bearing within 6 wk and partial weight-bearing at 6-12 wk postoperatively. At the 35 mo follow-up, no evidence of local recurrence or pulmonary metastasis was observed. The patellofemoral joint showed no osteoarthritis on plain radiographs (Figure 3A). The active flexion arc was 0°-120° (Figure 3B), and no extension lag was detected. Meanwhile, the strength of the active extension was 5 of 5 in the muscle manual test—the postoperative MSTS-93 score 29. The VAS score was 0. A favorable patellar tracking was detected by patellar axial radiography (Figure 3C). The Insall-Salvati ratio (ISR) was 0.93 (3.81/4.09) (Figure 3D). The reconstruction with 3D-printed custom-made patellar endoprosthesis after total patellectomy can reconnect the quadriceps tendon and patellar tendon properly, restoring acceptable postoperative
DISCUSSION

To date, total patellectomies have been reported in treating Campanacci grade III GCTB or malignant neoplasms arising from the patella \(^{5,6,8,10,16}\). To repair the consequent defect in the extensor mechanism, several reconstruction methods including end-to-end suture of the quadriceps tendon and patellar tendon \(^{6}\), allografting \(^{5,19}\), and autografting \(^{10,11}\) have been proposed. Still, each of them has its demerits (Table 1) \(^{5,6,17-19}\).

The end-to-end suture of the quadriceps tendon and patellar tendon leads to the shortage of extensor mechanism and limits the range of motion (ROM) of the knee. The autografting utilizing tendon grafts lengthens the extensor mechanism. Nevertheless, the donor site morbidities and insufficient mechanical property still limit its application. Allografting with the patella and its apparatus was reported with lower-limb function.
Table 1 Literature review of patellectomy for giant cell tumor

<table>
<thead>
<tr>
<th>Ref.</th>
<th>No. of patients</th>
<th>Ennecking stage</th>
<th>Follow-up (yr)</th>
<th>Reconstruction</th>
<th>Clinical outcomes</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercuri et al[17]</td>
<td>4</td>
<td>3</td>
<td>Average 18.5</td>
<td>Not mentioned</td>
<td>All had full motion; no instability; no limping</td>
<td>One local recurrence underwent amputation</td>
</tr>
<tr>
<td>Agarwal et al[18]</td>
<td>9</td>
<td>3</td>
<td>Average 5.3</td>
<td>Five had free fascia lata strip graft</td>
<td>Extensor lag of 10°-20°; average active ROM 80°</td>
<td>Benign pulmonary metastasis</td>
</tr>
<tr>
<td>Malhotra et al[19]</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Patella bone tendon allograft</td>
<td>Knee ROM 80°; no extensor lag; no pain</td>
<td>-</td>
</tr>
<tr>
<td>Görmeli et al[20]</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>Achilles allograft</td>
<td>ROM 110° flexion; strength loss 51.1% in extensor and 21.1% in flexor</td>
<td>-</td>
</tr>
<tr>
<td>Tripathy et al[6]</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>End-to-end repair of quadriceps to the patellar tendon</td>
<td>ROM 130°; normal gait</td>
<td>No local recurrence or distant metastasis</td>
</tr>
</tbody>
</table>

ROM: Range of motion.

Figure 3 Postoperative radiographic results. A: Conventional radiology, anterior posterior and lateral planes; B: Active flexion arc was 0°-120° without extension lag; C: Patellar axial radiography in maximum knee flexion (120°); D: Patella height.

acceptable function. However, disease transmission and graft rejection are not uncommon. Additionally, the difficulty in vascularization of the patellar allograft can imperil the allograft's long-term durability[21]. So far, there has been no unanimous view on the prior therapeutic method among them, and the new approach is under exploration. With the advent of computer-aided design techniques and the improvement of 3D printing technology, reconstructing complex bone defects with custom-made endoprosthesis has become feasible[22,23]. Therefore, we performed a reconstruction using a 3D-printed custom-made patellar endoprosthesis for a defect in the extensor mechanism following total patellectomy. We found that the postoperative function was satisfactory with no incidence of complications.

