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Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin 
that possess self-renewal capacity and the ability to differentiate into multiple 
mesodermal cell lineages. They play a critical role in tissue homeostasis and 
wound healing, as well as in regulating the inammatory microenvironment 
through interactions with immune cells. Hence, MSCs have garnered great 
attention as promising candidates for tissue regeneration and cell therapy. 
Because the inflammatory niche plays a key role in triggering the reparative and 
immunomodulatory functions of MSCs, priming of MSCs with bioactive 
molecules has been proposed as a way to foster the therapeutic potential of these 
cells. In this paper, we review how soluble mediators of the inflammatory niche 
(cytokines and alarmins) influence the regenerative and immunomodulatory 
capacity of MSCs, highlighting the major advantages and concerns regarding the 
therapeutic potential of these inflammatory primed MSCs. The data summarized 
in this review may provide a significant starting point for future research on 
priming MSCs and establishing standardized methods for the application of 
preconditioned MSCs in cell therapy.

Key Words: Mesenchymal stem cells; Pro-inflammatory cytokines; Alarmins; Priming; 
Boosting the therapeutic potential
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Core Tip: The inflammatory niche plays a key role in triggering the reparative and 
immunomodulatory functions of mesenchymal stromal/stem cells (MSCs). This paper 
summarizes the data on how soluble factors in the inflammatory microenvironment, 
including pro-inflammatory cytokines secreted by immune cells and alarmins released by 
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damaged cells, affect MSCs’ ability to regenerate tissue and modulate the inflammatory 
response. We also analyze data from in vitro and in vivo studies, which highlight the 
influence of these factors on the therapeutic potential of MSCs, thus providing an 
important background for the development of preconditioning strategies that might 
improve the outcomes of MSC-based cell therapies.

Citation: Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. 
Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem 
Cells 2020; 12(9): 922-937
URL: https://www.wjgnet.com/1948-0210/full/v12/i9/922.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i9.922

INTRODUCTION
Inflammation is a localized immunologic response of the tissue elicited by harmful 
stimuli, including pathogens, irritants, or physical injury. This complex and protective 
response plays a fundamental role in the regulation of tissue repair, serving to 
eliminate harmful stimuli and begin the healing process[1]. In fact, inflammation is 
considered an important initial phase, followed by cell proliferation and extracellular 
matrix remodeling. These phases overlap over time and each of them represents a 
sequence of dynamic cellular and biochemical events, contributing to tissue 
regeneration through the collaboration of many cell types and their soluble 
products[2]. Immune cells, together with blood vessels, various stromal cells, 
extracellular matrix components, and a plethora of secreted soluble mediators, 
comprise an inflammatory microenvironment capable of inducing different responses 
of cells within injured tissue[3].

Soluble mediators released from injured/necrotic cells or damaged 
microvasculature lead to enhanced endothelium permeability and infiltration of 
neutrophils and macrophages. Among these mediators are endogenous danger 
signals, known as alarmins, which are rapidly released by dying necrotic cells upon 
tissue damage and play an important role in promoting and enhancing the immune 
response[4-6]. To date, the best-characterized alarmins are the interleukin (IL)-1 family 
of cytokines (IL-1α and IL-33), high-mobility group protein B1 (HMGB1), S100 
proteins, and heat shock proteins (Hsps)[4,7]. In addition, during the inflammatory 
process, the phagocytosis of necrotic cells by resident/recruited neutrophils and 
macrophages induces the release of various inflammatory factors, such as tumor 
necrosis factor (TNF)-α, interferon (IFN)-γ, IL-1β, IL-17, and chemokines[8].

Aside from numerous soluble mediators, tissue injury mediated by immunity or 
infection involves an even greater number of various immune cells, including B cells, 
CD4+ and CD8+ T cells, and natural killer cells. While all immune cells play key roles 
in wound healing through the eradication of damaged tissue and invading pathogens, 
their excessive activation can actually aggravate the injury. Therefore, a compre-
hensive understanding of inflammatory niche elements might contribute to the 
development of novel therapeutic strategies for the treatment of inflammatory-
associated diseases, as well as conditions of failed tissue regeneration.

One of the cellular compartments participating in the inflammatory niche represents 
mesenchymal stromal/stem cells (MSCs). MSCs are stem cells of stromal origin that 
possess self-renewal capacity and the ability to differentiate into three mesodermal cell 
lineages, including osteocytes, chondrocytes, and adipocytes[9]. Considering their 
critical role in tissue homeostasis and wound healing, MSCs have garnered great 
attention as promising candidates for tissue regeneration. Although first isolated from 
the bone marrow (BM)[10], MSCs may be obtained from various fetal and adult tissues, 
such as the umbilical cord (UC), peripheral blood, adipose tissue (AT), and skin and 
dental tissues[11,12]. According to the minimum criteria proposed by the International 
Society for Cellular Therapy, MSCs originating from different tissues are evidenced by 
the property of plastic adherence in vitro and expression of various non-specific 
surface molecules, such as cluster of differentiation (CD)105, CD90, CD73, and CD29, 
in parallel with trilineage differentiation potential[13]. However, the term MSC has 
recently been considered inappropriate, as it has become clear that MSCs from 
different tissues are not the same, especially with respect to their differentiation 
capacities[14,15], whereas their multipotent differentiation potential has not been 
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confirmed in in vivo conditions. Therefore, Caplan[17] recently proposed this term to 
stand for medicinal signaling cells[16], indicating the correlation of the therapeutic 
benefits of MSCs with the secretion of various bioactive molecules.

