REVIEW
791 Gastrointestinal neuroendocrine tumors in 2020
 Ahmed M

808 Early stage colon cancer: Current treatment standards, evolving paradigms, and future directions
 Chakrabarti S, Peterson CY, Seiram D, Mahipal A

833 One size does not fit all for pancreatic cancers: A review on rare histologies and therapeutic approaches

MINIREVIEWS
850 Gastric neuroendocrine tumor: A practical literature review
 Roberto GA, Rodrigues CMB, Peixoto RD, Younes RN

ORIGINAL ARTICLE
Basic Study
857 Identification of an immune-related gene-based signature to predict prognosis of patients with gastric cancer

877 Interleukin-1 receptor antagonist enhances chemosensitivity to fluorouracil in treatment of Kras mutant colon cancer
 Yan Y, Lin HW, Zhuang ZN, Li M, Guo S

Case Control Study
893 Clinical and pathological characteristics and prognosis of 132 cases of rectal neuroendocrine tumors
 Yu YJ, Li YW, Shi Y, Zhang Z, Zheng MY, Zhang SW

Retrospective Cohort Study
903 Comparison of hyperthermic intraperitoneal chemotherapy regimens for treatment of peritoneal-metastasized colorectal cancer
 Spiegelberg J, Neefh H, Holzner P, Runkel M, Fichtner-Feigl S, Glatz T

Retrospective Study
918 Endoscopic mucosal resection vs endoscopic submucosal dissection for superficial non-ampullary duodenal tumors
931 Accurate ultrasonography-based portal pressure assessment in patients with hepatocellular carcinoma
ABOUT COVER
Editorial board member of World Journal of Gastrointestinal Oncology, Dr. Cao is an Assistant Research Fellow at the Second Affiliated Hospital of Soochow University in Suzhou, China. Having received his Bachelor’s degree from Soochow University in 2006, Dr. Cao undertook his postgraduate training at Soochow University, receiving his Master’s degree in 2009 and his PhD in 2015. He works in the Department of Pathology, the Second Affiliated Hospital of Soochow University, Soochow University, where his ongoing research interests involve the molecular pathological mechanisms of malignant tumors, particularly in relation to oncogenesis, radiation resistance and cellular signal transduction involving tumors of the digestive system. To date, he has published 16 SCI papers as corresponding author or first author.

AIMS AND SCOPE
The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendicular neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING
The WJGO is now indexed in Science Citation Index Expanded (also known as SciSearch®), PubMed, and PubMed Central. The 2020 edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJGO as 2.898; IF without journal self cites: 2.880; 5-year IF: 3.316; Ranking: 143 among 244 journals in oncology; Quartile category: Q3; Ranking: 55 among 88 journals in gastroenterology and hepatology; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Li-Li Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Gastric neuroendocrine tumor: A practical literature review

Gabriel Antonio Roberto, Carolina Magalhães Britto Rodrigues, Renata D’Alpino Peixoto, Riad Naim Younes

ORCID number: Gabriel Antonio Roberto 0000-0001-9814-9038; Carolina Magalhães Britto Rodrigues 0000-0003-4666-7065; Renata D’Alpino Peixoto 0000-0001-0053-7951; Riad Naim Younes 0000-0001-9844-6390.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: March 20, 2020
Peer-review started: March 20, 2020
First decision: April 26, 2020
Revised: May 5, 2020
Accepted: July 19, 2020
Article in press: July 19, 2020
Published online: August 15, 2020
P-Reviewer: Fernandes J

Abstract

Gastric neuroendocrine tumors are gastric neoplasms originating from enterochromaffin type cells and are inserted in a larger group, named gastroenteropancreatic neuroendocrine tumors. They are considered rare and variable in terms of their clinical, morphological and functional characteristics and may be indolent or aggressive. They are classified into types I, II and III, according to their pathophysiology, behavior and treatment. Their diagnosis occurs, in most cases, incidentally during upper digestive endoscopies, presenting as simple gastric polyps. Most cases (type I and type II) are related to hypergastrinemia, can be multiple and are treated by endoscopic resection, whenever possible. The use of somatostatin analogs for tumor control may be one of the options for therapy, in addition to total or subtotal gastrectomy for selected cases. Adjuvant chemotherapy is only reserved for poorly differentiated neuroendocrine carcinomas. Although rare, gastric neuroendocrine tumors have an increasing incidence over the years, therefore deserving more comprehensive studies on its adequate treatment. The present study reviews and updates management recommendations for gastric neuroendocrine tumors.

