Dear Editor for *World Journal of Methodology (WJM)*,

On behalf of the other authors and myself, I would like to extend my gratitude for the efforts and time spent reviewing our submission. The Editor makes excellent points and offers valuable suggestions to improve the manuscript. Please find the responses in bold font under the comments made by the reviewer below, which can also be found with track changes and highlighted in the revised manuscript.

I am really grateful to review this manuscript. In my opinion, this manuscript can be published once some revision is done successfully. I made one suggestion and I would like to ask your kind understanding. This study used 182 studies to review recent progress in retinoscopy. Specifically, this study focused on the origin and evolution, strengths and limitations as well as future prospects of retinoscopy. This study concludes that retinoscopy has made significant evolution and adjustment to ever-changing technological and diagnostic demand. I would argue that this is a rare achievement. However, it can be noted that the impact of artificial intelligence looks really magnificent but the section of artificial intelligence before the section of conclusion is too short. In this context, I would like to ask the authors to add more paragraphs on the section of artificial intelligence.

We thank the Reviewer for the positive comment about the review paper and for the time and efforts spent in providing us valuable comments to improve the paper. The Reviewer is correct in stating the inadequate section on AI in retinoscopy. The section now reads:

Integrating artificial intelligence into modern objective refraction techniques can be outlined to serve the following functions: Optimizing technical/operator training; reduce patient/subject waiting time and discomfort [199] [201].
The challenges with in-person examination created by the COVID-19 pandemic necessitated objective refraction simulations [126]. Chandrakanth et al. proposed a smartphone-based application for documenting retinoscopy called the Gimbalscope [199]. This device combines a smartphone with a traditional retinoscope and can be used as a teaching tool for clinicians wanting to understand the reflex patterns seen during the procedure.

Researchers have experimented with integrating artificial intelligence (AI) modalities with portable vision screeners. Handheld infrared eccentric automated refractors have also been implemented with advanced artificial intelligence/deep learning algorithms which help minimize environmental and motion artifacts influencing their utility [200]. Similarly, pediatric vision screeners that measure perifoveal retinal birefringence have been optimized with artificial neural networks which detect central fixation and thus, obtain more accurate refraction measures in the setting of amblyopia and strabismus [201]. The development of predictive analytics for ocular refraction is an evolving research area in medical artificial intelligence. The clinical significance of a Fusion Model-Based Deep Learning System (FMDLS), utilizing Retina Fundus Photographs, has been established in detecting spherical, cylindrical, and axis components of refractive errors, mirroring the effectiveness of cycloplegic refraction [202] while reducing human error. This particular retinal fundus photograph FMDLS correlated common features of the optic nerve head, fovea, and subretinal vascular reflectivity among myopes as predictors of the refractive error. As an improvement upon previous Artificial intelligence (AI) systems which yield output in spherical equivalent values, the Fusion Model-Based Deep Learning System algorithm further highlighted optic disc orientation and macular area morphology as regions of interest in differentiating “with-the-rule” from oblique forms of astigmatism; interracial variation was unaccounted for [202]. Training future advanced artificial intelligence models of ocular refraction with datasets obtainable from wavefront sensor devices may help equate, or even surpass standard refractive measures acquirable with non-machine learning approaches.

Once again, the valuable comments and assistance with our paper are greatly appreciated. Modifications have been made in accordance with the valuable suggestions of the Editor and Reviewer. We hope that all concerns have been addressed appropriately, and are ready to handle further issues if necessary. Kind regards, Marco Zeppieri (on behalf of coauthors)