Many studies have demonstrated that MSCs contribute to tissue repair by 
accumulating at sites of tissue damage and inflammation, where together with 
resident MSCs, they exert reparative effects in two ways. One way is to replace 
damaged cells through differentiation, and another is related to the ability of MSCs to 
strongly influence the microenvironment by releasing bioactive factors and interacting 
with multiple cell types[18,19]. Indeed, poorly immunogenic MSCs that weakly express 
major histocompatibility complex (MHC) class I and lack MHC class II play a critical 
role in regulating the inflammatory microenvironment through interactions with 
immune cells such as T cells, B cells, natural killer cells, and dendritic cells[20-22]. As a 
result of these interactions, MSCs suppress lymphocyte proliferation and maturation 
of monocytes into dendritic cells, while stimulating the generation of regulatory T cells 
(Tregs) and M2 macrophages[23,24].

The major role in the crosstalk between MSCs and immune cells has been ascribed 
to soluble factors, which upon release by activated immune cells, significantly affect 
MSCs paracrine activity, conversely influencing immune cells. In particular, the 
immunosuppressive activity of MSCs has been related to the production of 
indoleamine-2,3-dioxygenase (IDO), nitric oxide (NO), prostaglandin-E2 (PGE2), IL-10, 
transforming growth factor (TGF)-β, and TNFα-stimulated gene-6[25].

Inflammatory priming of MSCs
It is believed that the inflammatory niche plays a key role in triggering the reparative 
function of MSCs. Namely, studies have demonstrated that the immunosuppressive 
potential of MSCs is not inherently expressed but requires priming by inflammatory 
factors, including IFN-γ, TNF-α, or IL-1β[18,26]. Moreover, it has been found that MSCs 
can polarize into MSC type 1 with a pro-inflammatory profile or MSC type 2 with an 
immunosuppressive phenotype, depending on the inflammatory condition[23,27]. On the 
other hand, the inflammatory microenvironment influences the differentiation 
potential of resident and recruited MSCs, significantly impairing their regenerative 
capacity. In addition, several studies have shown that MSCs of different tissue origin 
may exert differential sensitivity to inflammatory conditions[28,29]. These data point to 
the critical importance of interactions between MSCs and inflammatory factors for the 
outcome of wound healing.

Indeed, the regenerative potential of transplanted MSCs is affected by inflammatory 
conditions[30], indicating the strong influence of the recipient’s inflammatory status on 
the efficacy of MSC-based therapies. Interestingly, to reduce the heterogeneity of 
MSCs and generate more homogenous therapeutic products, MSC priming with 
cytokines has been proposed[31]. The application of bioactive molecules in this context 
has been considered a supplemental molecular signal used to foster the therapeutic 
potential of MSCs and contribute to establishing a favorable microenvironment for 
tissue repair.

The complex cytokine network has been considered a critical part of the 
inflammatory microenvironment, where the pleiotropic properties of pro-
inflammatory cytokines play a decisive role in the healing process and tissue 
regeneration. TNF-α, IFN-γ, IL-1, IL-17, and IL-6 are the most common inflammatory 
cytokines in this complex network[32]. Moreover, another significant constituent of the 
inflammatory niche considers alarmins, such as IL-1α and IL-33, HMGB1, S100 
proteins, and Hsps, which can promote the immune response, thereby supporting host 
defense and tissue repair[7]. Here, we review how these soluble mediators of the 
inflammatory niche influence the regenerative and immunomodulatory potential of 
MSCs, highlighting the major advantages and concerns regarding the therapeutic 
potential of inflammatory primed MSCs.

MSCs priming with pro-inflammatory cytokines
IFN-γ priming: One of the most studied inflammatory priming mediators is IFN-γ, 
which is a key player in cellular immunity regulation, heightening immune responses 
in infection and cancer. However, very little is known about the effects of IFN-γ on the 
regenerative potential of MSCs. Namely, Croitoru-Lamoury et al[33] demonstrated that 
IFN-γ exerts significant antiproliferative effects on mouse and human BM-MSCs 
(Figure 1) through IDO induction and production of downstream tryptophan 
metabolites, such as kynurenine, which can potentiate the suppressive effects on cell 
proliferation in an autocrine manner. This was the first study that linked IFN-γ-
induced IDO with the control of MSC differentiation potential, as evidenced by the 
inhibition of both osteogenic and adipogenic marker expression in IFN-γ-primed BM-
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Figure 1  Influence of inflammatory priming on regenerative features of mesenchymal stromal/stem cells under in vitro conditions. Soluble 
factors in the inflammatory microenvironment, including pro-inflammatory cytokines secreted by immune cells and alarmins released by damaged cells, influence 
mesenchymal stromal/stem cells’ (MSCs) ability to regenerate tissue by affecting their proliferation, migration and differentiation potential (osteogenic, chondrogenic, 
adipogenic). When applied in vitro, indicated inflammatory factors differently affect the regenerative properties of MSCs depending on the species or tissue origin of 
MSCs. Symbols: ↑ and ↓  represent stimulatory or inhibitory activity of priming factor, respectively; ↔ indicates no effects of priming factor. The term ’dual’ indicates 
the data where priming factor dually affected MSCs function depending on applied concentration or MSCs donor age. The numbers in square brackets indicate the 
references. IFN-γ: Interferon gamma; TNF-α: Tumor Necrosis Factor alpha; IL: Interleukin; HMGB1: High mobility group box 1; Hsp: Heat shock proteins; MSCs: 
Mesenchymal stromal/stem cells; h: Human; WJ: Warthon jelly; BM: Bone marrow; r: Rat; UC: Umbilical cord; AT: Adipose tissue; DP: Dental pulp; PDL: Periodontal 
ligament; SHED: Exfoliated deciduous teeth.

