Contents

Thrice Monthly Volume 10 Number 9 March 26, 2022

REVIEW

2660 Role of metabolites derived from gut microbiota in inflammatory bowel disease
Zheng L, Wen XL, Duan SL

MINIREVIIEWS

2678 Roles of Wnt/β-catenin signaling pathway related microRNAs in esophageal cancer
Chu CY, Wang R, Liu XL

2687 Animal models applied to acute-on-chronic liver failure: Are new models required to understand the human condition?
Gama JFG, Cardoso LMDF, Lagrota-Candido JM, Alves LA

ORIGINAL ARTICLE

Case Control Study

2700 Associations between coagulation factor XII, coagulation factor XI, and stability of venous thromboembolism: A case-control study
Meng Y, Li Y, Ye YJ, Ma Q, Zhang JB, Qin H, Deng YY, Tian HY

Retrospective Cohort Study

2710 Nomogram to predict the risk of endoscopic removal failure with forceps/baskets for treating submandibular stones
Huang Y, Liang PS, Yang YC, Cai WX, Tao Q

2721 Association between anesthesia technique and complications after hip surgery in the elderly population
Guo LS, Wang LN, Xiao JB, Zhong M, Zhao GF

Retrospective Study

2733 Perforating and nonperforating indications in repeated surgeries for Crohn’s disease
Shen WS, Huang XH, Liu RQ, Li CY, Li Y, Zhu WM

2743 Treatment of *Pneumocystis jirovecii* pneumonia in non-human immunodeficiency virus-infected patients using a combination of trimethoprim-sulfamethoxazole and caspofungin
Wu HH, Fang SY, Chen YX, Feng LF

2751 Acute kidney injury in traumatic brain injury intensive care unit patients

2764 Enucleation combined with guided bone regeneration in small and medium-sized odontogenic jaw cysts
Cao YT, Gu QH, Wang YW, Jiang Q
Contents

Thrice Monthly Volume 10 Number 9 March 26, 2022

Clinical Trials Study

2773 Determination of the ED95 of intranasal sufentanil combined with intranasal dexmedetomidine for moderate sedation during endoscopic ultrasonography
Zou Y, Li N, Shao LJZ, Liu FK, Xue FS, Tao X

Observational Study

2783 Overexpression of Ubiquilin4 is associated with poor prognosis in patients with cervical cancer

Randomized Clinical Trial

2792 Peplau’s interpersonal relationship theory combined with bladder function training on patients with prostate cancer
Yang XH, Wu LF, Yan XY, Zhou Y, Liu X

SYSTEMATIC REVIEWS

2801 Efficacy of bone grafts in jaw cystic lesions: A systematic review
Wang J, Yao QY, Zhu HY

CASE REPORT

2811 Short stature associated with a novel mutation in the aggrecan gene: A case report and literature review
Yin LP, Zheng HX, Zhu H

2818 Treatment with sorafenib plus camrelizumab after splenectomy for primary splenic angiosarcoma with liver metastasis: A case report and literature review
Pan D, Li TP, Xiong JH, Wang SB, Chen YX, Li JF, Xiao Q

2829 Sarcomatoid intrahepatic cholangiocarcinoma with good patient prognosis after treatment with Huaier granules following hepatectomy: A case report
Feng JY, Li XP, Wu ZY, Ying LP, Xin C, Dai ZZ, Shen Y, Wu YF

2836 Sequential occurrence of T790M mutation and small cell lung cancer transformation in EGFR-positive lung adenocarcinoma: A case report
Hong E, Chen XE, Mao J, Zhou JJ, Chen L, Xu JY, Tao W

2844 Early diagnosis of Gitelman syndrome in a young child: A case report
Wu CY, Tsai MH, Chen CC, Kao CH

2851 Congenital intestinal malrotation with gastric wall defects causing extensive gut necrosis and short gut syndrome: A case report
Wang Y, Gu Y, Ma D, Guo WX, Zhang YF