Key words: Gastric neuroendocrine tumor; Gastroenteropancreatic tumor; Hypergastrinemia; Gastric carcinoid; Endoscopic resection

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Gastric neuroendocrine tumors are rare lesions that are part of the
gastroenteropancreatic neuroendocrine tumors group. They are classified into types I, II and III according to their clinical and pathophysiological characteristics. Their diagnosis is usually made incidentally by upper gastrointestinal endoscopy, and most cases are treated by endoscopic resection. Surgical resections, as well as somatostatin analog treatments, are reserved for selected cases. Although rare, gastric neuroendocrine tumors need further research as their incidence has increased over the years.

Citation: Roberto GA, Rodrigues CMB, Peixoto RD, Younes RN. Gastric neuroendocrine tumor: A practical literature review. World J Gastrointest Oncol 2020; 12(8): 850-856
DOI: https://dx.doi.org/10.4251/wjgo.v12.i8.850

INTRODUCTION

Gastric neuroendocrine tumors (G-NETs), once called gastric carcinoids, are neoplasms derived from enterochromaffin-like cells (ECF) of the stomach mucosa and correspond to less than 2% of all gastric neoplasms\(^1\). They are part of a larger group called gastroenteropancreatic NETs (GEP-NET), which comprise well-differentiated NETs from the gastrointestinal tract. Well-differentiated NETs, together with poorly differentiated neuroendocrine carcinomas (NECs) form the neuroendocrine neoplasms. In immunohistochemistry, like other GEP-NET, G-NETs usually express neuroendocrine markers, such as chromogranin and synaptophysin. They are considered rare and of heterogeneous spectrum with a wide variety of morphological, functional and clinical characteristics\(^2-4\). Their behavior is generally indolent, although may be highly aggressive\(^5\).

The real prevalence of NETs is unknown due to a worldwide difficulty in standardizing and categorizing the data. Nonetheless, increasing incidence over time is certainly related to a greater access to endoscopic and imaging methods, favoring its diagnosis\(^1,6-9\). A 2015 multicenter study involving national registries from several countries estimated that the prevalence of G-NET in Europe is 0.32 per 10000 inhabitants, while in the United States it is 0.17 and 0.05 in Japan\(^10\). Most G-NETs are incidentally diagnosed as simple gastric polyps during endoscopies of the upper gastrointestinal tract, corresponding to 0.6% to 2% of gastric polyp cases\(^6,9,11-16\).

The present review of the English literature presents updated definitions as well as epidemiology, diagnosis and management recommendations for G-NET.

DISCUSSION

In order to standardize the classification of GEP-NETs and facilitate their understanding, the World Health Organization in 2010 divided GEP-NETs (including G-NETs) into three histological grades (G1, G2 and G3) based on the mitotic index (number of mitoses per ten high magnification fields) and/or on the Ki-67 index (mitotic and cellular proliferative index) (Table 1). This division was important due to the clinical and prognostic variability between G1, G2 and G3 groups. G1 and G2 GEP-NETs were considered well differentiated while high-grade NECs (G3) were considered poorly differentiated with significantly more aggressive behavior. In 2019, World Health Organization revised the classification and recognized a new category of high-grade but still well-differentiated GEP-NET (G3 NET-Neuroendocrine Tumors) (Table 2). Unlike G3 NECs, G3 NETs usually have a Ki-67 index below 55% and a prognosis not as poor as G3 NECs\(^17\). In addition to the grade classification established by the World Health Organization, which is fundamental for all GEP-NETs, well-differentiated G-NETs are also clinically divided into three types according to their pathophysiology and behavior, which influences treatment recommendations (Table 3).

Below we will describe the three types of G-NETs with their clinical characteristics and approach to localized disease.