MSCs upon induction of differentiation.
Numerous studies have demonstrated that the priming of MSCs with IFN-γ can 

enhance the immunosuppressive property of these cells by IDO stimulation[34]. In 
addition, exposure to IFN-γ has been shown to induce UC Wharton’s jelly (WJ)-MSCs 
to express other immunosuppressive factors, such as human leukocyte antigen G5, as 
well as C-X-C motif chemokine ligand (CXCL)9, CXCL10, and CXCL11[35]. Even more, 
IFN-γ-primed WJ-MSCs secrete more IL-6 and IL-10 upon co-culture with activated 
lymphocytes, increasing the percentage of Tregs, while decreasing the frequency of T 
helper (Th)17 cells (Table 1).

Another mechanism underlying the inhibitory effects of IFN-γ-primed BM-MSCs on 
T-cell effector functions is the upregulation of programmed death-ligand 1 (referred to 
as PD-L1)[36] (Table 1). However, in the context of potential MSCs’ therapeutic use, the 
findings from several studies which have demonstrated that MSCs priming with IFN-γ 
led to upregulation of class I and class II human leukocyte antigen (referred to as 
HLA) molecules should be considered, as they indicated more immunogenic MSCs 
profile that is linked to a higher susceptibility to host immune cells recognition[37,38]. 
Noteworthy, a recent study found that priming with IFN-γ did not increase HLA class 
II expression on senescent BM-MSCs but upregulated this molecule on early passage 
BM-MSCs, suggesting that IFN-γ priming effects can also be influenced by cell 
aging[39].

Interestingly, in vivo experiments have demonstrated that IFN-γ affects the 
therapeutic efficacy of MSCs in a dose-dependent manner. Namely, when low 
concentrations of IFN-γ were used for murine BM-MSCs priming, the therapeutic 
effects of MSCs on experimental autoimmune encephalomyelitis in mice were 
completely inhibited, as demonstrated by the increased secretion of pro-inflammatory 
chemokine CCL2 and higher expression of MHC molecules class I and II[38]. BM-MSCs 
primed with higher concentrations of IFN-γ prior to use in murine models of colitis 
reportedly increase MSC therapeutic efficacy, as demonstrated by the significantly 
attenuated development and/or reduced symptoms of colitis[40]. These effects were 
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Table 1 Influence of inflammatory priming on immunomodulatory features of mesenchymal stromal/stem cells under in vitro conditions

Priming factor MSCs source Immunomodulatory effects of 
inflammatory priming Suggested mechanism Ref.

↓  Th1 and Th17 cells proliferation ↑ CXCL9, CXCL10, 
CXCL11, ICAM-1, VCAM-
1, IDO1 and HLA-G5 gene 
expression

hWJ-MSCs

↑ Th2 and Tregs (CD4+, CD25+, 
CD127dim/− cells) percentage

↓  IFNγ, TNFα but ↑ IL-10 
and IL-6 secretion in co-
culture with PB-MNCs

Wang et al[35], 2016IFN-γ

hBM-MSCs ↓  T-cell effector functions and Th1 
cytokine (IFN-γ, TNF-α, and IL-2) 
production

↑ B7H1 and B7DC (ligands 
for PD1) expression

Chinnadurai et al[36], 
2014

↓  T cell proliferation ↑ IDO activity

↑ Monocyte differentiation into M2 
(IL-10-secreting CD206+) 
immunosuppressive macrophages

François et al[55], 2012IFN-γ and TNF-α hBM-MSCs

↓  CD3/CD28-induced T-cell 
proliferation

↓  Potency to trigger 
increased IFN-γ and IL-2 
synthesis by activated T 
cells

Cuerquis et al[59], 2014

TNF-α/IFN-γ and 
IL-β

rBM-MSCs ↓  Proliferation of syngeneic 
lymphocytes

↑ NO production Murphy et al[80], 2019

↓  PHA-stimulated T-cell 
proliferation

↑ IL-6 gene expression

↓  Expression of CD25 on CD4+ 
effector T cells

Treg-mediated IL-2 
deprivation

↓  T cell effector function and Th1 
cytokines (IFN-γ, TNF-α, IL-2) 
secretion

IL-17 hBM-MSCs

↑ Formation of Tregs (CD4+ CD25 
high CD127 low FoxP3+)