2858 Delusional parasitosis as premotor symptom of Parkinson’s disease: A case report
Oh M, Kim JW, Lee SM
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2864</td>
<td>Laninamivir-induced ischemic enterocolitis: A case report</td>
<td>Suzuki C, Kenzaka T</td>
</tr>
<tr>
<td>2871</td>
<td>Intramural pregnancy after in vitro fertilization and embryo transfer: A case report</td>
<td>Xie QJ, Li X, Ni DY, Ji H, Zhao C, Ling XF</td>
</tr>
<tr>
<td>2883</td>
<td>Lumbar disc sequestration mimicking a tumor: Report of four cases and a literature review</td>
<td>Li ST, Zhang T, Shi XW, Liu H, Yang CW, Zhen P, Li SK</td>
</tr>
<tr>
<td>2895</td>
<td>Parasitic leiomyoma in the trocar site after laparoscopic myomectomy: A case report</td>
<td>Roh CK, Kwon HJ, Jung MJ</td>
</tr>
<tr>
<td>2901</td>
<td>Giant nontraumatic myositis ossificans in a child: A case report</td>
<td>Xia AN, Wang JS</td>
</tr>
<tr>
<td>2908</td>
<td>Paradoxical carbon dioxide embolism during laparoscopic hepectectomy without intracardiac shunt: A case report</td>
<td>Jeon S, Hong JM, Lee HJ, Kim Y, Kang H, Hwang BY, Lee D, Jung YH</td>
</tr>
<tr>
<td>2923</td>
<td>Acute coronary artery stent thrombosis caused by a spasm: A case report</td>
<td>Meng LP, Wang P, Peng F</td>
</tr>
<tr>
<td>2931</td>
<td>Turner syndrome with primary myelofibrosis, cirrhosis and ovarian cystic mass: A case report</td>
<td>Xu LW, Su YZ, Tao HF</td>
</tr>
<tr>
<td>2948</td>
<td>Ipsilateral hemifacial microsomia with dextrocardia and pulmonary hypoplasia: A case report</td>
<td>Guo R, Chang SH, Wang BQ, Zhang QG</td>
</tr>
<tr>
<td>2954</td>
<td>Upper gastrointestinal bleeding from a Mallory-Weiss tear associated with transesophageal echocardiography during successful cardiopulmonary resuscitation: A case report</td>
<td>Tang MM, Fang DF, Liu B</td>
</tr>
<tr>
<td>2961</td>
<td>Malignant struma ovarii with papillary carcinoma combined with retroperitoneal lymph node metastasis: A case report</td>
<td>Xiao W, Zhou JR, Chen D</td>
</tr>
</tbody>
</table>
Occult colon cancer with sepsis as the primary manifestation identified by bone marrow puncture: A case report

Wang HJ, Zhou CJ
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Arunchai Chang, MD, Assistant Professor, Lecturer, Staff Physician, Division of Gastroenterology, Department of Internal Medicine, Hatyai Hospital, Hatyai 90110, Songkhla, Thailand. busmdcu58@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
March 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Short stature associated with a novel mutation in the aggrecan gene: A case report and literature review

Li-Ping Yin, Hong-Xue Zheng, Hong Zhu

BACKGROUND
Mutations in the aggrecan (ACAN) gene are identified in patients with: spondyloepiphyseal dysplasia, Kimberley type; short stature with advanced bone age (BA); in the presence or absence of heterozygous ACAN mutation-induced early-onset osteoarthritis and/or osteochondritis dissecans; and spondyloepimetafysyal dysplasia, ACAN type. Heterozygous mutations contribute to spondyloepiphyseal dysplasia, Kimberley type (MIM#608361), which is a milder skeletal dysplasia. In contrast, homozygous mutations cause a critical skeletal dysplasia, which is called spondyloepimetafysyal dysplasia, ACAN type (MIM#612813). Lately, investigations on exome and genome sequencing have shown that ACAN mutations can also lead to idiopathic short stature with or without an advanced BA, in the presence or absence of early-onset osteoarthritis and/or osteochondritis dissecans (MIM#165800). We herein reported a heterozygous defect of ACAN in a family with autosomal dominant short stature, BA acceleration, and premature growth cessation.

CASE SUMMARY
A 2-year-old male patient visited us due to growth retardation. The patient presented symmetrical short stature (height 79 cm, < -2 SD) without facial features and other congenital abnormalities. Whole-exome sequencing revealed a heterozygous pathogenic variant c. 871C>T (p. Gln291*) of ACAN, which was not yet reported in cases of short stature. This mutation was also detected in his father and paternal grandmother. According to the Human Gene Mutation Database, 67 ACAN mutations are registered. Most of these mutations are genetically inheritable, and very few children with short stature are associated with ACAN mutations. To date, heterozygous ACAN mutations have been reported in approximately 40 families worldwide, including a few individuals with a decelerated BA.

