Contents

REVIEW

1499
Review of the risk factors for SARS-CoV-2 transmission
Li X, Xia WY, Jiang F, Liu DY, Lei SQ, Xia ZY, Wu QP

MINIREVIEWS

1513
Regulation of the expression of proinflammatory cytokines induced by SARS-CoV-2
Zhang XN, Wu LJ, Kong X, Zheng BY, Zhang Z, He ZW

ORIGINAL ARTICLE

Case Control Study

1524
Efficacy and safety of short duration radiotherapy combined with chemotherapy for advanced rectal cancer

Retrospective Study

1532
Effects of transjugular intrahepatic portosystemic shunt using the Viatorr stent on hepatic reserve function in patients with cirrhosis
Yao X, Zhou H, Huang S, Tang SH, Qin JP

1543
Primary and secondary postoperative hemorrhage in pediatric tonsillectomy
Xu B, Jin HY, Wu K, Chen C, Li L, Zhang Y, Gu WZ, Chen C

1554
Dynamic monitoring of serum liver function indexes in patients with COVID-19
Lin H, Wu LJ, Guo SQ, Chen RL, Fan JR, Ke B, Pan ZQ

1563
Construction of a clinical survival prognostic model for middle-aged and elderly patients with stage III rectal adenocarcinoma
Liu H, Li Y, Qu YD, Zhao JJ, Zheng ZW, Jiao XL, Zhang J

1580
Short-term outcomes of radiofrequency ablation for hepatocellular carcinoma using cone-beam computed tomography for planning and image guidance
Yao XS, Yan D, Jiang XX, Li X, Zeng HY, Li H

1592
Intra-arterial thrombolysis for early hepatic artery thrombosis after liver transplantation
Li T, Sun XD, Yu Y, Lv GY

1600
Study on pathogenic genes of dwarfism disease by next-generation sequencing
Yang LL, Liang SS
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1610</td>
<td>Effects of cooperative nursing and patient education on postoperative infection and self-efficacy in gastrointestinal tumors</td>
<td>Qiao L, Zeng SQ, Zhang N</td>
</tr>
<tr>
<td></td>
<td>CASE REPORT</td>
<td></td>
</tr>
<tr>
<td>1631</td>
<td>Balloon-assisted endoscopic submucosal dissection for treating small intestinal lipomas: Report of two cases</td>
<td>Chen HY, Ning SB, Yin X, Li BR, Zhang J, Jin XW, Sun T, Xia ZB, Zhang XP</td>
</tr>
<tr>
<td>1639</td>
<td>Dysphagia in a patient with ankylosing spondylitis: A case report</td>
<td>Wang XW, Zhang WZ</td>
</tr>
<tr>
<td>1646</td>
<td>Autologous scalp skin grafting to treat toxic epidermal necrolysis in a patient with a large skin injury: A case report</td>
<td>Xue DD, Zhou L, Yang Y, Ma SY</td>
</tr>
<tr>
<td>1654</td>
<td>Epstein-Barr virus-positive diffuse large B-cell lymphoma with human immunodeficiency virus mimicking complicated frontal sinusitis: A case report</td>
<td>Yoon S, Ryu KH, Baek HJ, An HJ, Joo YH</td>
</tr>
<tr>
<td>1661</td>
<td>Multiple well-differentiated retroperitoneal liposarcomas with different patterns of appearance on computed tomography: A case report</td>
<td>Xie TH, Ren XX, Fu Y, Ha SN, Liu LT, Jin XS</td>
</tr>
<tr>
<td>1668</td>
<td>Sarcomatoid carcinoma of the prostate with bladder invasion shortly after androgen deprivation: Two case reports</td>
<td>Wei W, Li QG, Long X, Hu GH, He HJ, Huang YB, Yi XL</td>
</tr>
<tr>
<td>1676</td>
<td>Metastatic thymic-enteric adenocarcinoma responding to chemoradiation plus anti-angiogenic therapy: A case report</td>
<td>Li M, Pu XY, Dong LH, Chang PY</td>
</tr>
<tr>
<td>1696</td>
<td>Vancomycin-induced thrombocytopenia in endocarditis: A case report and review of literature</td>
<td>Guleng SR, Wu RH, Guo XB</td>
</tr>
<tr>
<td>1705</td>
<td>Human menstrual blood-derived stem cells as immunoregulatory therapy in COVID-19: A case report and review of the literature</td>
<td>Lu J, Xie ZY, Zhu DH, Li LJ</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1720</td>
<td>Hyperglycemic hemianopia: A case report</td>
<td>Xiang XH, Fang JJ, Yang M, Zhao GH</td>
</tr>
<tr>
<td>1728</td>
<td>Mucinous appendiceal neoplasm: A case report</td>
<td>Chirca A, Negreanu L, Iliesiu A, Costea R</td>
</tr>
<tr>
<td>1734</td>
<td>Reconstructing abdominal wall defects with a free composite tissue flap: A case report</td>
<td>Wang J</td>
</tr>
<tr>
<td>1748</td>
<td>Congenital fiber-type disproportion presenting with type II respiratory failure after delivery: A case report</td>
<td>Yang HM, Guo JX, Yang YM</td>
</tr>
<tr>
<td>1755</td>
<td>Use of three dimensional-printing in the management of floating aortic thrombus due to occult aortic dissection: A case report</td>
<td>Wang TH, Zhao JC, Xiong F, Yang Y</td>
</tr>
</tbody>
</table>
ABOUT COVER
Chin-Hsiao Tseng, MD, PhD, Full Professor, Department of Internal Medicine, National Taiwan University College of Medicine, No. 1 Jen Ai Road Section 1, Taipei 100, Taiwan. ccktsh@ms6.hinet.net