Cell-contacts and ↑ PGE2 
and TGF-β expression

Sivanathan et al[94], 
2015

IFN-γ, TNF-α and 
IL-17

mBM-MSC ↓  T-cell proliferation ↑ iNOS expression Han et al[95], 2014

Pro-inflammatory 
cytokines

IFN-γ, TNF-α and 
IL-6

hAT-MSC ↓  Proliferation of PHA or MLR 
activated PB-MNCs

↑ IDO expression Crop et al[111], 2010

IL-1α hBM-MSCs ↓  IL-6, TNF-α and ↑ IL-10 secretion 
in LPS-activated mouse microglial 
BV2 cells

↑ G-CSF secretion Redondo-Castro 
et al[78], 2017

Alarmins

HMGB1 hBM-MSC Unaffected inhibition of Con A-
induced lymphocyte proliferation

/ Meng et al[118], 2008

Symbols: ↑ and ↓  represent stimulatory or inhibitory activity of priming factor, respectively. IFN-γ: Interferon gamma; TNF-α: Tumor Necrosis Factor 
alpha; IL: Interleukin; HMGB1: High mobility group box 1; MSCs: Mesenchymal stromal/stem cells; h: Human; WJ: Warthon jelly’s; BM: Bone marrow; 
r:rat; AT: Adipose tissue; Th: T helper; PHA: Phytohaemagglutinin; MLR: Mixed lymphocyte reaction; LPS: Lipopolysaccharide; Con A: Concanavalin A; 
CXCL: C-X-C motif chemokine ligand; ICAM-1: Intercellular adhesion molecule-1; VCAM-1: Vascular cell adhesion molecule 1; IDO: Indoleamine-pyrrole 
2,3-dioxygenase; HLA-G5: Human leukocyte antigen-G molecules; PB-MNCs: Peripheral blood mononuclear cells; B7H1: B7 homolog 1; PD1: Programmed 
cell death protein 1; NO: Nitric oxide; PGE2: Prostaglandin E�; TGF-β: Transforming growth factor beta; iNOS: Inducible NO synthase; G-CSF: 
Granulocyte - colony stimulating factor.

found to be related to the increased migration of IFN-γ-primed MSCs along with their 
enhanced capacity to inhibit Th1 inflammatory responses, all of which contributed to 
decreased mucosal damage. In addition, Polchert et al[41] showed that IFN-γ-primed 
mouse BM-MSCs suppress graft vs host disease more efficiently than non-primed 
MSCs depending on the magnitude of IFN-γ exposure (Figure 2). By contrast, a recent 
study showed that infusion of thawed IFN-γ-primed human MSCs failed to improve 
retinal damage in a murine model of retinal disease[42].

TNF-α priming: TNF-α is a pleiotropic cytokine involved in systemic inflammation, 
which also affects the metabolism, growth, and differentiation potential of various cell 
types. Regarding the regenerative potential of TNF-α-treated MSCs, it has been 
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Figure 2  Improved in vivo therapeutic potential of inflammatory primed mesenchymal stromal/stem cells. The inflammatory niche mediators, 
including proinflammatory cytokines and alarmins, play a key role in triggering the reparative functions of mesenchymal stromal/stem cells, influencing their paracrine 
secretion, proliferation, differentiation, migration and immunomodulatory potential. When applied in vivo, the improved therapeutic efficiency of inflammatory primed 
MSCs has been detected in various experimental models. The numbers in square brackets indicate the references. TNF-α: Tumor Necrosis Factor alpha; IL: 
Interleukin; IFN-γ: Interferon gamma; HMGB1: High mobility group box 1; Hsp: Heat shock proteins; BM: Bone marrow; MSCs: Mesenchymal stromal/stem cells; UC: 
Umbilical cord; AT: Adipose tissue; DSS: Dextran sulfate sodium.

determined that this cytokine promotes the proliferation of human synovial MSCs and 
BM-MSCs[43,44], while not affecting their clonogenic potential. Moreover, the 
involvement of the nuclear factor-kappa B (NF-κB) signaling pathway is implicated in 
TNF-α-stimulated invasion and proliferation of BM-MSCs[44] (Figure 1). Furthermore, 
the preconditioning of MSCs with TNF-α differentially regulates their chondrogenic 
differentiation depending on the tissue source and donor age (Figure 1). Namely, 
while TNF-α does not affect the chondrogenic capacity of human synovial MSCs and 
BM-MSCs[43,45], Wheiling et al[46] revealed that it inhibited the chondrogenesis of human 
BM-MSCs isolated from elderly donors. In addition, several studies have indicated 
that TNF-α alters the osteogenic differentiation of MSCs in dose-, tissue source-, and 
species-specific manners (Figure 1). Regarding rodent MSCs, several studies have 
found that TNF-α inhibits the osteogenic differentiation of MSCs[47,48], while continuous 
delivery of TNF-α stimulates the osteogenic differentiation of rat BM-MSCs seeded 
onto three-dimensional biodegradable scaffolds[49]. The enhanced osteogenic potential 
has also been evidenced for human BM-MSCs treated with TNF-α[50,51]. However, it 
dually affects dental pulp stem cells, promoting their osteogenic differentiation 
through the Wnt/β-catenin signaling pathway, while suppressing the osteogenesis of 
these cells at high concentrations[52,53].