The endoprosthesis was designed by our clinical team and fabricated by Chunli Co., Ltd. (Tongzhou, Beijing, China). Building virtual 3D models of the affected patella, distal femur, proximal tibia, and contralateral patella was the first step, importing 3D-
CT data into Mimics V22.0 software (Materialise Corp., Leuven, Belgium). The mirror model of the normal contralateral patella was generated as the endoprosthesis prototype, and we measured the largest transverse diameter, suprainferior diameter, and patella height of the unaffected patella. The location of the prototype was determined as the natural location of the patella at full knee extension. After that, we adjusted the prototype’s orientation to conform to the right track of endoprosthesis along the trochlear groove. The articular surface was then modified according to the cartilage model built from the MRI data (Figure 4A). The endoprosthesis was composed of a metal component and an ultrahigh-molecular-weight polyethylene (Orthoplastics Ltd., Lancashire, United Kingdom) component. To assemble the two parts tightly, a specialized polyethylene lock structure was embedded into the metal component. The design of a 2-mm-extended margin of the endoprosthesis enables flexible adjustment of peri-patellar soft tissue tension. Finally, suture holes were distributed along the margin of the endoprosthesis to secure the extensor mechanism and retinaculum. The ultrahigh-molecular-weight polyethylene component was manufactured by computerized numerical control engraving technology. The metal component was fabricated by electron beam melting technology (ARCAM Q10 plus, Mölndal, Sweden) (Figure 4B). During the surgery, the patellectomy was performed first (Figure 5A). Then, we assembled the two components of the patellar endoprosthesis after ensuring the feasibility of suturing the retinaculum to the endoprosthesis with appropriate tension. The intraoperative soft tissue reconstruction is as important as the endoprosthesis feature design because this procedure also determines patellar tracking and the tension of the extensor mechanism. As a result, the extensor lag of 0°, the ROM of 120°, and the MSTS score of 29 demonstrated that only the material with modulus below approximately 300 MPa significantly reduced cartilage contact stresses to more desirable levels. At present, only several materials fulfill this demand, and their long-term fatigue performances are not fully addressed. As a result, with the ability to reduce endoprosthesis weight and the possibility for strength and wear properties, ultrahigh-molecular-weight polyethylene was applied in our endoprosthesis and covered all the articular surfaces. Meanwhile, the modification of the articular surface integrated the cartilage and obtained a reasonable matching degree to the articular surface of the femoral trochlear to enlarge the contact area so that the contact stress can be minimized, providing a preliminary basement for good tracking of the patellar
endoprosthesis26,31. Consequently, no wound complication occurred, and the patient acquired full strength of active knee extension.

This study had several limitations. First, the patella tendon reconstruction was not included in our procedure, which might lead to more incredible difficulty. In that situation, autografting with tendons would be added. Second, the follow-up duration was short, and unknown drawbacks might occur in the long term. We will need to follow this patient over a longer period to see whether the generally good results that we observed will endure over time, especially the integration between the endoprosthesis and the host tendon. Third, although ultrahigh-molecular-weight polyethylene was applied in our endoprosthesis design, it still had relatively high modulus compared to cartilage. Therefore, investigating novel materials in the articular surface to prevent cartilage degeneration is required in such hemiarthroplasty. Finally, with one patient included in this study, it is insufficient to verify the advantages of the endoprosthesis. Larger multicenter studies are needed to compare this approach with other types of reconstruction. Despite these shortcomings, this case study may provide a valuable direction for further studies.

CONCLUSION

The 3D-printed custom-made endoprosthetic replacement may be a feasible therapeutic option for the reconstruction following total patellectomy. The patella normal reconstruction, the precise-fit articular design, and the augmentation with gastrocnemius flap could lead to good knee function and a low complication rate. However, as we have presented only short-term follow-up outcomes, this technique’s long-term efficacy regarding postoperative knee function and degeneration is yet to be clarified.
ACKNOWLEDGEMENTS

We are thankful to the nurse team from the Department of Orthopedics, West China Hospital for their support. We are thankful to the patient enrolled in this study.

REFERENCES

8. Alqasim E, Aljowder A, Alamerni N, Joudeh AA. Total patellectomy with extensor mechanism reconstruction following pathological fracture due to patellar Ewing's sarcoma. BMJ Case Rep 2018; DOI: 29437710 DOI: 10.1136/bcr-2017-22853]