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaoqian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 6, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
CASE REPORT

Congenital fiber-type disproportion presenting with type II respiratory failure after delivery: A case report

Hong-Mei Yang, Jian-Xing Guo, Yi-Min Yang

BACKGROUND

Congenital fiber-type disproportion (CFTD) is a form of congenital myopathy. CFTD is rare, especially when presenting in patients with critical illnesses. Here, we report a case of CFTD presenting with type II respiratory failure after delivery and provide a review of the literature on CFTD.

CASE SUMMARY

A 30-year-old woman was admitted to the obstetrics department of our hospital with premature rupture of the fetal membrane and with 7 h of regular contractions. After delivery, the patient experienced refractory type II respiratory failure. Physical examination along with diagnostic procedures such as electromyography and biopsy confirmed CFTD. Use of invasive ventilator followed by intermittent use of noninvasive ventilator attenuated her symptoms. The patient recovered after ventilator-assisted respiration and was weaned off the noninvasive ventilator on the seventh day postpartum.

CONCLUSION

Congenital myopathy should be considered a differential diagnosis for type II respiratory failures that cannot be attributed to other diseases.

Key Words: Congenital fiber-type disproportion; Congenital myopathy; Type II respiratory failure; Delivery; Systematic review; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The etiology of type II respiratory failure is complex. Congenital fiber-type disproportion is one of the rare causes, whose course is static or slowly progressive. Here, we present a rare case of congenital fiber-type disproportion in a 30-year-old...
woman, whose first symptom was refractory type II respiratory failure postpartum. This case reflects the importance of considering the possibility of congenital myopathy when looking for the cause of type II respiratory failure.

Citation: Yang HM, Guo JX, Yang YM. Congenital fiber-type disproportion presenting with type II respiratory failure after delivery: A case report. World J Clin Cases 2021; 9(7): 1748-1754
URL: https://www.wjgnet.com/2307-8960/full/v9/i7/1748.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i7.1748

INTRODUCTION

Congenital myopathies (CMs) are a group of genetically and clinically diverse neuromuscular disorders characterized by skeletal muscle weakness and specific changes in muscle fiber structure. Based on the main pathological changes observed following muscle biopsy, CMs are further classified into nemaline myopathies, central core myopathy, multi-minicore myopathy, core-rod myopathy, core-nucleon myopathy, and congenital fiber-type disproportion (CFTD)\(^1\). Research has shown that CMs are associated with more than 30 gene mutations\(^2\).

CFTD is a type of CM that is characterized by selective type 1 muscle fiber atrophy in the absence of other pathological changes. CFTD is usually caused by mutations in tropomyosin 3 (TPM3), ryanodine receptor 1, and actin alpha 1, skeletal muscle\(^3\), whereas CFTD due to mutations of myosin, heavy chain 7, selenoprotein N, and TPM2 are relatively rare. The prognosis is generally good, and most patients exhibit a slowly progressive or static course of muscle weakness with hypotonia, respiratory insufficiency, dysphagia, and facial diplegia. Muscle weakness may involve the upper limbs, lower limbs, trunk, neck, and facial muscles; however, the laryngopharyngeal and ocular muscles are spared. General sensations and intelligence quotient are generally preserved, while deep tendon reflexes are diminished or absent. Patients with CFTD usually exhibit characteristic facial features including a thin and long face, a tall palatal arch, spinal deformities, clubfoot, and congenital dislocation of the hip joint. Myogenic damage can be observed on an electromyograph, and histological examinations reveal specific changes, such as a discordant fiber size \(i.e\). type 1 fibers significantly (12%) smaller than type 2 fibers, without other abnormalities.