In the context of the stronger immunomodulatory capacity of TNF-α-primed MSCs, 
studies have demonstrated increased secretion of the immunosuppressive molecules 
PGE2 and IDO, chemokine IL-8, CXCL5, CXCL6, and certain growth factors such as 
hepatocyte growth factor, insulin-like growth factor 1, and vascular endothelial 
growth factor (VEGF)[54-57] (Table 1). Moreover, it has been revealed that TNF-α 
priming of rat UC-MSCs suppresses the inflammatory milieu by increasing TGF-β and 
IL-10 expression[58]. Because the immunosuppressive effects of TNF-α are less 
pronounced compared to IFN-γ priming in WJ-MSCs[28], several studies have 
investigated the combined effects of TNF-α and IFN-γ on the immunomodulatory 
potential of MSCs. Indeed, when human BM-MSCs were subjected to combined 
pretreatment with TNF-α plus IFN-γ, more effective inhibition of CD3/CD28-induced 
T-cell proliferation was observed compared to non-primed MSCs[59] (Table 1). Also, 
combined TNF-α and IFN-γ preconditioning was shown to increase IDO activity in 
BM-MSCs, resulting in monocyte differentiation into M2 immunosuppressive 
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macrophages, which further inhibited T-cell proliferation via IL-10 secretion[55].
Regarding the beneficial effects of MSC preconditioning with TNF-α, an in vivo 

study performed by Su et al[60] showed that the culture medium of TNFα-primed 
mouse BM-MSCs reduced experimental allergic conjunctivitis through multiple 
cyclooxygenase-2-dependent antiallergic mechanisms. In addition, the culture 
medium of TNF-primed human AT-MSCs has been shown to accelerate cutaneous 
wound closure, angiogenesis, and infiltration of immune cells in a rat excisional 
wound model via IL-6 and IL-8 secretion[61]. Also, in a model of mouse myocardial 
infarction, improved cardiac function related to decreased inflammatory responses 
and reduced infarct size has been documented in animals receiving TNF-α-primed 
human BM-MSCs[62]. By contrast, TNF priming reverses the immunosuppressive 
effects of mouse MSCs on T-cell proliferation, resulting in the failure of MSC treatment 
of murine collagen-induced arthritis[63].

IL-1β priming: IL-1β is the key mediator of inflammatory responses, which contributes 
to the host-defense response facilitating activation of innate immune cells[64]. 
Regarding the effects of IL-1β priming on MSCs proliferation and differentiation, 
heterogeneous results have been reported (Figure 1). Namely, while IL-1β 
preconditioning increases equine AT-MSCs and human synovium-derived MSCs 
proliferation[65,66], exposure of UC-MSCs to IL-1β results in suppressed proliferation[67]. 
Moreover, functional analyses of human BM-MSCs have revealed that treatment with 
IL-1β does not affect the proliferation of these cells, and promotes their migration and 
adhesion to extracellular matrix components[68]. Also, a study by Guo et al[69] 
demonstrated that IL-1β promoted UC-MSCs transendothelial migration through the 
CXCR3-CXCL9 axis, indicating the beneficial effects on MSC homing to target sites.

Many studies have described the modulatory effects of IL-1β stimulation on the 
osteogenic differentiation of MSCs, with conflicting results depending on the MSC 
tissue origin as well as IL-1β concentration (Figure 1). Sonomoto et al[70] demonstrated 
the ability of IL-1β to induce the osteogenic differentiation of human BM-MSCs via the 
Wnt pathway. Increased osteogenesis has also been found for equine AT-MSCs and 
human UC-MSCs treated with IL-1β[65,67]. On the other hand, depending on the 
concentration, IL-1β exerts dual effects on the osteogenesis of periodontal ligament-
MSCs, since low doses of IL-1β promote osteogenesis by activating the bone 
morphogenetic protein (referred to as BMP)/Smad signaling pathway, while higher 
doses of the cytokine impede osteogenesis[71]. IL-1β treatment also inhibits the 
chondrogenesis of MSCs from the femoral intramedullary canal in a dose-dependent 
manner via NF-κB activation[46]. In accordance with these findings, decreased 
chondrogenic differentiation has been reported for BM-MSCs and synovial fluid-MSCs 
treated with IL-1β[72-75]. However, Hingert et al[76] showed that pretreatment of BM-
MSCs with IL-1β followed by BMP-3 stimulation in a three-dimensional in vitro 
hydrogel model resulted in high proteoglycan accumulation and SRY-box 
transcription factor 9 expression, suggesting that IL-1β may be the causative factor.

Several studies have indicated changes in the secretory profile of MSCs primed with 
IL-1β, as well as the significance of IL-1β priming in combination with other factors. 
Regarding gingival-MSCs, IL-1β preconditioning induces the expression of TGF-β and 
matrix metalloproteinase agonists[77], while in human BM-MSCs, IL-1β increases 
granulocyte colony-stimulating factor (referred to as G-CSF)[78], IL-6, VEGF, CXCL1, 
and CCL2 chemokines[79]. The immunosuppressive activities of rat BM-MSCs were 
shown to be significantly promoted after preconditioning with TNF-α or IFN-γ in 
combination with IL-β, as the decreased proliferation of syngeneic lymphocytes in 
vitro was demonstrated[80] (Table 1). These effects were confirmed by in vivo 
experiments in a rat cornea transplant model, where after transplantation of syngeneic 
MSCs primed with TNF-α/IL-β enhanced graft survival (up to 70%) was observed 
compared to unprimed MSCs (up to 50%). In addition, the increased number of Tregs 
and reduced expression of pro-inflammatory cytokines in the draining lymph node of 
these animals were found, whereas there was an increased number of regulatory 
monocyte/macrophage cells and Tregs in the lungs and spleen[80].