Type I
Type I tumors correspond to the majority of G-NETs. They constitute about 70%-80%
Table 1 Classification of gastroenteropancreatic neuroendocrine tumors according to the World Health Organization 2010

<table>
<thead>
<tr>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Grade III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor size in cm</td>
<td>≤ 2</td>
<td>> 2</td>
<td>Any</td>
</tr>
<tr>
<td>Mitoses/10 HPF</td>
<td>< 2</td>
<td>2–20</td>
<td>> 20</td>
</tr>
<tr>
<td>Ki 67 index, %</td>
<td>< 3</td>
<td>3–20</td>
<td>> 20</td>
</tr>
<tr>
<td>Differentation</td>
<td>Well differentiated</td>
<td>Well differentiated</td>
<td>Poorly differentiated</td>
</tr>
</tbody>
</table>

Adapted from[18]. HPF: High-power fields.

Table 2 Classification of gastroenteropancreatic neuroendocrine tumors: Neuroendocrine neoplasms according to the World Health Organization 2019

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Differentiation</th>
<th>Grade</th>
<th>Mitotic rate</th>
<th>Ki 67 index, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET, G1</td>
<td>Well differentiated</td>
<td>Low</td>
<td>< 2</td>
<td>< 3</td>
</tr>
<tr>
<td>NET, G2</td>
<td>Well differentiated</td>
<td>Intermediate</td>
<td>2-20</td>
<td>3-20</td>
</tr>
<tr>
<td>NET, G3</td>
<td>Well differentiated</td>
<td>High</td>
<td>> 20</td>
<td>> 20</td>
</tr>
<tr>
<td>NEC, SCNEC</td>
<td>Poorly differentiated</td>
<td>High</td>
<td>> 20</td>
<td>> 20</td>
</tr>
<tr>
<td>NEC, LCNEC</td>
<td>Poorly differentiated</td>
<td>High</td>
<td>> 20</td>
<td>> 20</td>
</tr>
<tr>
<td>MiNEN</td>
<td>Well or poorly differentiated</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Adapted from[17]. NET: Neuroendocrine tumor; NEC: Neuroendocrine carcinoma; SCNEC: Small cell neuroendocrine carcinoma; LCNEC: Large cell neuroendocrine carcinoma; MiNEN: Mixed neuroendocrine non-neuroendocrine neoplasm.

of the lesions and are associated with chronic autoimmune atrophic gastritis[18-23].

The destruction of parietal cells leads to achlorhydria, which stimulates the production of gastrin. This results in hypergastrinemia as a physiological response to the demand generated by the shortage of HCl. The excess of gastrin generates hypertrophy and hyperplasia of the ECFs, favoring the appearance of innumerable small lesions, which are usually not very aggressive[18,20,22,23]. Serum gastrin is always elevated in type I G-NETs. Vitamin B12 deficiency with or without macrocytic anemia (pernicious or megaloblastic) may be present due to the reduction of the intrinsic factor, with a consequent reduction in the absorption of vitamin B12[18,20,22-24,26]. Parallel to this, serum antiparietal cell antibodies are positive in 80% of cases[20,24-26].

The diagnosis is made by upper digestive endoscopy with biopsy. There are pale, yellowish and transparent blood vessels that contrast with the smooth and red mucosa of areas not affected by the tumor, presenting as red, small and numerous polypos[11,19,20,22-24]. Histological analysis of the gastric mucosa shows atrophy of mucosal cells, hyperplasia of neuroendocrine cells and absence of parietal cells.

For type I G-NETs, treatment is generally more conservative to avoid gastrectomy because they are smaller and more defined lesions. The prognosis is good. The treatment of choice is endoscopic resection for lesions ≥ 0.5 cm and endoscopic observation in smaller ones. In lesions smaller than 2 cm, the risk of metastasis is less than 10%[21,22]. In general, for lesions smaller than 1 cm, no other complementary imaging exam is necessary. However, for lesions ≥ 1 cm, echo-endoscopy is recommended to identify the depth of tumor invasion in the gastric wall and the possible involvement of regional lymph nodes. Gastrectomy is reserved for submucosa tumors and/or lymph node involvement and/or positive margin in the polypectomy sample[19,22-24]. Patients with small type I G-NETs are managed by regular endoscopic follow-up.