CFTD is particularly rare in patients with critical illness. It is often neglected or misdiagnosed, which causes delayed therapy. In this rare case, the patient’s respiratory failure was initially considered to be caused by cardiopathy or fentanyl administration; however, physical examination along with diagnostic procedures such as electromyography and biopsy ultimately confirmed CFTD. We review the literature from etiology, clinical manifestation, diagnosis, and treatments of CFTD.

CASE PRESENTATION

Chief complaints

On December 13, 2016, a 30-year-old Han Chinese woman in 34“wk of pregnancy was admitted to the Department of Obstetrics, First Hospital of Jilin University, due to premature rupture of the fetal membrane and regular contractions for 7 h.

History of present illness

The patient reported no menstrual abnormalities. Her last menstrual period was on April 13, 2016, and the expected delivery date was January 20, 2017. She did not undergo regular prenatal examinations during her pregnancy.

History of past illness

The patient reported a development delay in learning to walk at the age of 6 years and had poor exercise endurance. She usually experienced troubled breathing, dizziness, and heavy perspiration after fast walking or running. However, she had not undergone systematic diagnostic procedure and had not been diagnosed officially.
Personal and family history
The patient was unemployed, and had no history of smoking or drinking. No pertinent family history was presented.

Physical examination
A physical examination upon admission revealed that her general condition was poor (temperature: 36.5 °C, pulse: 126 beats per min, respiratory rate: 28 breaths per min, blood pressure: 153/78 mmHg, oxygen saturation: 83%), and she exhibited cyanosis and shortness of breath. An abdominal examination revealed that she was in the third trimester, and the fetal heart rate was 145 beats per min. Pelvic examination revealed that her cervix was dilated to approximately 10 cm.

Laboratory examinations
The patient’s serum troponin level was normal, as were her liver function, renal function, and routine blood test results.

Imaging examinations
No imaging examination was performed in the Department of Obstetrics because of the emergency situation.

Medical management
She was transferred to the labor room immediately. Considering her low oxygen saturation, a heart disease could not be ruled out. Therefore, perineal incision and forceps were used to assist the vaginal delivery and shorten the second stage of labor. A pre-term female neonate was delivered vaginally. Fentanyl (0.002 mg/kg) was slowly intravenously injected to relieve her pain and reduce the cardiac load. However, she continued to experience shortness of breath. Her cyanosis worsened, her heart rate was 120 beats per min, and her blood oxygen saturation ranged from 80%-85%. She was transferred to the intensive care unit immediately.

The patient was cyanotic and lacked spontaneous breathing when admitted to the intensive care unit. Immediately, endotracheal intubation was performed and the patient was put on ventilator-assisted respiration. Although, physical examination revealed a body mass index of 15.6, all other findings were normal. Recovery of spontaneous breathing was observed soon after intubation. Her oxygen saturation reached 100% with low respiratory support parameters. Tracheal intubation was removed on the second day postpartum.

Further diagnostic work-up
Her cardiac color Doppler ultrasound and electrocardiography were normal. A careful physical examination revealed that she had certain characteristic facial features (Figure 1), most notably a thin, elongated face, and a high arched palate. Moreover, muscle volume was less in the limbs, trunk, face, and neck (Figure 2), and she exhibited scoliosis with a waddling gait. Computed tomography of the chest (Figure 3) revealed scoliosis. Considering the clinical manifestation and physical examination of the patient, motor neuropathy and respiratory muscular disease could not be excluded. Electromyography suggested a myopathic process (Figure 4). Biopsy of the left bicep brachia revealed a predominance of type 1 muscle fiber atrophy in the absence of other structural abnormalities, such as that of the rods or cores (Figure 5).

Our patient’s parents and brothers exhibited no signs of CM. They declined to undergo genetic testing.

FINAL DIAGNOSIS
The findings were indicative of CFTD.

TREATMENT
At 10 h after extubation, the patient presented with carbon dioxide retention, hypoxemia, and respiratory distress. She became lethargic, her respiratory rate dropped to 10 breaths per min, and blood gas analysis revealed an oxygen partial pressure of 65-78 mmHg and a partial pressure of carbon dioxide of 64-85 mmHg.
Figure 1 Facial features of the patient. The patient has characteristic facial features of congenital fiber-type disproportion: thin, elongated face and a high arched palate.