Administration of IL-β-primed human UC-MSCs in mice with dextran sulfate 
sodium-induced colitis also increases the number of Tregs and Th2 cells, while 
reducing Th1 and Th17 cells in the spleen and mesenteric lymph nodes[81]. A recent 
study by Yu et al[82] emphasized the role of PGE2 and IDO induction in the observed 
immunosuppressive effects of umbilical cord blood-MSCs primed with IL-1β and IFN-
γ in the same disease model. Moreover, another recent study showed that the culture 
medium of IL-1β-primed AT-MSCs increased the phagocytic capacity of neutrophils, 
which may contribute to inflammation resolution, removal of tissue debris, and 
support of tissue repair in joint pathology[83]. Overall, the results indicating the 
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immunosuppressive phenotype of IL-1β-primed MSCs strongly suggest that this 
cytokine might promote the therapeutic efficacy of MSCs in disorders related to an 
exaggerated immune response (Figure 2).

IL-17 priming: IL-17 is another pro-inflammatory cytokine that plays a pivotal role in 
linking the immune and hematopoietic systems, while also contributing to the 
pathogenesis of numerous autoimmune and inflammatory diseases. However, the 
effects that this cytokine exerts on MSCs are still not fully understood. To date, it has 
been shown that IL-17 stimulates the proliferation of mouse and human BM-MSCs, as 
well as the migration of human BM-MSCs and trans-endothelial migration of 
peripheral blood MSCs[84-86] (Figure 1). Regarding the differentiation potential, 
published results have shown that IL-17 priming enhances osteogenic[84,87-89], but 
inhibits chondrogenic[90] and adipogenic[88,91] differentiation in human BM-MSCs. 
Moreover, IL-17 can decrease the osteogenic differentiation of periodontal ligament-
MSCs through extracellular signal-regulated protein kinases 1 and 2 (referred to as 
ERK1/2), and c-Jun N-terminal kinase mitogen-activated protein kinases[92]. Research 
related to the effects of IL-17 on the differentiation potential of mouse BM-MSCs has 
led to conflicting results, as one study found that IL-17 did not affect the 
differentiation potential of MSCs towards osteoblasts[85], whereas another showed 
suppressed osteogenic differentiation of these cells mediated by IκB kinase and NF-κ 
B[93].

Regarding the immunomodulatory activity of MSCs, IL-17 priming enhances the 
immunosuppressive features of MSCs. While IL-17 has no impact on MSC markers 
and the low immunogenic phenotype of human BM-MSCs, IL-17-primed MSCs 
suppress T-cell proliferation and inhibit CD25 expression and expression of Th1 
cytokines, including IFN-γ, TNF-α, and IL-2[94]. Moreover, a study showed that mouse 
MSCs pretreated with IFN-γ and TNF-α in combination with IL-17 significantly 
reduced T-cell proliferation via the inducible nitric oxide synthase (referred to as 
iNOS) pathway[95] (Table 1). The same study confirmed the immunosuppressive 
activity of BM-MSCs primed with IL-17 in vivo in a mouse model of concanavalin A-
induced liver injury. However, another study showed that IL-17 significantly reduced 
the suppressive capacity of olfactory ecto-MSCs on CD4+ T cells, mainly through the 
downregulation of suppressive factors (PD-L1, iNOS, IL-10, and TGF-β)[96]. The 
positive effect of IL-17 on the immunomodulatory features of MSCs has been 
confirmed in in vivo studies with different animal models. Namely, in a study in which 
mouse BM-MSCs were treated with IL-17 prior to their use in ischemia-reperfusion 
acute kidney injury, a significant decrease in IL-6, TNF-α, and IFN-γ levels and higher 
spleen and kidney Treg levels were shown compared to mice that received non-
primed MSCs[97]. In another work, IL-17-primed mouse BM-MSCs used in a skin 
transplantation model were found to increase the Treg subpopulation as well as IL-10 
and TGF-β levels, significantly prolonging graft survival[98].