When the lesions are multiple and impossible to resect endoscopically or when there are repeated recurrences after endoscopic treatment, both gastrectomy and prescription of somatostatin analogs can be used to reduce serum gastrin and tumor control[22-24]. Reports of the use of somatostatin analogues in small groups of patients showed that the interruption after 12 mo caused the serum gastrin to rise again without the reappearance of new lesions[22,23]. However, data are still insufficient to show the long-term efficacy of pharmacological treatment of localized type I G-NETs[22,23].
Table 3 Types of gastric neuroendocrine tumors

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence, %</td>
<td>70-80</td>
<td>5-10</td>
</tr>
<tr>
<td>Background</td>
<td>Chronic atrophic gastritis</td>
<td>Gastrinomas (Zollinger-Ellison syndrome)</td>
</tr>
<tr>
<td>Other syndromes</td>
<td>Autoimmune polyglandular syndrome</td>
<td>MEN-1 syndrome</td>
</tr>
<tr>
<td>Number of lesions</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Site of tumor</td>
<td>Fundus/body</td>
<td>Fundus/body</td>
</tr>
<tr>
<td>Cell of origin</td>
<td>ECL</td>
<td>ECL</td>
</tr>
<tr>
<td>Serum gastrin levels</td>
<td>Elevated</td>
<td>Elevated</td>
</tr>
<tr>
<td>Gastric PH</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Underlying mucosa</td>
<td>Atrophic</td>
<td>Hypertrophic</td>
</tr>
<tr>
<td>Size of tumors, usual</td>
<td>1-2 cm</td>
<td>1 cm</td>
</tr>
<tr>
<td>Invasion</td>
<td>Rare</td>
<td>More common</td>
</tr>
<tr>
<td>Metastases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>5%-10%</td>
<td>10%-20% (duodenal tumors)</td>
</tr>
<tr>
<td>Liver</td>
<td>2%-5%</td>
<td>10%</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Excellent</td>
<td>Very good</td>
</tr>
</tbody>
</table>

Adapted from[18]. ECL: Enterochromaffin-like; EC: Endocrine.

Type II

They correspond to 5%-10% of G-NETs. In type II, hypergastrinemia also occurs, but it is due to the presence of Zollinger-Ellison syndrome mostly in the context of MEN-1 syndrome. Therefore, in the suspicion of a type II G-NET, it is recommended to determine the serum concentration of both pituitary and parathyroid hormones as well as serum calcium and gastrin levels to assess the possibility of MEN-1 syndrome. The patient may experience abdominal pain and diarrhea in addition to peptic ulcers. Similar to type I G-NETs, excess gastrin causes hypertrophy and hyperplasia of the ECFs. In these cases, it is also common for lesions to be small and multiple[2,18,33-35].

Upon diagnosis, upper endoscopy reveals normal or hypertrophic gastric mucosa in addition to hypergastrinemia and low pH due to hyperchlorhydria. Unlike type I, type II G-NETs tend to be slightly larger, affect younger patients and have a slightly worse prognosis with the risk of lymph node metastases reaching 30%-70%.[27]

In general, the management of type II G-NETs is similar to type I, except for the need to also resect the gastrinoma. Most cases are treated endoscopically with resections. Surgery is rarely necessary. The use of somatostatin analogues is still debated as well as in type I G-NETs.[20,22]

When confirming the diagnosis, the primary gastrinoma should be located and resected, although it is not always possible to locate it and multiple lesions may exist. For that, we include computed tomography, magnetic resonance imaging, endoscopic ultrasound, scintigraphy with octreotide, selective angiography, positron emission tomography and/or intraoperative ultrasound in the workup. It is also possible to use an anatomical reference known as the gastrinoma triangle composed of the junction of the cystic duct with the common liver, the transition from the second to the third duodenal portion and the pancreatic neck.[11,20,35]