Figure 2 Low muscle volume. Muscle volume was less in the limbs and trunk.

Intermittent use of a noninvasive ventilator attenuated her symptoms. The patient firmly requested to be discharged due to personal reasons and was discharged 4 d after delivery. However, she was re-admitted the same day due to carbon dioxide retention. A noninvasive ventilator was used intermittently to relieve her symptoms.

OUTCOME AND FOLLOW-UP

She was weaned from the noninvasive ventilator 3 d later and discharged from the hospital. The patient was advised to rest and reduce physical labor in her daily life. We recommended genetic test for her family including the child although they all refused. The patient did not attend follow-up visits at our hospital; thus, follow-up data are not available.

DISCUSSION

CMs are rare disorders with an estimated prevalence of 1 in 25000\(^4\). According to previous studies, the prevalence of CM is between 1.37 per 100000 (all age groups in northern England) and 5 per 100000 (children in western Sweden)\(^5,6\). CFTD is an
uncommon type of CM first described by Brooke and Engel in 1973. The main histological abnormality is selective type 1 muscle fiber atrophy in the absence of other pathological changes. Clinical manifestations of CFTD include muscle weakness, hypotonia, delayed motor milestones, characteristic facial features (e.g., an elongated or thin face, high palatal vault arches), spinal deformities, clubfoot, and congenital dislocation of the hip joint. Intelligence quotient is generally preserved. Myogenic damage can be observed on an electromyograph and histological examinations reveals that type 1 fibers are significantly (12%) smaller than type 2 fibers.

In contrast with the findings observed in patients with critical illness myopathies, the biopsy of our patient revealed a limited type I atrophy without other abnormalities. Immediately after her delivery, she experienced a type II respiratory failure. Although, adequate ventilation was achieved with low respiratory support parameters, she continued to experience carbon dioxide retention following extubation. The disease was first mistaken as respiratory depression due to fentanyl administration. However, a thorough physical examination, electromyographic analysis, and biopsies confirmed the diagnosis of CFTD. Given that respiratory failure may be associated with the increased oxygen consumption during delivery, our patient may not have been able to fully compensate for these changes due to weak respiratory muscles. At present, genetic mutations can be identified in only 35%-45% of the patients who are clinically and histologically diagnosed with CFTD. Our patient's parents and brothers exhibited no signs of CFTD. They declined to undergo genetic testing.

Figure 3 Chest computed tomography. Scoliosis was observed on her chest computed tomography.

Figure 4 Electromyography suggesting a myopathic process. Decrease in the duration and amplitude of the motor unit potential were observed. Duration and amplitude findings in the right quadriceps femoris were 7.7 ms and 500 µV (36% decrease), respectively.
Figure 5 Biopsy of the left biceps brachia (100 ×). A: Hematoxylin and eosin staining: muscle fiber size differed with a dominant type I muscle fiber atrophy; B: Adenosine triphosphate staining (pH, 4.3): type I muscle fiber enzyme activity was well preserved and seen as dark stains; unstained Type II muscle fiber demonstrated a loss of enzyme activity; C. Adenosine triphosphate staining (pH, 10.4): Enzyme activity of type I muscle fiber was partially lost, which can be seen as light stains; type II muscle fiber enzyme activity was well preserved and can be seen as dark stains. Panel A, B, C revealed that the diameters of type I muscle fibers were < type II muscle fibers.

Previous studies have reported that patients with CFTD can experience complications such as central nervous system abnormalities and cardiomyopathy\[10,11\]. However, no such symptoms were observed in our patient. CFTD is often either missed or misdiagnosed as malnutrition, and there are no specific drugs or treatment modalities for this disease. Recent studies have focused on gene repair and adjustment therapy, which may render CFTD treatable in the future. Given their decreased tolerance to exertion, patients with CFTD should avoid physical labor and vigorous exercises to ensure a good quality of life and a long-term survival. For pregnant patients, cesarean section can be considered to reduce the respiratory load and avoid life-threatening respiratory failure.

CONCLUSION

Given a lack of understanding among most critical care physicians, the diagnosis of CFTD is easy to miss when differentiating between causes of respiratory failure. Our case highlights the need to consider CM in the differential diagnoses of a type II respiratory failure that cannot be attributed to other common diseases. Electro-myo-graphy and muscle biopsy can assist in diagnosis. Genetic testing should be performed in high-risk patients and their families to determine whether they carry the mutated gene.

ACKNOWLEDGEMENTS

We would like to express our gratitude toward the patient who consented to the publication of her case.

REFERENCES