IL-6 priming: Pleiotropic effects on immune regulation, hematopoiesis, and tissue 
regeneration are exerted by another inflammatory cytokine, IL-6[99]. Preconditioning 
MSCs with IL-6 has been shown to influence their behaviors in different manners 
depending on the tissue origin of the MSCs (Figure 1). Namely, a few studies have 
reported conflicting data showing that IL-6 has no effect on the proliferation of human 
AT-MSCs and mouse BM-MSCs[100,101], whereas in other studies, IL-6 increased the 
proliferation of human placenta-derived MSCs and BM-MSCs[102,103]. Moreover, the 
stimulating effect of IL-6 on BM-MSCs growth and in vitro wound healing is mediated 
by ERK1/2 activation[103]. It has also been reported that IL-6 differentially influences 
stem cell differentiation (Figure 1). Priming with IL-6 under osteogenic induction 
conditions has been shown to enhance mineralization and alkaline phosphatase 
expression in human BM-MSCs, AT-MSCs, and stem cells from human exfoliated 
deciduous teeth (called SHEDs)[104-107]. However, studies using lower concentrations of 
IL-6 have shown no effect on osteogenic differentiation potency of human BM-
MSCs[103]. Although IL-6 inhibits the chondrogenic differentiation of human BM-MSCs 
when added during differentiation induction[103], concomitant supplementation with 
IL-6 and soluble IL-6 receptor contributes to the enhanced chondrogenesis of this type 
of MSC[108]. Treatment with IL-6 during or prior to adipogenic differentiation induction 
reduces the adipogenesis capacity of human BM-MSCs[103], while other studies have 
reported no or positive effects of IL-6 on the adipogenic ability of human BM-MSCs, 
AT-MSCs, and SHEDs[104,109,110].

Even less is known about the immunomodulatory potential of IL-6-preconditioned 
MSCs. In this context, few studies have analyzed IL-6 effects in combination with other 
pro-inflammatory cytokines. Namely, altered immunological status has been reported 
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for AT-MSCs primed with a combination of IFN-γ, TNF-α, and IL-6 (Table 1), as 
shown by the upregulated expression of HLA class I and class II, as well as CD40[111], 
indicating a potentially more immunogenic phenotype. In addition, although the same 
priming conditions have no effect on AT-MSCs differentiation capacity, they enhance 
their immunosuppressive activity mainly through increased IDO expression. Another 
study demonstrated that human AT-MSCs and BM-MSCs primed with another 
combination of pro-inflammatory cytokines, IL-1, IL-6, and IL-23, exerted increased 
differentiation potential towards osteogenic and adipogenic lineages, while their 
morphology, immunophenotype (except upregulated CD45), and costimulatory 
molecule expression were similar to non-primed cells. Also, primed MSCs showed 
increased TGF-β and decreased IL-4 production, while their suppressive effect on T-
cell proliferation was comparable to controls[112] Although these findings suggest that 
priming with IL-6 might promote the therapeutic efficacy of MSCs in the treatment of 
various inflammatory and autoimmune disorders, no study investigating the in vivo 
therapeutic potential of MSCs preconditioned with IL-6 (alone or combined with other 
cytokines) has been performed to date.

MSCs priming with alarmins
Alarmins are constitutively expressed inside cells and exert various functions under 
physiological conditions. Upon tissue damage induced by pathogens or 
physical/chemical injuries, dying necrotic cells passively and rapidly release alarmins 
outside of cells to promote the immune response and support tissue repair[4,5,6]. In 
addition to these activities, alarmins are involved in many other processes, such as 
cellular homeostasis, wound healing, and tumor development[6,7]. The best-
characterized alarmins, such as IL-1α, IL-33, HMGB1, S100 proteins, and Hsps, will be 
discussed here in the context of their effects on MSC biology and potential role in 
tissue repair.

IL-1α and IL-33 are both dual-function cytokines that are localized in the nucleus 
under homeostatic conditions, where they function as transcription factors. Data on 
their extracellular effects on MSCs are very elusive. It has been demonstrated that IL-
1α stimulates the expression of trophic factor G-CSF via IL-1 receptor type 1 signaling 
in human BM-MSCs. In addition, the conditioned medium of IL-1α-primed BM-MSCs 
was shown to inhibit the secretion of inflammatory and apoptotic markers in 
lipopolysaccharide-activated mouse microglial BV2 cells and increase secretion of the 
anti-inflammatory IL-10 cytokine[78], suggesting that MSCs priming with IL-1α favors 
their immunosuppressive activities (Table 1). Another recent study showed that IL-1α 
decreased the proliferative and adipogenic differentiation capacity of AT-MSCs, 
whereby adipogenesis was inhibited predominantly during the early phase of 
differentiation via NF-κB and ERK1/2 pathways with subsequent stimulation of pro-
inflammatory cytokines, such as IL-8, IL-6, CCL2, and IL-1β, during adipogenic 
differentiation of AT-MSCs[113] (Figure 1). Since the effects of IL-1α are conspicuous at 
the beginning of the differentiation process, it is important to further examine IL-1α 
priming in the context of MSC differentiation. It was recently demonstrated that 
without changing MSC marker expression[114,115], IL-33 treatment has the potential to 
modify the regenerative[114] and immunomodulatory characteristics of MSCs[115]. Our 
recent study demonstrated that IL-33 treatment reduced periodontal ligament-MSCs 
and dental pulp MSCs osteogenesis but supported their proliferation, clonogenicity, 
and stemness (Figure 1). Both MSC types primed with IL-33 maintained their 
differentiation capacity, while increased alkaline phosphatase activity was also 
observed, indicating that IL-33 may contribute to the preservation of the dental stem 
cell pool[114]. Research conducted by Terraza et al[115] demonstrated that IL-33 with IFN-
γ stimulated the high expression of IL-6, TGF-β, and iNOS in mouse BM-MSCs. 
Despite the scarce data on IL-1α and IL-33 priming of MSCs, overall data indicate that 
preconditioning with these molecules should be additionally explored as an MSC 
priming strategy.