CONCLUSION
Heterozygous c. 871C>T (p. Gln291*) variation of the ACAN gene was the disease-causing variant in this family. Collectively, our newly discovered mutation expanded the spectrum of ACAN gene mutations.

Key Words: Short stature; Aggrecan gene; Mutation; Bone age; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Because of the diversity of clinical manifestations, phenotype overlap, and high genetic heterogeneity of short stature, the etiology of dwarfism cannot be determined by merely inquiring about the medical history, clinical performances, and routine laboratory examination. Gene detection can provide clear clinical diagnostic evidence, decrease the medical error and missed diagnosis of the disorder, instruct genetic counseling, and supply a trustworthy principle for fetal diagnosis. This case expanded the spectrum of aggrecan gene mutations.

INTRODUCTION

Children often visit pediatric endocrinologists because of their short stature. However, the clinical definition and therapeutic regimen of pediatric growth disorders have been significantly changed by recent advances in genetic methodology. Idiopathic short stature and advanced bone age (BA), in the presence or absence of heterozygous aggrecan (ACAN) mutation-induced early-onset osteoarthritis and/or osteochondritis dissecans exemplify these changes well. Herein, we presented the case and his affected members with symmetrical short stature, and a heterozygous variant of the ACAN gene was the disease-causing variant in this family.

CASE PRESENTATION

Chief complaints

A 2-year-old boy with growth retardation for over 1 year.

History of present illness

This boy was born at 40 wk of gestation following a common pregnancy and parturition. At birth, his weight was 2.75 kg, while there was no specific body length measurement. At 2 years of age, the patient visited us due to his short stature. His height was 79 cm (-2.7 SD), with a bodyweight of 10 kg, and his occipitofrontal circumference was 49 cm. No dysmorphic features were detected. His mental and motor development were normal.

History of past illness

The patient was not associated with any previous illness.

Personal and family history

The height of his father and paternal grandmother was 152 cm (< -3.0 SD) and 138 cm (< -3.0 SD), respectively.

Physical examination

The physical test showed retarded growth (height, 79 cm; weight, 10 kg). He presented symmetrical short stature without facial features and other congenital abnormalities.

Laboratory examinations

The peripheral blood was collected from the patient and his family members, followed by DNA extraction. Whole-exome sequencing was performed using an xGen Exam research panel v1.0 (IDT) on a HiSeq 4000 (Illumina). Any known disease associations were determined using the Online Mendelian
Inheritance of Man (http://www.omim.org) database. A heterozygous mutation in ACAN (NM_013227.3) was identified in all affected individuals. This ACAN mutation was predicted to cause the resultant termination at codon 291 (c.871C>T; p.Gln291*) (Figure 1).

Imaging examinations
His BA was evaluated as 3 years and 6 mo to 4 years (Figure 2).

FINAL DIAGNOSIS
Short stature caused by ACAN mutation.

TREATMENT
The patient received growth hormone (GH) treatment.

OUTCOME AND FOLLOW-UP
The height of the patient was increased by about 1 cm per month after GH treatment. During the treatment, no adverse events were recorded.

DISCUSSION
The ACAN gene encoding aggrecan is usually localized on chromosome 15q26[1,2]. Its full-length clone has been obtained by Doege et al[3]. The kernel protein of ACAN is composed of three disulfide-bonded globular domains (G1, G2, and G3) and intervening extended domains[1]. The interglobular domain is a protruding site for breaking proteins into smaller polypeptides or amino acids, and many proteinases can cleave between the G1 and G2 domains[5,6]. An extended GAG-attachment region separates the G2 and G3 domains, which is differentiated into three parts. The keratan sulfate (KS)-rich domain lies adjacent to the G2 domain. The KS-rich domain is likened to the chondroitin sulfate (CS)-rich domain, which is differentiated into two subdomains (CS1 and CS2), and the amino acid sequences of these two subdomains are different. The CS2 domain is connected to the G3 domain, which is located at the carboxy terminus of the core protein. The G3 region consists of two epidermal growth factor-like domains, one C-type lectin-like domain, and one complement regulatory protein-like domain[7]. The G3 region plays a fundamental role in the normal trafficking of ACAN within the chondrocytes, and such a region is also involved in the release of ACAN into the extracellular matrix[8]. In the extracellular matrix, the G3 domain is not detected in some ACAN molecules[9,10], which can probably be attributed to proteolytic cleavage.