Type III

G-NETs of this type are sporadic and not associated with any known clinical condition. They correspond to 10%-15% of all G-NETs. The production of gastrin and HCl is within normal values, except in rare cases where the tumor itself can produce gastrin[36]. They are generally characterized by being single lesions, larger than 1 cm in size and with greater likelihood of evolving to regional and systemic metastases.[2,20,33-35] More than half of patients with type III G-NET are metastatic at

 hypergastrinemia.
diagnosis, mainly to the liver. In these cases, carcinoid syndrome may be present, which is a paraneoplastic syndrome caused by endogenous secretion of serotonin and kallikrein secondary to carcinoid tumors. It becomes manifest when those vasoactive substances from the tumors enter the systemic circulation escaping hepatic degradation. Clinical components of the typical carcinoid syndrome are flushing, diarrhea and abdominal pain. It occurs more frequently in the context of high-volume hepatic metastases and primary tumors located in the small bowel, although it may happen with G-NETs, when atypical symptoms, such as bronchoconstriction, may be present due to the release of histamine.

Recently, some groups have suggested the existence of a type IV G-NET, which consists of the same characteristics described above for type III but being neuroendocrine carcinomas or mixed neuroendocrine non-neuroendocrine neoplasm. Therefore, they have a more aggressive behavior and even worse prognosis[3]. However, the subclassification of type IV is still not well established.

Type III lesions are also investigated by upper endoscopy with biopsy, which shows a single lesion with normal mucosa. The pH is < 4, which is normal for the gastric pattern[2]. In addition to the neoplastic lesion, the adjacent normal mucosa should also be biopsied in order to assess whether there is atrophic gastritis, intestinal metaplasia and ECF hyperplasia, which are not usually present[2].

Total or subtotal gastrectomy is performed together with lymphadenectomy, as recommended in gastric adenocarcinomas[21,22]. For patients with any surgical contraindication, endoscopic resection may be an alternative, but the risk of regional lymph node spread is high. When the anatomicopathological part of the resection specimen shows a slightly differentiated NEC, adjuvant chemotherapy based on platinum, such as cisplatin and etoposide, is used (similar to small-cell lung carcinomas).

Treatment of metastatic disease

The goal of metastatic G-NET therapy is to control symptoms by reducing circulating hormones (when present) and tumor growth in order to increase quality of life and ensure greater survival[19]. In general, the treatment of well-differentiated metastatic disease (G1, G2 or G3 NET) is usually similar to other NETs, taking into account the patient’s performance, available drugs, toxicity profile, the volume and extent of the metastatic disease, the expression of somatostatin receptors in functional images (Octreoscan or 68Ga-Dotatate) and the presence/lack of a functioning syndrome. Surgical resection of metastases, local-regional therapies such as embolization or ablation when there is exclusive liver involvement, somatostatin analogs, target-molecular drugs (everolimus), 177Lu-OctreoTate or even chemotherapy regimens when G3 should be considered when possible[40]. Despite the low response rates, the somatostatin analogue (Octreotide or Lanreotide) is usually the initial treatment of choice because it is well tolerated[41,42]. In the presence of carcinoid syndrome (8% to 35% of G-NETs), the use of the somatostatin analog is mandatory to reduce symptoms and decrease the long-term risks of an uncontrolled carcinoid syndrome. The ideal sequencing for patients with G-NETs, as in other NETs, remains unknown.

In the case of metastatic NEC, the treatment usually follows the protocols of small-cell lung carcinomas, in which the most commonly administered regimen is the combination of cisplatin and etoposide[40]. In these cases, despite good initial response rates, the prognosis is often poor.

CONCLUSION

Although relatively rare, the incidence of G-NETs has increased over time. They comprise a diverse entity of three subtypes with different pathophysiology, prognosis and management. Further studies are needed for further advances in the treatment of G-NETs.

REFERENCES

2. Berruti A, Fazio N, Ferrero A, Brizzi MP, Volante M, Nobili E, Tozzi L, Bodei L, Torta M, D’Avolio A,

Roberto GA et al. Neuroendocrine tumors

19727959 DOI: 10.1245/s10434-009-0687-y