Another nuclear alarmin is HMGB1, a non-histone DNA-binding protein involved 
in the maintenance of the chromatin structure and gene expression regulation[116]. The 
knowledge on the effects of released HMGB1 on MSCs functions is still contradictory, 
as its stimulatory[117] as well as inhibitory[118,119] actions on MSCs proliferation have been 
reported. The promoted migratory capacity of MSCs primed with HMGB1 has also 
been demonstrated[117-119], indicating its beneficial effects for MSC functional 
adjustment in therapeutic use. In the presence of HMGB1, the osteogenic 
differentiation of MSCs is also induced[118,120,121] (Figure 1). Moreover, HMGB1 
stimulates the secretion of various cytokines by MSCs including macrophage CSF, 
eotaxin-3, epidermal growth factor receptor, VEGF, angiopoietin-2, CCL-5, urokinase 
plasminogen activator receptor, and macrophage migration inhibitory factor, which 
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may be associated with the induced osteogenic differentiation under HMGB1 
influence[121]. Furthermore, in rat BM-MSCs, along with promoted MSC migration, 
HMGB1 stimulates VEGF-induced differentiation to endothelial cells but decreases 
their proliferation and platelet-derived growth factor-induced differentiation to 
smooth muscle cells[119]. These findings indicate that HMGB1 priming could be a 
significant factor in tissue engineering for MSC-guided differentiation. Regarding 
immunomodulatory functions, it has been reported that HMGB1 priming has no effect 
on BM-MSCs ability to inhibit the proliferation of concanavalin A-stimulated 
lymphocytes in vitro[118] (Table 1), but additional research is needed to confirm these 
functions.

Unlike IL-1α, IL-33 and HMGB1 alarmins, S100 proteins, and Hsps are located in the 
cytoplasm during homeostasis[4]. The effect of extracellular S100A6 has been 
investigated on MSCs derived from WJ of the UC, and the results have shown the 
ability of this molecule to increase cellular adhesion and reduce their proliferation 
capacity by interacting with integrin β1[122] (Figure 1). Regardless, pretreatment of 
human AT-MSCs with S100A8/A9 and their subsequent application to wounds 
induced in C57BL/6 mice significantly improve wound healing due to transcriptome 
expression profile changes related to the enhanced protective MSCs phenotype[123]. 
Regarding the Hsp protein family, it has been demonstrated that Hsp90 increases 
viability and protects rat BM-MSCs against apoptosis, simultaneously increasing the 
paracrine effect of MSCs[124]. Another study showed that Hsp90α promotes rat MSCs 
migration, possibly mediated by the increased secretion of MMPs, SDF-1/CXCR4, and 
vascular cell adhesion protein 1[125] (Figure 1). Interestingly, the dual effects of Hsp70 
have been demonstrated depending on the age of the MSCs. Namely, in a study by 
Andreeva et al[126], Hsp70 increased the growth of aged but not young mouse AT-MSCs 
(Figure 1), suggesting the potential beneficial effects of Hsp70 priming. Moreover, the 
important role of Hsp70 in the osteogenesis of human MSCs is demonstrated by 
increased alkaline phosphatase activity and MSC mineralization[127,128].

CONCLUSION
As MSCs are crucial cellular components for tissue repair, it is essential to understand 
how the inflammatory microenvironment modulates the functionality of these cells. 
The beneficial effects of MSCs have been demonstrated, but due to the large 
heterogeneity detected within MSC populations, the success of their application in 
clinical trials has been limited. Moreover, it is believed that the inflammatory niche is 
indispensable for triggering MSC activity in an appropriate manner. Therefore, 
preconditioning methods have been applied to enhance and/or adjust MSCs 
functionality, including their regenerative and immunomodulatory status. To date, 
studies of the MSCs response to soluble factors featuring the inflammatory niche have 
been mostly focused on the effects provoked during their presence, pointing to the 
necessity of further exploring the durability of these changes. In this work, we 
collected data on the therapeutic potential of MSCs treated with pro-inflammatory 
cytokines (TNF-α, IFN-γ, IL-1β, IL-17 and IL-6) and alarmins (IL-1α, IL-33, HMGB1, 
S100 proteins, and Hsps) that are predominantly released at the site of the damaged 
tissue.

The reviewed data strongly indicate that all aforementioned factors possess the 
ability to modify the regenerative and immunomodulatory activities of MSCs, and the 
effects of these factors depend on the MSC tissue and species origin, as well as on 
donor age and cellular aging (senescence) status. In addition, different effects have 
been reported depending on the priming factor concentration and their selected 
combinations, as well as on the disease model, indicating that all of these aspects 
together should be carefully considered in relation to specific application 
requirements. Importantly, the effects of primed MSCs have been demonstrated in 
various animal wound and disease models, suggesting the validity of priming 
approaches for MSC therapy. Indeed, priming MSCs with certain inflammatory 
factors, such as TNF-α, IL-β, IFN-γ or S100A8/A9, contribute to the suppression of 
graft vs host disease and colitis, as well as to improved corneal and skin graft survival, 
mediated by their dominant immunosuppressive activity (Figure 2). Together, the data 
summarized in this paper provide a significant starting point for future research on 
priming MSCs and set future directions for establishing standardized methods for the 
application of preconditioned MSCs in cell therapy.
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