There are 19 exons in the human ACAN gene[11]. The G1 region, interglobular domain, and G2 region are encoded by exons 3-6, exon 7, and exons 8-10, respectively. The GAG attachment region is encoded by exons 11 and 12, in which exon 11 encodes the first part of the KS-rich domain, and the large exon 12 encodes the remainder of the KS-rich domain as well as the CS1 and CS2 domains. The exons 13-19 encode the G3 region, exons 13 and 14 each encode an epidermal growth factor-like domain, exons 15-17 encode the lectin-like domain, and exon 18 encodes the complement regulatory protein-like domain.

ACAN is the main proteoglycan of the extracellular matrix of the growth plate cartilage[12]. Mutations in ACAN are associated with growth defects[13]. The research of Gleghorn et al[14] first reported an ACAN mutation that causes human disease. They have identified the heterozygosity for a 1-bp insertion in the ACAN gene with spondyloepiphyseal dysplasia, Kimberley type-affected members. This mutation can forecast the synthesis of a truncated protein that is about 60% of the normal size. The truncated protein lacks half of the CS1 domain, the complete CS2 domain, and the G3 domain, while it includes a novel sequence of 212 aa.

Watanabe et al[15] showed that heterozygotes have two obvious phenotypes: slight dwarfism and age-related hyperlordosis, the anterior concavity in the curvature of the spine. In the families analyzed by some studies[16-18], heterozygotes are detected in all affected members, who exhibit the clinical features of short stature and advanced BA. These data indicate that various pathogenic heterozygous ACAN variants (Table 1) affect the chondrogenesis of the growth plate in a similar pattern. Therefore, the growth plate chondrogenesis is impaired by functional haploinsufficiency of ACAN rather than various mutation-specific mechanisms. However, a dysfunctional C-type lectin domain in the ACAN protein leads to a more severe phenotype, impairing the functions of the growth plate and articular...
cartilage. All these studies provide a reasonable explanation for why those families have short stature but no evidence of early-onset osteoarthritis. The proband and affected members of our case also presented with autosomal dominant short stature and no indications of chondrodysplasia.

The combination of short stature and advanced BA is rare. Most known causative mutations either impair proteoglycan synthesis\[19-21\] or reduce signaling through the cAMP-protein kinase A signaling pathway\[22-24\].

In the clinical studies of ACAN patients, the length in the lower part of most heterozygous carriers of ACAN variants show a normal range at birth, while some of them are born short for gestational age\[25\]. Some researchers have suggested that individuals treated with GH have an improvement in adult height. In addition to GH treatment, some patients also simultaneously receive treatment with gonadotropin-releasing hormone analogue. This treatment can be given to patients after the administration of an aromatase inhibitor, which can successfully postpone bone maturation, and such therapy can benefit those carrying confirmed ACAN mutations\[26-31\].

CONCLUSION

In the present study, a heterozygous mutation in the ACAN gene was identified in a Chinese family with short stature. We hypothesized that this mutation could induce early truncation of the ACAN protein. Genetic testing is important for diagnosis and treatment.
Figure 1 Family map and whole-exome sequencing of the patient. The mutation was not found in the unaffected grandfather or mother or public variant databases.

Figure 2 Bone age. The bone age was equivalent to 3.5-4 years at the age of 2 years.

ACKNOWLEDGEMENTS

We gratefully acknowledge the kind cooperation of the patient, the family members, and the staff from the unit for their assistance in conducting this study.

FOOTNOTES

Author contributions: Yin LP and Zheng HX collected the medical records of the patient, reviewed the literature, and drafted the manuscript; Zhu H revised the manuscript; all authors agreed to submit the final version.

Informed consent statement: The patient signed the informed consent and permitted publication of his information and any accompanying images.

Conflict-of-interest statement: The authors declare that there was no conflict of interest to report.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Li-Ping Yin 0000-0002-5965-037X; Hong-Xue Zheng 0000-0003-0929-6621; Hong Zhu 0000-0001-5078-1288.

S-Editor: Liu JH
L-Editor: Filippodia
P-Editor: Liu JH

REFERENCES

